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ABSTRACT This study uses a Bezier curve-based shaping (BCBS) approach based on the dynamic model
to quickly generate 3D cooperative trajectories for unmanned aerial vehicles (UAVs). It can facilitate the
solution of the flight trajectory problem that occurs after the reallocation of mission points. Trajectory
coordinates are expanded based on the Bezier curves that naturally satisfy boundary conditions (BCs);
trajectories with the minimum flight time and those satisfying the dynamic constraints and collision-free
conditions can be obtained by adjusting the Bezier coefficients. A three-UAV flight simulation is carried
out to verify the effectiveness of the proposed method. Further, the performance of the proposed method is
compared with that of the Gauss pseudospectral method (GPM). The simulation results of the BCBSmethod
are used as the initial values for GPM optimization. It is demonstrated that the BCBSmethod requires a lower
computation time than the direct solver, which is only 0.07% of the latter, and obtains similar optimization
results (3.34% difference). This is considerably important for the rapid generation of optimized trajectories
with the limited computing power of onboard computers. Furthermore, this method is expected to achieve
online collaborative trajectory generation for multiple UAVs in view of its high computational efficiency.

INDEX TERMS Bezier-shaped functions, collision avoidance, trajectory optimization, multi-UAV
cooperation.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have been developed
rapidly and used widely in recent decades [1]. Compared to
manned combat units, UAVs provide the advantages of low
cost and zero casualties. Therefore, UAVs are widely used in
the military and civilian fields [2] such as for reconnaissance,
surveillance, interference, relay communications, forest fire
detection, and meteorological observation. With the increas-
ing complexities of application scenarios, it is difficult for a
single UAV to perform missions that can satisfy demands.
Multiple UAVs have greater flexibility and adaptability and
can perform better in some mission scenarios. Multi-UAV
collaboration has become an important direction for UAV
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technology, and in the future, it is expected that UAVs will
be developed with a focus on clustering, autonomy, and high
intelligence.

However, complex and variable multi-vehicle missions
pose challenges for UAV technology. In an unexpected situa-
tion, the mission of UAVs may be disturbed or even changed.
UAVs need to quickly generate flyable cooperative trajec-
tories to the new mission points in emergencies. Therefore
the completion of a complex multi-UAV cooperative mis-
sion requires a feasible UAV cooperative trajectory planning
algorithm, which can generate safe and effective multi-UAV
cooperative trajectories and provide UAVs a certain degree of
autonomy. Further, because of the limited computing power
of the onboard computer, the calculation amount of the UAV
cooperative trajectory planning algorithm needs to be as small
as possible. And the difficulty with multi-UAV cooperation
is the need to improve the coordination of the UAV group
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such that it can avoid collisions between individuals under
complex circumstances and ensure cooperative operation.

Trajectory planning algorithms generally use an optimal
control theory. Popular numerical solutions of the optimal
control theory include the direct (‘‘discretise, then optimise’’)
and indirect methods (‘‘optimise, then discretise’’) [1], both
of which need to be based on dynamics and involve a
large amount of calculation (integral calculation). The pseu-
dospectral optimal control theory is a popular strategy in the
direct method, and it has been used to solve many aviation
and aerospace problems [3]–[5]. In more recent develop-
ments, many improvements have been suggested for the pseu-
dospectral method. Zhang et al. [6] developed an algorithm
that integrates the Legendre pseudospectral method and the
artificial potential field method. Their algorithm effectively
solved the trajectory planning problem of the UAV in an
obstacle-rich environment. Rogowski and Maroński [7] used
the Chebyshev pseudospectral method to generate a trajectory
for a glider in the vertical plane. Yang et al. [8] used Gauss
pseudospectral method (GPM) in the trajectory optimiza-
tion of a ramjet-powered vehicle. Sun et al. [9] optimized the
6-degree freedom trajectory of the parafoil delivery system
with GPM. Other direct methods include the convex opti-
mization method [10]. Pepy and Hérissé [11] proposed an
algorithm based on an indirect shooting method.

