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ABSTRACT The leader-following consensus of fractional-order nonlinear multi-agent systems is studied
in this paper. An adaptive event-triggered control protocol is proposed to achieve the leader-following
consensus scheme. By applying Lyapunov stability theory of fractional-order systems and some effective
inequality techniques, some sufficient conditions for ensuring the consensus are derived intensively, and the
proposed control method can reduce the communication between the agents greatly. Moreover, the Zeno
behavior of event-triggered algorithm for multi-agent systems is excluded. Finally, a simulation example is
presented to validate the effectiveness of the proposed consensus protocol.

INDEX TERMS Leader-following consensus, multi-agent systems, adaptive control, event-triggered control.

I. INTRODUCTION
Over the last decades, the coordination problem of multi-
agent systems (MASs) has become one of the research
hotspots in the automation field and drawn much attention
to researchers owing to the extensive applications in such
wide fields as robotic group, unmanned aerial vehicles for-
mation flight and so on [1]–[3]. A lot of useful conclusions
on cooperative control problem have hitherto been obtained
on account of different application occasion. For instance,
the consensus cases with impulsive control [4]–[8], adaptive
control [9], [10], fuzzy control [11], [12] and event-triggered
control [13], [14] are widely studied in the challenge of
consistency. A significant topic is the leader-following coor-
dination of MASs, in which the leader guides all the other
agents to reach the same dynamic process.

A particular practical direction is to describe MASs
with fractional-order dynamics, where the fractional cal-
culus can reflect the essence and performance of a com-
plicated system better than integral calculus. In [15], the
consensus of fractional-ordermulti-agent systems (FOMASs)
under a directed connection network topology and the
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characteristic relations between the agents and fractional
calculus was studied. The cooperativity problem of FOMASs
under switching topology with double-integrator was solved
by employing Laplace transformation, dwell-time technology
and Mittag-Leffler function in [16]. The system stabilization
with fractional-order dynamic performance can be analyzed
by using Lyapunov method under the control protocol [17],
[18]. As developing theories and applications of fractional
dynamical systems, the coordination problem of FOMASs
with many different topics such as leader-following consen-
sus [17], [19], [20], unknown system parameters [21]–[23],
fixed-time consensus [24], input and distributed delays [25],
has attracted more and more attention.

Moreover, adaptive control is an excellent control strategy
for FOMASs with uncertain parameters, and the controller
parameters can be automatically updated during control pro-
cess. Over the past few decades, the increasing works applied
adaptive control theory to discuss the dynamic response
characteristics of distributed network systems, and the con-
sensus of MASs is one of them. Combining the superior-
ity of adaptive control laws in nonlinear system and the
energy-saving of using event-triggered control method,
the adaptive event-triggered controller was studied to
reduce information exchange and resolve consensus problem
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in [26], [27]. In [28], An adaptive control strategy is given
to realize consensus of MASs with uncertain nonlinearity.
The adaptive neural-network consensus problems of MASs
with nonlinearity were investigated in [29]–[31]. The event
trigger-based adaptive control method is proposed to solve
consensus problems of linear MASs in [32].

Furthermore, the event-triggered protocol is one of the
effective control strategies to reduce unnecessary control cost
and can improve availability of system resources and comput-
ing capabilities. Note that the control variables are changed
only when event-triggered condition is matched, which is
completely different from the previous control strategies
based on time driving [33]–[35]. Distributed and centralized
event-triggered protocols have been applied to consider the
consensus challenge of the first order MASs in [36]. In [37],
the event-triggered case by sampled data states in traditional
integer-order systemwas discussed. From the obtained results
on event-triggered consensus problem of MASs, one of trig-
gering conditions is the norm state of boundary function, and
the control mechanism is triggered on any occasion that a
defined error exceed limit value.

Enlightened by the previous discussions and knowledges,
the consensus of leader-following FOMASs is studied in this
paper. By designing an adaptive event-triggered controller,
some new sufficient consensus conditions are derived, and the
adaptive event-triggered protocol and event-triggered timing
function are given for each agent. As far as the authors know,
this is the first time to explore the combination of adaptive
control and event-triggered method for achieving the coordi-
nation of FOMASs with nonlinear dynamics. The obtained
results are not only functional and novel for consensus prob-
lem, but also consistent with the actual systems.

