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ABSTRACT Pigeons may transmit diseases to humans and cause damages to buildings, monuments, and
other infrastructure. Therefore, several control strategies have been developed, but they have been found
to be either ineffective or harmful to animals and often depend on human operation. This study proposes
a system capable of autonomously detecting and deterring pigeons on building roofs using a drone. The
presence and position of pigeons were detected in real time by a neural network using images taken by a
video camera located on the roof.Moreover, a drone was utilized to deter the animals. Field experiments were
conducted in a real-world urban setting to assess the proposed system by comparing the number of animals
and their stay durations for over five days against the 21-day-trial experiment without the drone. During the
five days of experiments, the drone was automatically deployed 55 times and was significantly effective in
reducing the number of birds and their stay durations without causing any harm to them. In conclusion, this
study has proven the effectiveness of this system in deterring birds, and this approach can be seen as a fully
autonomous alternative to the already existing methods.

INDEX TERMS Artificial intelligence, neural networks, object recognition, pest control, unmanned aerial
vehicles.

I. INTRODUCTION
The damage caused by birds includes direct and indirect
effects on agricultural crops, livestock, and infrastructure,
which have serious economic and human implications [1],
as shown in Fig. 1. Specifically, feral pigeons (Columba livia
domestica), also known as city doves, city pigeons, or street
pigeons, are considered as nuisances and pests because of
their large amounts of excrement, which piles upon property
and serves as a reservoir and vector of diseases. Among all
birds, this persistent and invasive species is considered the
most serious pest bird in terms of economic loss in the United
States, with an annual damage estimate of $1.1 billion [2].
In addition, the acidic droppings of pigeons deteriorate and
damage different materials such as cars, valuable buildings,
and cultural objects [3]. Pigeons also tend to gather in
locations that make human intervention difficult, dangerous,
or expensive (see Fig. 2).
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Besides their economic impact, health risks are associated
with feral pigeon contact linked to pigeon droppings [4].
Several studies have indicated that these droppings can
be reservoirs of zoonotic pathogens, such as Chlamy-
dia psittaci (causative agent of human psittacosis) and
Salmonella [5]–[7]. Among all pigeon species, feral pigeons
are responsible for the highest infection rates of zoonotic
agents [5]. Further, the recent SARS-CoV-2 virus is believed
to have reached humans via animals [8]–[10]. The afore-
mentioned problems are further compounded by the steady
increase in the feral pigeon population during the second half
of the last century [11], [12].

There are several strategies to deter birds, including
auditory deterrents, visual deterrents, physical barriers, and
natural predation [13]. An auditory deterrent has been used to
deter birds from crops.1 Although this strategy is applicable
in farmland, it can cause disturbances when employed to
urban settings because the hearing range of pigeons largely

1www.eagleeye.co.za/product-page
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FIGURE 1. Pigeons roosting on the roof of a building are detected by a
surveillance camera and deterred by a drone (circled in red).

FIGURE 2. Typical scenario in an urban environment: pigeons often roost
on roofs (left) and drop polluting excrement (middle). This excrement can
remain on buildings for long periods, causing damage. To remove it,
expensive and dangerous cleaning must be performed (right).
An automatic pigeon deterring system can provide a remedy.

overlaps with that of humans. Pigeons can detect sounds at
frequencies as low as 0.05 Hz up to 11,000 Hz whereas
the human range is 20–20,000 Hz [14], [15]. On the other
hand, visual deterrents, such as decoys, moving lights,
and reflective items, are often deemed ineffective because
pigeons can rapidly habituate to visual disturbance [16].
Meanwhile, physical barriers, including spikes, wires, nets,
or gel repellents, are widely used in urban environments
for feral pigeons due to their efficacy [17]. However, these
barriers have high initial costs, degrade over time if not
taken care of [16], can only be applied to treated areas [18],
and are harmful to animals. Finally, natural predation is one
of the most effective methods for deterring birds, owing
to their long-term efficacy without disturbing humans [19].
For example, falcons and raptors can be used to fend
off and intimidate feral pigeons effectively [20]. However,
this method can be harmful to birds and requires hiring a
falconer, and falconers are difficult to find and expensive to
hire.