The geometric method corresponds to the method using
the optimal control theory. Babel [12] used shortest path
algorithms for network optimization. They assumed that there
are many line elements in space; connecting the directed
line elements can act as the trajectory of the UAV. Other
studies used Dubins paths, considering constraints such as
obstacle avoidance, collision avoidance, and curvature lim-
itation [13]–[16]. However, all UAVs move at a constant
speed, and therefore, the optimization target is the path
length. The Pythagorean hodograph (PH) method is another
effective geometric method used for cooperative path plan-
ning [17]–[19]; dynamical constraints are described using
geometric differential characteristics such as curvature and
torsion. Although these purely geometric methods have high
computational efficiency, they do not consider the dynamics
of the vehicles. In the task planning for designing a large
number of UAV trajectories, the most effective task allocation
strategy can be quickly filtered using a purely geometric
method; however, it may cause some trajectories to be less
flyable.

The Bezier curve-based shaping (BCBS) approach pre-
sented in this paper employs a combination of geom-
etry and dynamics, and it can, therefore, be called a
geometric-dynamics method [20]. Inspired by the introduc-
tion of the concept of the shape function in Petropoulos and
Longuski’s article [21], the Bezier approach was proposed in
our previous paper [22]. Several works of literature [23], [24]
employ Bezier curves for the path planning of robots. Bezier
curves have been used to connect straight lines or circles to
make the curvature of the UAV trajectories smoother and
more continuous [25]–[27]; other similar methods include

B-spline [28]. Yu et al. [29] used the temporal–spatial Bezier
curve to optimize the trajectory of multiple UAVs directly,
and they obtained the suboptimal time for multiple vehicles to
arrive simultaneously. Under the same conditions, the arrival
time calculated using the temporal–spatial Bezier curve is
shorter, and the curvature of the trajectory is more con-
tinuous compared with [30]. Although the temporal–spatial
Bezier curve considers some dynamic constraints and colli-
sion avoidance, this method is a cubic Bezier curve. Under the
condition that the boundary conditions (BCs) are determined,
a cubic Bezier function can determine a unique curve without
optimizing the Bezier coefficients.

The contributions of this study are as follows. First, this
paper considers the dynamics model and constraints of the
UAV with the collision avoidance of cooperative trajecto-
ries, instead of using the kinematics model in other papers
[13]–[16] where the constraints on the turning radius and
path length cannot consider the dynamic characteristics of
the UAV. The method proposed in this paper takes thrust,
angle of attack, and roll angle as control variables, which can
be expressed by the curve coordinates and their derivatives
obtained by the Bezier method. Second, the BCBS approach
is adopted to design a multi-UAV cooperative trajectory
quickly and efficiently. Assuming that the trajectory of the
UAV is in the form of the Bezier function, the optimized
trajectory can be obtained by optimizing the Bezier coef-
ficients. The characteristics of the Bezier curve can satisfy
the dynamic constraints and BCs of the UAV. A simulation
scenario, wherein three UAVs depart and arrive simultane-
ously and may collide with each other, is designed to verify
the feasibility of the proposed method. In the simulation,
the Bezier method can quickly obtain the trajectory of the
minimum flight time.

The remainder of this paper is organized as follows.
Section 2 describes the dynamic model of the UAV, dynamic
constraints, and collision-free conditions. Section 3 intro-
duces a 3D cooperative trajectories generation framework
using the Bezier approach, which solves the trajectory
optimization problem using nonlinear programming prob-
lem (NLP) for Bezier coefficients. Section 4 describes a
simulation that is performed in the set scenario to verify the
feasibility of the method; the results are compared with those
of GPM. Section 5 presents more simulated cases to test
and verify the applicability and effectiveness of the method.
Finally, some concluding remarks are described.