The main contributions of this paper are summed up as
follows:

(1) For the fractional-order nonlinear dynamics, the pro-
posed adaptive event-triggered protocol can achieve the
consensus of leader-following FOMASs effectively.

(2) At the last event-triggering time instants, the state update
of each agent only needs the local and neighboring state
values.

(3) Note that the state updates only happen at event-
triggering instants, and the FOMASs can greatly
decrease the information exchange between agents.

The structure of the rest of this paper is presented
as follows. Section 2 briefly reviews some concepts and
notations of graph theory, summarize the properties of
Caputo fractional derivative, and describe the nonlin-
ear MASs. In Section 3, the sufficient consensus conditions
of leader-following FOMASs with nonlinearity are analyzed
intensively, and the Zeno phenomenon of the corresponding
MASs can be excluded. In Section 4, a numerical simulation
is provided to illustrate the feasibility of the proposedmethod.
Finally, a conclusion is stated briefly in Section 5.
Notation: Throughout the paper, λmin(A) and λmax(A)

denotes the minimal and maximal eigenvalues of matrix A.

Rm×n, N and ⊗ stands for the set of all m × n real matri-
ces, positive integers and the Kronecker product respectively.
A−1 and AT denote the inverse and the transpose of matrix A.

II. PRELIMINARIES
Let G = (V, E,A) be a undirected graph which means the
communication between the nodes, V = {v1, v2, . . . , vN }
and E ∈ (V × V) denotes the group of N nodes and the set
of edges. Ni = {j ∈ V : (j, i) ∈ E} denotes the neighbors of
node i. A = (aij)N×N is the adjacency associate matrix of
nodes, where aij represents the weight of edge (j, i). aii =
0(i ∈ N) denotes that corresponding node does not exist
self-loops and aij > 0 if (j, i) ∈ E . di =

∑N
j=1 aij, D =

diag{di} ∈ RN×N and L = D − A are the in-degree of
node i, the related in-degree matrix and the Laplacian matrix
respectively. To represent whether the agents exist informa-
tion exchange with the leader, we define the adjacency matrix
of the leader as B = diag {b1, . . . , bN } related to G, where
bi > 0 if the leader exist communication with agent i and
otherwise bi = 0. Moreover let Q = L + B. Due to the
undirected topology graph, only when there exists a spanning
tree in the undirected topology G, which the leader is root
node, all eigenvalues of matrix Q are positive [38].
In last several decades, there are few forms for the frac-

tional calculus. Due to its initial value has actual physical
meaning inmany systemmodels, the Caputo fractional opera-
tor have huge impact on fractional-order calculus. Therefore,
we use Caputo fractional calculus to study the system dynam-
ics. The differential equation of the Caputo fractional calculus
is presented subsequently:

C
t0D

α
t x(t) =

1
0(r − α)

∫ t

t0

x(r)(τ )
(t − τ )α−r+1

dτ , (1)

where r − 1 < α < r , r ∈ N. α means the differential
order, t ≥ 0. 0(·) denotes the Gamma function and 0(n) =∫
∞

0 e−t tn−1dt . In order to simplify the analysis, Ct0D
α
t x(t) is

expressed by x(α)(t) in this paper.
−→
1 denotes all elements of

the column vector are 1.
Next, the Mittag-Leffler function is introduced, which

has high-frequency application in judging the stability of
the FOMASs with nonlinear dynamics and the solutions of
fractional-order derivative.

Eα,β (z) =
∞∑
l=0

zl

0(lα + β)
, (2)

when β = 1, α > 0, a special form is obtained as follows:

Eα(z) =
∞∑
l=0

zl

0(lα + 1)
. (3)

Lemma 1 [39]: Let 0 < α < 1, γ ∈ R and g(t) is a known
differentiable function. The form of fractional derivative
is

Dαf (t) = γ f (t)+ g(t), (4)

214 VOLUME 10, 2022



P. Xiao, Z. Gu: Adaptive Event-Triggered Consensus of Fractional-Order Nonlinear Multi-Agent Systems

which can be solved as

f (t) = f (t0)Eα(γ (t − t0)α)

+α

∫ t

t0
(t − τ )α−1Eα,α(γ (t − τ )α)g(τ )dτ . (5)

Lemma 2 [40]: Define x(t) ∈ RN and H ∈ RN×N as
a continuously derivable vector function of time and a real
matrix. it can be guaranteed for t ≥ t0 that

1
2
Dα(xT (t)Hx(t)) ≤ xT (t)HDαx(t), (6)

where ∀α ∈ (0, 1] and ∀t ≥ t0.