The effectiveness of natural predators has inspired the
use of artificial predators, such as drones. The use of
drones to deter birds is not novel, with early studies
having been reported more than a decade ago [21], [22].
Although drones are becoming more publicly available,
related approaches heavily rely on human operators, which
makes them expensive to be deployed on a larger scale.

This study proposes an autonomous drone-based system
capable of automatically detecting and deterring pigeons
in urban environments without being harmful to birds (see
Fig. 1). The proposed system detects pigeons using a
specifically trained neural network that assesses images from
a camera positioned on a vantage point in the environment
to estimate the presence and positions of birds in the area in
which the drone is deployed to fly. We assessed the efficacy
of the system on the roof of the EPFL SwissTech Convention
Center, which was reported to have large amounts of pigeon
droppings that normally require continuous cleaning to
prevent damage on the building (see Fig. 2). We started by
analyzing the behavior of pigeons on the roof for 21 days
without the interference of the drone. Then, we autonomously
deployed the drone-based system over a period of five days.
In both cases, we measured the time pigeons stayed on the
roof. The results indicate that pigeons leave significantly
earlier when the proposed system is in place.

II. RELATED WORK
To the best of our knowledge, Grimm et al.. [23] were the
first to document the application of a fixed-wing unmanned
aerial vehicle (UAV) in a vineyard as pest control to protect
crops. The drone took off and landed autonomously, but the
flight path was predefined and independent of the presence of
birds. Meanwhile, Vas et al.. [24] tested the effects of drone
color, speed, and flight angle on the behavioral responses of
mallards, wild flamingos, and common greenshanks, which
provided valuable insights, although the study was not aimed
at deterring birds (specifically, pigeons).

The interactions of a drone and birds were analyzed
by Wang et al. [25], who also developed a system for
deterring birds in vineyards. In their most recent study,
they performed manual flights to compare the efficacy of
their system to other pest control strategies (netting and
visual tactics) [17]. Moreover, they proposed solutions for
autonomous bird detection and trajectory planning in their
earlier studies [26], [27]. However, these modules have never
been combined and deployed in real-world scenarios, and the
deterring systems rely on loud bird distress calls, which are
not applicable in urban environments.

On the contrary, Paranjape et al. [28] proposed a method
of guiding flocks of birds away from a protected area (e.g.,
an airport) to prevent them from landing. However, birds were
detected by humans, and only manual flights were conducted
to collect data. Recently, these problems and limitations asso-
ciated with using UAVs to deter birds have gained attention
in industry as well. Indeed, several commercial products
(e.g., flapping-wing UAVs and multicopters) produced by
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FIGURE 3. Proposed system, consisting of three hardware parts: a
camera, drone, and ground station. The process can be divided into four
steps. (1) The camera acquires an image of the scene and sends it to the
ground station. (2) An object detector detects the pigeons in the image
and labels them with bounding boxes. (3) The GPS coordinates of the
pigeons are estimated using the bounding boxes. (4) The drone is
deployed to this target position, deterring the pigeons.

companies such as The Drone Bird Company,2 Bird-X,3

and Bask Aerospace4 are said to be effective drone-based
bird deterrents. However, there are no available scientific
evaluations of their performances. Furthermore, all these
proposed solutions rely on human operators to detect birds
and perform UAV steering.

Overall, none of the aforementioned scholars proposed
a fully autonomous system, which would require bird
detection, position estimation, and drone deployment to the
corresponding position, while also considering pigeons in
urban environments.

III. METHODS
A. SYSTEM DESIGN
The system consists of three hardware modules: a camera,
ground station, and drone (Fig. 3 and Supplementary Video
S1). Specifically, the ground station commands the camera to
scan the environment and receives images. A neural object
detector that was trained using pigeon images identifies the
bounding box in an image in which pigeons are present. Then,
the position of the bounding box in the two-dimensional
image space is translated into the three-dimensional global
navigation satellite systems coordinates. The drone was
instructed to take off and fly over the identified coordinates
(i.e., detected pigeons) before returning to its home base.
Although this process does not require human intervention,
an operator is still needed to authorize each automatic
takeoff based on national regulations because of the possible
presence of people on the ground.