II. PROBLEM DESCRIPTION
A. MISSION FRAMEWORK OF MULTI-VEHICLE
The multi-UAV mission framework described in this paper is
a centralized architecture. For a general multi-UAV mission
framework, the ground station generates all the trajectories
and sends them to each vehicle before and during the mis-
sion(Fig. 1). However, the mission environment is complex
and prone to changes. Once an emergency occurs, the ground
station may not have time to change trajectories as soon
as possible due to the long distance between the ground
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station and the UAV. UAVs need to have the ability to quickly
generate trajectories autonomously. In the frameworkwithout
a ground station(Fig. 2), the vehicles exchange and transmit
information such as their current position and speed in real
time. In the UAV group, any UAV can be used as the central
vehicle to command and dispatch other UAVs. The central
vehicle can be selected among the UAVs in the middle of the
UAV group, which can facilitate the connection between the
central unit and other vehicles. When there is an emergency
that require the trajectories of the UAVs to be temporarily
changed, the central vehicle quickly calculates a set of flyable
flight trajectories based on the flight status of all the UAVs
and transmits them to the extensions.

FIGURE 1. Multi-UAV mission framework with ground station.

FIGURE 2. Multi-UAV mission framework without ground station.

B. DYNAMIC MODEL OF UNMANNED
AERIAL VEHICLE (UAV)
A three-dimensional coordinate system needs to be deter-
mined to describe the position and motion of the vehicles
conveniently. During missions, the rotation and curvature
of the earth can be ignored because the flight distance and
altitude are within a small range.

First, a three-dimensional inertial coordinate system is
established in space, where the OX axis and OY axis are
on the horizontal plane, and the OZ axis is perpendicular to
the horizontal plane and points in the opposite direction of
gravity. Then a speed coordinate system is established; the
UAV speed vector coincides with the OXv axis. The transfor-
mation relationship between the two coordinate systems can
be expressed by the flight path angle γ and the heading angle
ψ , which are the vertical and horizontal projection angles of
OX and OXv, respectively.

It is assumed that the mass of the vehicles does not change
during flight, there is no sideslip, and the angle of attack is
relatively small. The 6-DoF dynamic equations are

ẋ = v cos γ cosψ

ẏ = v cos γ sinψ

ż = v sin γ

v̇ =
1
M

(−D+ FT cosα −Mg sin γ )

γ̇ =
1
Mv

(L cosφ + FT sinα cosφ −Mg cos γ )

ψ̇ =
1

Mv cos γ
(L sinφ + FT sinα sinφ) (1)

where x, y, and z are the position coordinates of the vehicle
in the inertial frame, and v is the speed. L and D are the lift
and drag forces of the UAV, respectively.

L =
1
2
ρv2SCL

CL = CLαα

D =
1
2
ρv2SCD

CD = CD0 + KC2
L (2)

S is the effective area, and CL is the lift coefficient.
In the range where the angle of attack is small, CL can
be regarded as proportional to the angle of attack α. Drag
coefficient CD includes the zero-lift drag coefficient and the
part related to lift. K is a constant. In addition, FT , α, and
φ can be passed to the autopilot of the vehicle as control
variables.(x, y, z, v, γ, ψ) are regarded as state variables.

The flight path and heading angles can be expressed as

γ = arcsin(
ż
v
)

ψ = arctan(
ẏ
ẋ
) (3)

Further, the derivatives of γ and ψ are

γ̇ =
z̈v− żv̇

v2
√
1− ż2/v2

ψ̇ =
ÿẋ − ẏẍ
ẋ2 + ẏ2

(4)

where ẍ, ÿ, and z̈ can be obtained using the variables of the
Bezier method. The higher-order part of α can be ignored
when the angle of attack is small. So it can be assumed that
sinα ≈ α and cosα ≈ 1. Then Eq.(1) can be solved by the
coordinates of the trajectories and their derivative.

FT = Mv̇+
1
2
v2SCD0 +Mg sin γ

φ = arctan(
v cos γ ψ̇
vγ̇ g cos γ

)

α =
Mvγ̇ +Mg cos γ

1
2 cosφρv

2SCα + FT
(5)

where

v̇ =
ẋẍ + ẏÿ+ żz̈√
ẋ2 + ẏ2 + ż2

After obtaining the flight trajectories of the UAVs using the
Bezier method, the control variables of the trajectories can
be solved. The flyable trajectories must satisfy the dynamic
constraints of the vehicles, such as speed, acceleration, and
flight angles, moreover, the control input of the UAV also
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has a certain range of restrictions. These constraints can be
described as

vmin ≤ v ≤ vmax, γmin ≤ γ ≤ γmax,

a ≤ amax, |α| ≤ αmax, |φ| ≤ φmax,

FT min ≤ FT ≤ FT max (6)

where a =
√
ẍ2 + ÿ2 + z̈2. For multiple UAVs, each vehicle

has corresponding constraints based on its capability.