III. MAIN RESULTS
The leader-following FOMASs consist of N agents with a
leader is defined by{
xα0 (t) = Ax0(t)+ g(t, x0(t)), t ≥ t0
xαi (t) = Axi(t)+ Bui(t)+ g(t, xi(t)), i = 1, 2, · · · ,N,

(7)

where 0 < α < 1, A ∈ Rn×n, B ∈ Rn×m. xi ∈ Rn

and ui ∈ Rm are the state variables and input variables of
agent i, respectively. x0 ∈ Rn is the state variable of the leader.
g(t, xi(t)) is a differentiable function with the local Lipschitz
constant$ > 0 on xi(t), and the function satisfies∥∥g(t, xi(t))− g(t, xj(t))∥∥ ≤ $ ∥∥xi(t)− xj(t)∥∥ ,

t > 0, i 6= j. (8)

Definition 1: For any initial value, the consensus for
FOMASs is reached if all state variables of followers satisfy

lim
t→∞
‖xi(t)− x0(t)‖ = 0, i = 1, 2, · · · ,N . (9)

Assumption 1: In fact, due to the stabilization of (A,B), the
following inequality holds

TA+ ATT − TBBTT + ϑIN ≤ 0, (10)

where ϑ > 0 and T is a positive definite symmetric matrix.
Consider the latest state information at event instant tk ,

the adaptive event-triggered distributed control controller for
each agent is given as follows: ui(t) = −Jwi(t)1i(t ik ),

wαi (t) = 1
T
i (t

i
k )K1i(t ik )−

ϑwi(t)
2

, t ∈ [t ik , t
i
k+1),

(11)

where

1i(t) =
∑N

j
aij(xi(t)− xj(t))+ bi(xi(t)− x0(t)),

J ∈ Rm×n and K ∈ Rn×n are control gain matrixes. wi(t)
denotes the adaptive control function related to the agent i
and wi(t0) > 0. The triggering time {t ik} for each agent is
determined by

tk+1 = inf{t > tk and ξi(t) ≥ 0}, (12)

where

ξi(t) = wi(t)ϕTi (t)Kϕi(t)

−wi(t)1T
i (t)K1i(t)− δ exp(−ψ(t − t0)), (13)

is defined as the triggering condition for parameter asψ > 0,
δ > 0 and ϕi(t) = 1i(t ik )−1i(t).
Let ei(t) = xi(t)−x0(t), e(t) = (eT1 (t), e

T
2 (t), · · · , e

T
N (t))

T ,
ϕ(t) = (ϕT1 (t), ϕ

T
2 (t), · · · , ϕ

T
N (t))

T and W (t) = diag{w1(t),
w2(t), · · · ,wN (t)}, by connecting (7) and (11), one gets
e(α)(t) = (I ⊗ A−W (t)Q⊗ BJ )e(t)− (W (t)⊗ BJ )ϕ(t)

+G(t, x(t))− 1N ⊗ g(t, x0(t)),

w(α)
i (t) = ϕTi (t)Kϕi(t)+ 21T

i (t)Kϕi(t)

+1T
i (t)K1i(t)−

ϑwi(t)
2

.

(14)

It follows from (14) that the adaptive event-triggered func-
tion for each follower only needs the neighboring state vari-
able at the latest triggering timing, whichmeans the controller
can reduce the exchange and computing cost between neigh-
boring agents.
Theorem 1: The protocol (11) solves the cooperative prob-

lem of leader-following nonlinear FOMASs (7) if the infor-
mation flow graph include a spanning tree, where the leader
is the root node, J = BTT , K = TBBTT , λmax(T ) ≥ 1,
δ > 0, and 0 < ψ < ϑ/λmax(T ) − λmax(BBTT ) − 2$ , the
event-triggered timing are defined by (12).
Proof: Q is a symmetric positive definite matrix (SPDM).