The following subsections explain the constituent modules
in more detail.
1) Camera: Multiple sensor modalities could be used to

perceive the environment. Recently, the acoustic detection of

2www.thedronebird.com
3www.bird-x.com/bird-products/drones
4www.baskaerospace.com.au/aerodrone/avian-scout

birds was proposed [29]. However, this method was deemed
unreliable given the possible high levels of environmen-
tal noise in urban scenes. Moreover, light detection and
ranging (LiDAR) data have been used for object detection
with high success rates according to Lang et al. [30].
In addition, camera-based approaches have been proposed
as alternatives, which have similar performance with lidar-
based approaches and apparent advantages in terms of
hardware [31]. Therefore, our proposed system favors a
solution that leverages computer vision.

Currently, several UAVs use onboard cameras. However,
state-of-the-art computer vision algorithms require dedicated
hardware with adequate computational power, limiting the
detection of target objects that are far away and therefore
small. In this study, we could let the drone move through
the environment to search for pigeons actively to address
this limitation. However, the energy of the drone is a crucial
parameter for long-term success of this strategy, and drones
should be used as quickly as possible. An autonomous drone
recharging station would only mitigate this problem and
would not allow drones to detect pigeons during recharging.
A straightforward solution to this issue is the use of a camera
system that is set up on the ground and scans the environment.

A simple monocular camera experiences similar con-
straints experienced by an onboard camera (i.e., small object
detection and scale ambiguity). However, installing multiple
cameras, which is the solution to this issue, is expensive,
requires more complex installation, and involves handling
an increased amount of data. Pan-tilt-zoom (PTZ) cameras
can be a good compromise because of their flexibility in
orientation and zoom, covering vast areas. Thus, the proposed
system relies on a PTZ camera, which is weather-resistant and
can oversee its full surroundings using a 360◦ pan, mounted
at a fixed position in the environment. The combination of
a 12× optical zoom and 4 MP resolution enables detailed
representation of the environment.
2) Pigeon Detection: Next, pigeons were detected within

these camera images. Some scholars have proposed the
detection of birds using traditional computer vision methods,
such as analyzing the pixel changes between two consec-
utive images using features from accelerated segment test
(FAST) [26] or detecting moving objects via background
subtraction [32]. In recent years, learning-based methods
have also been applied. Hong et al. [33] compared dif-
ferent object detectors used for detecting birds with an
aerial view, and they concluded that a Faster region-based
convolutional neural network (R-CNN) [34] was the most
accurate approach. Meanwhile, Bhusal et al. [35] proposed a
detector model with pre-trained weights and only fine-tuned
it with specifically collected images to counteract overfitting.
In this study, we combined these two ideas. As the Faster
R-CNN is still one of the best object detectors, we employed
it to detect pigeons using the generated images from the
camera [36]. Faster R-CNN is a two-stage object detector
where the first stage (CNN) extracts features from the image
and proposes image regions where objects are supposedly
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TABLE 1. Faster R-CNN parameters.

located. Thereafter, a second stage neural network predicts
the bounding boxes – object class and coordinates – in the
proposed regions. Since the accuracy of object detectors
correlates with the backbone (i.e., the first stage of the
Faster R-CNN model) accuracy on the ImageNet ILSVRC
2012 classification dataset [36], we started from a Faster
R-CNN that uses Inception-ResNet v2 as backbone [37].
Inception-ResNet v2 is a 164-layer CNN that builds on the
Inception family and incorporates residual connections to
improve the performance (Top-1 error of 19.9% on ILSVRC
2012). Faster R-CNN is composed by two networks: a Region
Proposal Network (RPN) and an Object Detection Network
(ODN). The two networks share a common backbone,
a Convolutional Neural Network (CNN), which in this work
is the Inception-ResNet v2 architecture [37], pretrained
on ImageNet. The RPN predicts the regions—namely the
anchors— (i.e., where the object is likely to be) as a set
of rectangular object proposals together with an objectness
score—a measure of the membership to the set of object
classes vs background. For that, the RPN uses a small CNN
on top of the feature maps of the shared backbone: a n x
n convolutional layer (with n = 3) followed by two 1 × 1
convolutional layers, one for the region regression and one
for the classification. The RPN network is trained with a
binary classification loss and a smooth-L1 loss for regression.
The second stage is the Fast R-CNN model used for object
detection that takes as input the selected regions, through ROI
pooling, to predict the bounding boxes and the final objects
class. Note that the training procedure and meta parameters
follow those used in [36]. Table 1 summarizes the main meta
parameters of the model.