C. COOPERATION CONSTRAINTS
As the number of vehicles in the mission increases, the coop-
eration among the vehicles need to be maintained to complete
the mission, which includes time and space cooperation [31].
Some complex tasks require vehicles to reach the target points
simultaneously or sequentially [32], [33]. This paper focuses
on the study of multiple vehicles reaching the target points at
the same time. Therefore, there are the following constraints
on the flight time Ti of N UAVs.

Ti = Tj i, j = 1, · · · ,N , i 6= j (7)

Space cooperation requires to have a safe distance between
the UAVs. If the vehicles cannot maintain a safe distance,
it can affect flight control and cause collisions. The dis-
tance constraint can be satisfied by maintaining the distance
between the vehicles to be greater than the minimum safe
distance. The interval is calculated for the time where the
mission times of two UAVs overlap. The vehicle position
vector is p, and the safe distance constraint between the i-th
and j-th vehicles can be written as

min
i,j=1,...,N

i6=j

∥∥pi(t)− pj(t)∥∥22 ≥ E2
d ,∀t ∈ [ti, tf ] (8)

where

ti = max{ti,i, ti,j}, tf = min{tf ,i, tf ,j},

ti,i, and ti,j indicate the mission start time of the i-th and
j-th vehicles, and correspondingly, tf ,i and tf ,j indicate the
mission end times. Further, Ed denotes the minimum safety
distance, which is far greater than the required minimum
safety distance. It can avoid the insufficient safety distance
caused by errors resulting from control, discrete curve, air
flow, etc.

III. BEZIER CURVE-BASED SHAPING APPROACH
A. STATES APPROXIMATION
A vehicle describing the flight trajectory generated by the
BCBS method is considered as an example. First, the dimen-
sionless parameter τ = t/T ∈ [0, 1] of the flight time t is
introduced, where T is the total flight time of the vehicle.
Therefore, the 12 BCs of the trajectory generation problem
can be written as

x(τ = 0) = xi, x(τ = 1) = xf ,

x ′(τ = 0) = T ẋi, x ′(τ = 1) = T ẋf
y(τ = 0) = yi, y(τ = 1) = yf ,

y′(τ = 0) = T ẏi, y′(τ = 1) = T ẏf
z(τ = 0) = zi, z(τ = 1) = zf ,

z′(τ = 0) = T żi, z′(τ = 1) = T żf (9)

where the normal subscripts ‘‘i’’ and ‘‘f ’’ represent the initial
and final states; the superscripts˙and ′ represent the derivative
of the dimensionless time parameter τ and the flight time t ,
respectively.

The three-dimensional position coordinates of the vehicle
flight trajectory can be expanded into the form of the Bezier
curve function using the BCBS method [22].

x(τ ) =
nx∑
j=0

Bx,j(τ )Px,j

y(τ ) =
ny∑
j=0

By,j(τ )Py,j

z(τ ) =
nz∑
j=0

Bz,j(τ )Pz,j (10)

where nx , ny, and nz are the degrees of the Bezier function;
Px,j, Py,j, and Pz,j are the control coefficients of the Bezier
curve; and Bx,j, By,j, and Bz,j are Bezier basis functions [34],
which can be written as follows (Examples are given in the x
dimension to avoid repetition):

Bx,j(τ ) =
nx !

j!(nx − j)!
τ j(1− τ )nx−j j ∈ [0, nx] (11)

From Eq.(10), the first derivative of x with respect to the
time of flight t can be obtained as

x ′(τ ) =
nx∑
j=0

B′x,j(τ )Px,j (12)

where B′x,j(τ ) can be obtained from Eq.(11).