By choosing a SPDM T , Q ⊗ T is also a SPDM. Therefore,
the Lyapunov function is selected as below

V (t) = eT (t)(Q⊗ T )e(t)+
N∑
i=1

w2
i (t)

2
. (15)

From (1), one gets the derivative of V (t)

Dαt V (t)

= 2eT (t)(Q⊗ T )e(α)(t)+
N∑
i=1

wi(t)w
(α)
i (t)

= 2eT (t)(Q⊗ TA)e(t)− 2eT (t)(QW (t)Q⊗ TBJ )e(t)

−2eT (t)(QW (t)⊗ TBJ )ϕ(t)+ eT (t)(QW (t)Q⊗ K )e(t)

+2eT (t)(Q⊗ T )(G(t, x(t))− 1N ⊗ g(t, x0(t)))

−

N∑
i=1

ϑw2
i (t)

2

+2eT (t)(QW (t)⊗ K )ϕ(t)+ ϕT (t)(W (t)⊗ K )ϕ(t)

= 2eT (t)(Q⊗ TA)e(t)− eT (t)(QW (t)Q⊗ TBJ )e(t)

+2eT (t)(Q⊗ T )(G(t, x(t))− 1N ⊗ g(t, x0(t)))

+ϕT (t)(W (t)⊗ K )ϕ(t)−
N∑
i=1

ϑw2
i (t)

2
. (16)
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According to the triggering timing {t ik} and triggering con-
dition (12), one has

wi(t)ϕTi (t)Kϕi(t)

≤ wi(t)1T
i (t)K1i(t)+ δexp(−ψ(t − t0)), (17)

which implies that

N∑
i=1

wi(t)ϕTi (t)Kϕi(t)

≤

N∑
i=1

wi(t)1T
i (t)K1i(t)+

N∑
i=1

δexp(−ψ(t − t0)). (18)

then, one gets

ϕT (t)(W (t)⊗ K )ϕ(t)

≤ eT (t)(QW (t)Q⊗ K )e(t)+ Nδexp(−ψ(t − t0)). (19)

From (16) and (19), it derives that

Dαt V (t)

≤ eT (t)(Q⊗ (TA+ ATT ))e(t)+ Nδexp(−ψ(t − t0))

+2eT (t)(Q⊗ T )(G(t, x(t))− 1N ⊗ g(t, x0(t)))

−

N∑
i=1

ϑw2
i (t)

2

≤ eT (t)(Q⊗ (TA+ ATT ))e(t)+ Nδexp(−ψ(t − t0))

+2$eT (t)(Q⊗ T )e(t)−
N∑
i=1

ϑw2
i (t)

2

≤ −ϑeT (t)(Q⊗ TT−1)e(t)+ eT (t)(Q⊗ TBBTT )e(t)

+Nδexp(−ψ(t − t0))+ 2$eT (t)(Q⊗ T )e(t)

−

N∑
i=1

ϑw2
i (t)

2

≤ (−ϑλmin(T−1)+ λmax(BBTT )+ 2$ )eT (t)(Q⊗ T )e(t)

−

N∑
i=1

ϑw2
i (t)

2
+ Nδexp(−ψ(t − t0)). (20)

which means that

Dαt V (t) ≤ −µV (t)+ Nδexp(−ψ(t − t0)), (21)

where µ = ϑλmin(T−1) − λmax(BBTT ) − 2$ , and one can
make µ < 1 by choosing suitable T , B and$.
Then, from Lemma 1 and (21), one gets

V (t)

≤ V (t0)Eα(−µ(t − t0)α)

+α

∫ t

t0
(t−τ )α−1Eα,α(−µ(t−τ )α)Nδexp(−ψ(τ−t0))dτ

≤ V (t0)Eα(−µ(t − t0)α)

+αNδexp(−ψ(t − t0)) ∗ (tα−1Eα,α(−µtα), (22)

where ∗ denotes the convolution operation, then one gets

Nδ exp(−ψ(t − t0)) ∗ (tα−1Eα,α(−µtα))

=

∫
∞

0
(t − τ )α−1Eα,α(−µ(t − τ )α)Nδexp(−ψ(τ − t0))dτ

=

∫
∞

0
Nδexp(−ψ(τ − t0)) · exp(t − τ )

· exp(τ − t)(t − τ )α−1

Eα,α(−µ(t − τ )α)dτ

= exp(t) · (
∫
∞

0
Nδexp(−ψ(τ − t0)− τ )

× exp(τ − t)(t − τ )α−1Eα,α(−µ(t − τ )α)dτ )