The resulting model is one of the best performing object
detectors on the MSCOCO dataset [38] (mean Average
Precision, mAP, is 38.7) among those available in the
Tensorflow Model Zoo (for the Tensorflow Object Detection
API, the reader is referred to [36]). In addition, the model
was pre-trained on the MS-COCO dataset [38] and fine-
tuned with specifically collected images of pigeons in an
urban environment. The camera was mounted on the roof of
a building and collected over 30 h of video footage following
a predefined routine of PTZ commands. We reduced the
amount of data through random sampling and subsequent
inspection of the images. Moreover, we allowed the model
to distinguish between two different classes (i.e., pigeons

FIGURE 4. Two representative examples expressing the current state of
the detector: although most pigeons are detected well, occlusions may
lead to fewer bounding boxes than the actual number of pigeons present
in the environment. In the upper half multiple crowded pigeons are
grouped in one bounding box, whereas in the lower image some mutually
occluding pigeons in the middle of the flock are not detected.

and other) rather than having only one class. We labeled the
false positive results, which mainly consisted of metal pieces
on the roof, as others in the dataset. This process reduced
the number of false positives in the pigeon class, improving
the overall performance. Then, we balanced the number of
images per class by performing image augmentation (e.g.,
random affine transforms, color-channel swaps, and noise
addition) on the other class, which resulted in 2,539 images
that were equally divided for final training and testing. Then,
10% of the training set was isolated for validation. Moreover,
we downloaded the model from the Tensorflow Model Zoo
and tested it on our pigeon dataset. The class ‘‘bird’’ of the
Faster R-CNN model reached an AP of 0.38%. Therefore,
we fine-tuned the model on the collected training set. The
training procedure on the pigeon dataset lasted 40000 steps
by using: 2 classes (pigeons, other); a fixed shape resizer with
a target of 600 × 1024; first stage feature stride of 16 ×
16; no dropout; a batch size of 12; learning rate of 2e-05.
During runtime, the detector returned a bounding box for each
detected object in an image. Fig. 4 shows the results of two
examples.
3) Position Estimation: We converted the bounding box

generated by the detector into GPS coordinates to send
the drone closer to the pigeons. Recovering depth is an
ill-posed problem for a monocular camera setup [39]–[41].
Early solutions leveraged visual cues in the image, such as
texture or occlusions, whereas more recent alternatives rely
on machine learning, which recently yielded performance
improvement (see [42]). However, these methods have two
major limitations. First, both provide dense depth maps,
which have higher computational costs than object-specific
depths (some solutions to this issue have been proposed
recently by learning the depth specifically from bounding
boxes [43]). Second, extensive training on diverse datasets is
needed for generalization to different environments [42], and
most approaches have difficulty generalizing over different
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camera models [44]. The results of Vas et al. [24] suggest
that drones deter pigeons at distances of several meters,
which relaxes the required position estimation accuracy,
as supported by our field experiments with a manually flown
drone. We adopted a simpler approach by leveraging only
the dimensions and position of the bounding boxes and
assumed that the pigeon height is known and constant (see
Fig. 5). Given the bounding box height as a percentage of
the image height and a pinhole camera model, the distance
between the camera and pigeon can then be calculated
as

pz =
fhp
hbbhs

, (1)

where pz is the metric distance of the pigeon along the optical
axis of the camera, f is the focal length of the camera at
the current zoom level, hbb is the relative bounding box
height with reference to the image height, hp is the assumed
metric pigeon height, and hs is the metric sensor height.
Similarly, given the bounding box position as a percentage
of the image dimensions, the vertical and horizontal offsets
of the pigeon with reference to the camera can be calculated
using [

px
py

]
=

hp
hbb

[
dx
dy

]
, (2)

where px is the metric horizontal offset of the pigeon with
respect to the rotated camera, py is the metric vertical offset
of the pigeon with reference to the rotated camera, and dx
and dy are the offsets of the bounding box with respect
to the image center along the x- and y-axes, respectively.
Finally, the pigeon position can be converted from the image
coordinates to the GPS coordinates using the known pose of
the camera. We tested our system in a controlled environment
where we knew the ground-truth position of a pigeon decoy
through a motion capture system. These experiments enabled
us to design a re-zooming procedure that enhances the pigeon
position. Therefore, the bounding boxes in the video frame
after re-zooming cover a more significant part of the image,
reducing the noise in the position estimation.