B′x,j(τ )

=



− nx(1− τ )nx−1 j = 0
nx !

(j− 1)!(nx − j)!
τ j−1(1− τ nx−j)

−
nx !

j!(nx − j− 1)!
τ j(1− τ )nx−j−1

j ∈ [1, nx − 1]

nxτ nx−1 j = nx
(13)

Substituting τ = 0 and τ = 1 for Eq.(11) and Eq.(13),
respectively, some parameters of the BCs can be obtained.

Bx,j(τ = 0) =

{
1 j = 0
0 j ∈ [1, nx]

Bx,j(τ = 1) =

{
0 j ∈ [0, nx − 1]
1 j = nx

B′x,j(τ = 0) =


−nx j = 0
nx j = 1
0 j ∈ [2, nx]
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B′x,j(τ = 1) =


0 j ∈ [0, nx − 2]
−nx j = nx − 1
nx j = nx

(14)

Combining Eq.(9), Eq.(10), and Eq.(14), we get

xi = x(τ = 0) = Px,0
xf = x(τ = 1) = Px,nx
T ẋi = x ′(τ = 0) = nx(Px,1 − Px,0)

T ẋf = x ′(τ = 1) = nx(Px,nx − Px,nx−1) (15)

Hence, the four Bezier coefficients can be parameterized
as

Px,0 = xi Px,1 = xi + T ẋi/nx
Px,nx−1 = xf − T ẋf /nx Px,nx = xf (16)

The Bezier curve can be adjusted by changing the remain-
ing nx − 3 Bezier coefficients in the optimization process.
The roots of the mth-degree Legendre polynomial are used to
discretize dimensionless time τ .

τ1 = 0 < τ2 < · · · < τm−1 < τm = 1 (17)

The coordinates [x, y, z] of the vehicle flight trajectory are
represented in the form of matrix products. For example, x is
written as

[x]m×1 = [Bx]m×(nx+1) [Px](nx+1)×1[
x ′
]
m×1 =

[
B′x
]
m×(nx+1)

[Px](nx+1)×1[
x ′′
]
m×1 =

[
B′′x
]
m×(nx+1)

[Px](nx+1)×1 (18)

where [Px] =
[
Px,0 Px,1 [Xx]T(nx−3)×1 Px,nx−1 Px,nx

]T
are the Bezier coefficients. Px,0, Px,1, Px,nx−1, and Px,nx
are the known coefficients, as described in Eq.(16),
and [Xx](nx−3)×1 =

[
Px,2 · · · Px,nx−2

]T are the

unknown coefficients. Matrices [Bx]m×(nx+1),
[
B′x
]
m×(nx+1)

and
[
B′′x
]
m×(nx+1)

can be obtained by substituting τj(j ∈
[1,m]).

[Bx]m×(nx+1) =

 Bx,0(τ1) . . . Bx,nx (τ1)
...

. . .
...

Bx,0(τm) . . . Bx,nx (τm)


[
B′x
]
m×(nx+1)

=

 B′x,0(τ1) . . . B′x,nx (τ1)
...

. . .
...

B′x,0(τm) . . . B′x,nx (τm)


[
B′′x
]
m×(nx+1)

=

 B′′x,0(τ1) . . . B′′x,nx (τ1)
...

. . .
...

B′′x,0(τm) . . . B′′x,nx (τm)

 (19)

Variables nx , ny, nz, and m are required to be deter-
mined before beginning the trajectory generation calculation.
The coefficient matrices ([Bx]m×(nx+1),

[
B′x
]
m×(nx+1)

, and[
B′′x
]
m×(nx+1)

) are constant and are calculated once before
starting the loop optimization calculation.

If nx = ny = nz = 3, the shape of the flight trajectory
is fixed by the BCs, and all the coefficients are determined.
If nx > 3, ny > 3, andnz > 3, there are unknown coeffi-
cients ([Xx](nx−3)×1 ,

[
Xy
]
(ny−3)×1

, [Xz](nz−3)×1) which need

be optimized to satisfy the dynamic constraints.
From Eq.(5), [FT ]m×1, [α]m×1, and [φ]m×1 are represented

by the coordinates (in the form of Bezier curve functions)
and their first and second derivatives by substituting Eqs.(3)
and (4) into Eq.(1) and expanding the coordinates (x, y, z)
using the BCBS method.