= exp(t) · (Nδexp(−ψ(t − t0)− t)

∗ exp(−t)tα−1Eα,α(−µtα)
)
, (23)

and ∫
∞

0
exp(−t)tα−1Eα,α(−µtα)dt

=

∫
∞

0
e−t tα−1

(−µtα)l

0(lα + α)
dt

=

∞∑
l=0

(−µ)l

0(lα + α)
·

∫
∞

0
e−t t lα+α−1dt

=

∞∑
l=0

(−µ)l

0(lα + α)
· 0(lα + α)

=

∞∑
l=0

(−µ)l

=
1

1+ µ
, 0 < µ < 1, (24)

then, one further gets

V (t) ≤ V (t0)Eα(−µ(t − t0)α)

+α

∫ t

t0
(t − τ )α−1Eα,α(−µ(t − τ )α)Nδ

×exp(−ψ(τ − t0))dτ

≤ V (t0)Eα(−µ(t − t0)α)

+α · Nδexp(−ψ(t − t0))

×

∫
∞

0
exp(−t)tα−1Eα,α(−µtα)dt

≤ V (t0)Eα(−µ(t − t0)α)+2 · exp(−ψ(t − t0)), (25)

where 2 = αNδ
/
(1+ µ). Obviously, we can obtain from

(25) and (2)

lim
t→∞
‖V (t)‖ = 0, 0 < α < 1. (26)

Note that

λmin(Q⊗ T ) ‖e(t)‖2 ≤ V (t)

= eT (t)(Q⊗ T )e(t)+
N∑
i=1

w2
i (t)

2

≤ V (t0)Eα(−µ(t − t0)α)+2exp(−ψ(t − t0)). (27)
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therefore, one gets

lim
t→∞
‖e(t)‖

= lim
t→∞
‖x(t)− 1N ⊗ x0(t)‖

≤ lim
t→∞

∥∥∥√V (t)/λmin(Q⊗ T )∥∥∥
≤ lim

t→∞

1
λmin(Q⊗ T )

×

∥∥∥√V (t0)Eα(−µ(t − t0)α)+2 · exp(−ψ(t − t0))∥∥∥
= 0 (28)

which means for any agent i, one gets

lim
t→∞
‖x(t)− 1N ⊗ x0(t)‖ = 0, (29)

and all agents obviously reach consensus according to
Definition 1. This completes the proof. �
Note that there are some control parameters to be chosen,

the design procedure is given as follows for better clarity.
(1) From the inequality (10), one gets ϑ > 0 and T .
(2) From the conditions in Theorem 1, i.e., J = BTT ,

K = TBBTT , one gets control gains J and K .
(3) From the condition in Theorem 1, i.e., ψ =

ϑ
/
λmax(T )−λmax(BBTT )− 2$ , one gets ψ .

Theorem 2: The concerned leader-following FOMASs
avoid Zeno phenomenon under the same conditions as
Theorem 1, which means that the lower bound of minimum
triggering time interval is a positive number.
Proof: Zeno behavior has a strict mathematical definition

but can be described informally as the system making an
infinite number of jumps in a finite amount of time. The adap-
tive event-triggered protocol is used to avoid Zeno-behavior
problem, it is necessary to prove the lower bound ofminimum
triggering time interval is positive, i.e.,

tk+1 = inf{t : t > tk and ξi(t) ≥ 0},

ξi(t) = wi(t)ϕTi (t)Kϕi(t)− wi(t)1
T
i (t)K1i(t)

−δexp(−ψ(t − t0)).

thus, the next time when the agents change its control vari-
ables will not update until triggering condition θi(t) = 0, and
one has

wi(tk+1)ϕTi (tk+1)Kϕi(tk+1)

= wi(tk+1)1T
i (tk+1)K1i(tk+1)+ δexp(−ψ(tk+1 − t0))

≤ |wi(tk+1)| ‖K‖ ‖ϕi(tk+1)‖2 . (30)

Since B is a real matrix and T is a SPDM, BBT is positive
semi-definite matrix and K is a positive semi-definite matrix.
By using the second equality of (11) and Lemma 1, one gets

wi(t) = wi(t0)Eα(−
ϑ

2
(t − t0)α)