The above-mentioned descriptions of vehicle trajectory
generation are based on a single vehicle. In this study, the time
limitation problem of cooperative trajectory optimization is
that N UAVs begin missions at the same time and reach their
respective flight end points simultaneously. The optimization
target is to generate the minimum flight time trajectories
under the condition that all UAVs satisfy the dynamic con-
straints (Eq.(6)), and no collisions occur (Eq.(8)). Hence,
the trajectory generation NLP problem of N vehicles can be
described as

min
[Xxi],[Xyi],[Xzi],Ti

T

s.t. Ti = T

vmin ≤ vi ≤ vmax, γmin ≤ γi ≤ γmax

ai ≤ amax, |αi| ≤ αmax

|φi| ≤ φmax,FT min ≤ FTi ≤ FT max∥∥pi(t)− pj(t)∥∥22 ≥ E2
d

i, j = 1, · · · ,N , i 6= j (20)

where [Xxi] ,
[
Xyi
]
, and [Xzi] are the unknown Bezier coeffi-

cients of the ith vehicle. The constraints come from Eq.(6-8).
For the free-time problem of trajectory generation, the num-
ber of variables that need be optimized is N (nx + ny +
nz − 9) + N , which includes the total flight time Ti. The
Bezier coefficients can represent the entire trajectory, which
is optimized by the Bezier method. In the process of infor-
mation transmission between the vehicles, only the Bezier
coefficients (nx + ny + nz) need to be transferred, instead
of the points where the entire curve is discretized in a cer-
tain time scale, which greatly reduces the amount of data
for information interaction between the vehicles. After the
other vehicles receive the Bezier coefficients from the central
vehicle, they can quickly calculate the point information at
the nextmoment or the discrete point information of the entire
flight curve according to the Bezier function.

B. INITIALIZATION OF UNKNOWN COEFFICIENTS
Before the optimization, initialize the variables ought to be
optimized within a reasonable range. This paper discusses
the free-time optimization problem. The approximated flight
time TAPP can be estimated from the median flight speed of
a randomly selected vehicle, and the maximum acceleration
limit is required to be considered.

TAPP =
S

(vmin + vmax)/2
(21)
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where S is the straight line length between the starting and
final points.

The approximate coordinates (xAPP, yAPP, andzAPP) at
the m Legendre-Gauss discretization points of each vehi-
cle can be estimated by a third-order Bezier curve
(nx = ny = nz = 3).

xAPP(τ ) = (1− τ )3Px,0 + 3τ (1− τ )2Px,1
+ 3τ 2(1− τ )Px,2 + τ 3Px,3

yAPP(τ ) = (1− τ )3Py,0 + 3τ (1− τ )2Py,1
+ 3τ 2(1− τ )Py,2 + τ 3Py,3

zAPP(τ ) = (1− τ )3Pz,0 + 3τ (1− τ )2Pz,1
+ 3τ 2(1− τ )Pz,2 + τ 3Pz,3 (22)

Considering the BCs (Eq.(9)), the coefficients are as
follow.

Px,0 = xi Px,1 = xi + TAPPẋi/3

Px,2 = xf − TAPPẋf /3 Px,3 = xf
Py,0 = yi Py,1 = yi + TAPPẏi/3

Py,2 = yf − TAPPẏf /3 Py,3 = yf
Pz,0 = zi Pz,1 = zi + TAPPżi/3

Pz,2 = zf − TAPPżf /3 Pz,3 = zf (23)

Hence, the discrete approximate coordinates ([xAPP]m×1,
[yAPP]m×1, [zAPP]m×1) can be obtained by substituting [τ ]m×1
into Eq.(22). Then, the initial guess for the unknown coeffi-
cients in the Bezier curves can be obtained as

[PxAPP](nx−3)×1 =
(
[BxAPP]m×(nx−3)

)−1 [xAPP]m×1[
PyAPP

]
(ny−3)×1

=

([
ByAPP

]
m×(ny−3)

)−1
[yAPP]m×1

[PzAPP](nz−3)×1 =
(
[BzAPP]m×(nz−3)

)−1 [zAPP]m×1 (24)

IV. NUMERICAL SIMULATION RESULTS
A. CASE STUDY
The proposed method is a framework for the optimization of
the cooperative trajectory of theUAVs. A 3D simulation flight
mission is set up where three fixed-wing UAVs reach the
patrol mission target points from their respective start points.
The three UAVs are required to start the mission at the same
time and reach the end points simultaneously as well. The
goal is to determine the trajectory with the minimum flight
time that satisfies the dynamics constraints. The simulation
scenarios and some parameters refer to the data in Choe’s
paper [20]. Choe et al. used the PH Bezier curve to describe
the UAV trajectories, and they expressed the timing law using
the quadratic Bezier polynomials. Through the abovemethod,
all variables of the UAV are described in the form of the
PH Bezier polynomials. However, Choe et al. only consider
the kinematics model of the UAVs, and the adjustable range
of the curves is relatively small. Our method uses the geo-
metrical characteristics of the Bezier curves combined with
dynamic equations to generate trajectories under dynamic
constraints and boundary conditions. The control variables

FIGURE 3. Flight trajectories without collision avoidance constraint.

FIGURE 4. 100 Monte Carlo simulations.

of the UAVs can be directly obtained through BCBS. The
two methods have different applications to Bezier curves.
The BCs and dynamic constraints are listed in Table 1 and 2.
Some aerodynamic parameters are quoted from [10]. From
the trajectory in Fig. 3, collisions will occur at the midpoints
of the flight trajectories if the collision avoidance constraint
is not considered in this simulation scenario.

In the following simulation, the orders of the Bezier curve
function are nx = ny = nz = 6, and the time parameter
τ is discretized into 100 points. The simulation results of the
BCBSmethod are used as the initial values of the GPM. In the
trajectories generated by using GPM, the Legendre–Gauss
points are set to 50. The NLP of both methods are solved
using the sequence quadratic program method. All simu-
lations in the paper are executed on a computer with the
following specifications: 16.0 GB RAM, i7-10710U Intel
processor at 1.10 GHz.

As shown in Fig. 4, in order to avoid the particularity of a
single simulation, both methods have performed 100 Monte
Carlo simulations. Fig. 5 shows the flight trajectories and
space between vehicles calculated using the BCBS method.
Further, Fig. 6 shows the results calculated using the GPM.
The figure shows that the trajectories of both the methods
have a collision avoidance flight tendency, and the distances
between the vehicles are greater than the minimum safety
distance. The resulting curve of the Bezier method is more
detailed because the Bezier method has more discrete points
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TABLE 1. Boundary conditions.

FIGURE 5. 3D trajectories of 3 UAVs with the Bezier method.

TABLE 2. Dynamic constraints.

than GPM. If GPM uses more discrete points, the calculation
time will increase significantly. The flight time obtained by

FIGURE 6. 3D trajectories of 3 UAVs with GPM.

using the Bezier method is 197.8359 s, and that obtained
using GPM is 191.444 s. The calculation time spent by the
Bezier method and GPM is 0.588 s and 754.7936 s, respec-
tively. The difference between the results calculated by the
two methods is about 3.34%; however, the calculation time
of the Bezier method is only 0.078% of that used to optimize
and generate the trajectories using GPM further.

Figs. 7 and 8 show the dynamics variables of the vehi-
cles with the Bezier method and the GPM, respectively. The
figures indicate that the results of using the Bezier method
and GPM can satisfy dynamics constraints. However, the
results using the Bezier method are smoother, and there are
no mutations, which is more favorable for the UAV’s flight
control.

To avoid accidental results in the simulation, some param-
eters of the simulation cases in Section 4 and performed
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TABLE 3. Comparison of results and calculation time.