+α

∫ t

t0
(t − τ )α−1Eα,α(−

ϑ

2
(t − t0)α)

×1T
i (t

i
k )K1i(t ik )dτ. (31)

Obviously, wi(t) is positive if wi(t0) > 0. Then one
derives that (32), as shown at the bottom of the page, where

d1 =
√

δ
wi(tk+1)‖K‖

. The fractional derivative of ‖ϕ‖ over

interval
[
t ik , t

i
k+1

)
is derived as

Dα
t+k
‖ϕi(t)‖

≤
∥∥Dαtkϕi(t)∥∥ = ∥∥Dαtk1i(t)

∥∥
=

∥∥∥∥∥∥Dαtk (
N∑
j=1

aij(xi(t)− xj(t))+ bi(xi(t)− x0(t)))

∥∥∥∥∥∥
=

∥∥∥∥∥∥
N∑
j=1

aij(A(ei(t)− ej(t))+ B(ui(t)− uj(t))+ gi(t)

+gi(t)− gj(t))+ bi(ei(t)+ Bui(t)+ gi(t))
∥∥

≤ ‖Q⊗ A‖ ‖e(t)‖ + ‖Q⊗ B‖ ‖u(t)‖ +$ ‖Q‖ ‖e(t)‖

≤ ‖Q⊗ A‖ ‖e(t)‖ + ‖Q⊗ B‖ ‖W (t)Q⊗ J‖ ‖e(tk )‖

+$ ‖Q‖ ‖e(t)‖

≤ (‖Q⊗ A‖ +$ ‖Q‖) ‖e(t)‖

+‖Q⊗ B‖ ‖W (t)Q⊗ J‖ ‖e(tk )‖

≤ c1 ‖e(t)‖ + c2 ‖e(tk )‖ . (33)

Since exp(t) and Eα(t) are bounded on [tk , tk+1), that
means, for ∀t ∈ [tk , tk+1) , ∃σ > 0

σexp(−ψ(t − t0)) ≥ Eα(−µ(t − t0)α), (34)

which implies that

‖e(t)‖ ≤

√
1

λmin(Q⊗ T )
(V (t0)σ +2)exp(−ψ(t − t0))

= κexp(−
ψ

2
(t − t0)), (35)

where κ =
√

1
λmin(Q⊗T )

(V (t0)σ +2).

‖ϕi(tk+1)‖ ≥

√
1

wi(tk+1) ‖K‖
(wi(tk+1)1T

i (tk+1)K1i(tk+1)+ δexp(−ψ(tk+1 − t0)))

≥

√
δ

wi(tk+1) ‖K‖
exp(−ψ(tk+1 − t0))

≥ d1exp(−
ψ

2
(tk+1 − t0)), (32)
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Invoking (30), one gets

Dαtk ‖ϕi(t)‖ ≤ c1 ‖e(t)‖ + c2 ‖e(tk )‖

≤ c1κexp(−
ψ

2
(t − t0))+ c2κexp(−

ψ

2
(tk − t0)).

(36)

According to (1), one can get

D−αt 1 =
1

0(α)

∫ t

tk

1
(t − τ )−α+1

dτ

=
1

α0(α)
(t − τ )α|ttk

=
1

α0(α)
(t − tk )α (37)

where−1 < −α < 0, which means the integral of constant 1.
From (36) and ϕi(t ik ) = 0, we derive

‖ϕi(t)‖ ≤ c1κ(−
2
ψ
)α(exp(−

ψ

2
(t − t0))− exp(−

ψ

2
(tk−t0))

+c2κexp(−
ψ

2
(tk − t0))

1
α · 0(α)

(t − tk )α. (38)

Note that d1exp(−
ψ
2 (tk+1 − t0)) ≤ ‖ϕi(tk+1)‖, one gets

d1exp(−
ψ

2
(tk+1 − t0))

≤ c1κ(−
2
ψ
)α(exp(−

ψ

2
(tk+1 − t0))− exp(−

ψ

2
(tk − t0))

+c2κexp(−
ψ

2
(tk − t0))

1
α · 0(α)

(tk+1 − tk )α, (39)

then, one gets

d1exp(−
ψ

2
(tk+1 − tk )) ≤ d2(exp(−

ψ

2
(tk+1 − tk ))− 1)

+d3(tk+1 − tk )α, (40)

where d2 = c1κ(− 2
ψ
)α, d3 =

c2κ
α0(α) .