FIGURE 7. Results of dynamics variables with Bezier method.
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FIGURE 8. Results of dynamics variables with GPM.

more simulations have been changed. The simulation results
and calculation times are summarized in Table. 3. Case 1 is
the original case in Section 4. Case 2–4 changed multiple
coordinates and the total flight distance; Case 5 changed the
maximum thrust (FT max); Case 6–9 changed the initial speed
(vi); and Cases 10–13 changed the maximum speed (vmax).
Bezier
GPM in the table represents the percentage of calculation
time obtained by the Bezier curve relative to the calculation

time obtained by GPM. 1
GPM represents the difference of the

flight time optimized by the two methods.
In the simulation of the above cases, the Bezier method

required less calculation time (on an average, 0.08% of that
GPM takes) and received relatively satisfactory results. The
average difference of the calculated total flight time was only
3.09%. Further, the GPM uses the calculation result of the
Bezier method as the initial value for further optimization.
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FIGURE 9. Trajectories of Case 5.

TABLE 4. Influence of the orders of Bezier function on the results.

The calculated results using both methods can satisfy the
dynamic constraints. Moreover, the curves calculated by the
Bezier method were continuous and smooth because more
discrete points were used. Furthermore, a more continuous
trajectory was found to be beneficial for avoiding collisions
and helpful for flight control. If the GPM has more discrete
points, the calculation time will be much longer. The small
amount of calculation for the Bezier method was attributed
to the coefficient matrix requiring one single calculation
before optimization; the result was then substituted into the
optimization iteration. Another reason was the geometry of
the Bezier method, which does not require a large number
of integration operations. In the optimization process, adjust-
ing the Bezier coefficient can make the trajectory meet the
requirements. When calculating the coordinated trajectories
of more UAVs, the difference in the amount of calculation
will increase more times.

In particular, the simulation case 5 changes the maximum
thrust limit, which directly reflects the dynamic constraints.
The trajectories are shown in Fig. 9, where it can be seen
that the UAVs can only reach the target points by circling far
because of insufficient thrust. The trajectory simulation of the
kinematics model cannot realize the limitation of the thrust
and angle of attack, which can only be indirectly restricted
by the maximum flight path angle and the turning radius
reflected by the dynamics model.

B. INFLUENCE OF BEZIER ORDER
Simulations on the influence of the order of the Bezier func-
tion on the calculation results and calculation time have been
carried out. In the simulation, only the order is changed, and
the other conditions are not changed. The results are shown
in Table. 4. Higher-order Bezier functions can obtain better
results, however, the calculation time is also significantly
increased higher. The difference between the simulation

results of the 6th-order and 20th-order functions is only
3.07%. Higher-order Bezier functions have higher degrees
of freedom and can fine-tune the flight trajectory curve. But
there are also more coefficients involved in the optimization
process, which increases the amount of calculation. In order
to improve calculation efficiency, a smaller order needs to be
selected. However, if the order is too low, the error of the
optimization result will be larger. The selection of the order of
the Bezier function requires a balance between the accuracy
of the calculation result and the calculation efficiency.

V. CONCLUSION
The rapid generation of 3D cooperative trajectories of mul-
tiple UAVs using the proposed BCBS method was presented
in this paper. The BCBS method had both the authenticity
of dynamics and the quickness of calculation. The trajectory
coordinates were expanded into the form of the Bezier func-
tion, and the desired trajectories were optimized by adjust-
ing the Bezier coefficient. A simulation was performed, and
the results were compared with those of the GPM to verify
the feasibility of the method. The Bezier method required
less calculation time (0.07%) to generate the cooperative
trajectories with the minimum flight time that satisfies the
dynamics constraints and avoids collisions. Furthermore, the
optimization results were found to be satisfactory, with a
difference was only 3.34%. The trajectories obtained by the
Bezier method were more continuous and smoother than
those obtained using GPM, which is beneficial for flight
control and collision avoidance. The relatively small amount
of computations required by the Bezier method is of consider-
able importance for the rapid generation of optimized trajec-
tories with onboard computers that have limited computing
power. Therefore, it is expected that the proposedmethod will
be employed for real-time online trajectory generation.
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