Denoting t∗ = tk+1 − tk , ε = ψ
/
2, by (40), it yields

d1exp(−εt∗) ≤ d2(exp(−εt∗)− 1)+ d3t∗α. (41)

By (41), one gets t∗ 6= 0 for any triggering time and
agents, which shows that the Zeno-behavior will not exhibit
for the whole leader-following FOMASs. This completes the
proof. �

IV. NUMERICAL EXAMPLES
A specific numerical example is presented to verify the pro-
posed method in this section. Choose the MASs with a leader
and five agents, where

xi(t)=
[
x1i (t), x

2
i (t), x

3
i (t), x

4
i (t)
]T
, i = 0, 1, 2, 3, 4, 5.

Assume that the connection graph is defined as in Fig. 1.
One gets the following relevant matrices,

A =


0 0 0 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 0 0
1 0 0 0 0

 , D =


1 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

FIGURE 1. The undirected topology graph of leader-following FOMASs.

L =


1 0 0 0 −1
0 2 −1 −1 0
0 −1 1 0 0
0 −1 0 1 0
−1 0 0 0 1

 , B =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
Let

A =


−0.5180 −0.1858 0.3069 −0.2435
0.4372 −0.4768 0.5276 −0.1787
0.4382 −0.903 −1.5114 0.4436
−0.3123 −0.0476 0.1370 −2.299

 ,

B =


−0.1707

0
0.423
0.325

 ,
and ϑ = 1.0714, then one gets from Theorem 1 and (10)

T =


1.4403 −0.0404 0.0821 −0.0115
−0.0404 1.2354 0.1651 0.0117
0.0821 0.1651 1.3216 0.0114
−0.0115 0.0117 0.0114 1.4079

 ,

J =


−0.2177
0.1671
0.5603
0.4652


T

,

K =


0.0474 −0.0364 0.1220 −0.1013
−0.0364 0.0279 0.0936 0.0777
0.1220 0.0936 0.3139 0.2606
−0.1013 0.0777 0.2606 0.2164

 .
the nonlinear part of FOMASs is g(t, xi(t)) = 0.1sin( xi(t)15 ).

Thus, one gets that$ = 0.1, λmax(T ) = 1.4940 > 1, and
ϑ
/
λmax(T )−λmax(BBTT )− 2$ = 0.0484. Then we choose

ψ = 0.04. Furthermore, it follows from Fig. 1 that the leader
agent is the root node of spanning tree in connection graph.
Therefore, the leader-following consensus will be reached for
δ > 0 based on Theorem 1. According to Theorem 2, the
Zeno-behavior of the related leader-following FOMASs will
be avoided.

Note that the above design parameters J , K , ϑ , ψ , δ are
not the unique solutions to achieve the consensus goal. The
different parameter combination can obtain different control
performance. The single parameter has not positive correla-
tion with the performance.
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Figs. 2-4 show the tracking dynamic process, control vari-
able and event-triggered time instants, respectively, which
mean that MASs can achieve consensus while the Zeno-
behavior does not exhibit.

FIGURE 2. Tracking error between the leader and other agents.

FIGURE 3. Controller variables update of followers.

FIGURE 4. Event-trigger timing for each agent.

Let the initial conditions be x0(t) = 0.1 × [1, 2, 3, 4]T ,
xi(t0) = (0.5 − 0.8 × i) × [1, 2, 3, 4]T , wi(t0) = i, δ =
0.0134, i = 1, 2, 3, 4, 5.

V. CONCLUSION
In this article, the adaptive event-triggered consensus of
multi-agent systems described by fractional calculus with
nonlinearity is investigated. At the latest triggering timing for

each agent, adaptive protocols only use the neighboring state
variable. By choosing the appropriate Lyapunov functions,
the above proofs have revealed the obtained control protocol
are effective to reach coordination. Simulations have been
carried out to show the practicability of the conclusions.
Moreover, the Zero-behavior is excluded. Note that the con-
sensus scheme in this paper is just under ideal conditions, and
some practical effects such as unknown false data-injection
and replay cyber-attacks [41] are very worth exploring. More
in-depth research will be developed in our future work.
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