This process is repeated until the bounding box exceeds a
specific size or the zoom level reaches its maximum.
4) Drone: The GPS coordinates from the position esti-

mation serve as GPS targets for the drone. We used an
off-the-shelf Parrot Anafi drone that enables autonomous
flights based on GPS targets. Anafi has a low sound level
(65.5 dB at 1 m distance [45]) and relatively low weight
(320 g), making it suitable for urban environment applications
because nearby humans are less likely to be disturbed.
Moreover, the development of algorithms to control the drone
was sped up using the simulation software based on Gazebo
provided by the vendor. We built a one-to-one simulation
environment that enabled us to test the entire pipeline (pigeon
detection, pigeon position estimation, and drone deployment)
in the simulation.

FIGURE 5. Illustration of the relation between the camera and bounding
box. The large rectangle on the left represents a scene captured by the
camera in the bottom right. In this scene, a pigeon is enclosed within a
light blue bounding box. The position and height of the bounding box are
used to estimate the three-dimensional position of the pigeon with
respect to the camera.

B. FLOCK STAY TIME
This section explains the method used to evaluate the
ability of the proposed system to chase away pigeons from
the environment. If the system is successful, the pigeons
leave earlier than they initially intended. Thus, the time
that pigeons stay on the roof, denoted as the stay time,
is a valid metric for evaluating the impact of the proposed
solution.

We leverage the architecture proposed in Section III-A to
analyze the behavior of pigeons. In our system, the camera
records a video of the environment, and the detector is
used to detect pigeons. Assigning the time each individual
pigeon stays in an environment would be a time-intensive
task. Although research in this direction is topical (see,
e.g., [46]), we decided to follow a simpler approach
and monitor the entire flock instead of each individual
pigeon. Accordingly, we only considered the flock stay
time to be the relevant information because (1) pigeons are
gregarious especially during roosting [47] and (2) individual
trackers do not perform well on large crowds. Indeed, the
detection quality significantly affects the tracking, which
drastically deteriorates on heavily occluded objects (see [48]
for a survey on deep-learning-based multi-object tracking
systems). In general, occlusions can be handled if they do
not last long and if the tracked object is far from others.
In the current environment, the frequent switching of IDs
would make an accurate counting impossible due to the
extreme proximity and numerous overlaps between different
pigeons.

The method of calculating the flock stay time is discussed
in the following section and shown in Fig. 6.We define a flock
as a group with more than a threshold fth of pigeons present
and detected at the same time on the roof. Then, we consider
a certain flock to be different from another if there is a period
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FIGURE 6. Explanation of the flock stay time by a qualitative example.
The object detector looks for pigeons in each camera frame. The number
of detections per frame can be plotted over time (blue). To reduce the
effect of noise, the moving average (MA) is calculated (orange). The
intersection of the MA with a threshold f_th allows the determination of
the arrival (MA crosses f_th from below) and departure (MA crosses f_th
from above) of a flock. The time between these two events is the flock
stay time.

between the two groups of pigeons. Moreover, we filtered
the pigeon count using a moving average on the number of
pigeons with a time window of size tw, as the count may
suffer from some noise (e.g., pigeons occluding each other
occasionally). Each time the moving average intersects the
fth from the bottom up, we consider that a flock has arrived
on the roof. Accordingly, we assume that a flock leaves the
roof each time the moving average intersects the threshold
from above. The time between arrival and disappearance of
the flock is the time the flock stays in the environment (i.e.,
the flock stay time).

IV. EXPERIMENTAL SETUP
Based on the metric introduced in Section III-B, we assessed
the pigeon behavior with two experiments: one in which
we observed the natural behavior of pigeons without the
deterring system in place (this experiment served as a
baseline) and another in which we observed the behavior of
pigeons in the presence of the drone.We refer to the former as
the without drone experiment and the latter as the with drone
experiment. Both experiments covered a multitude of flocks
and stay times.

We hypothesized that the interference of the drone would
force flocks (of any size) to leave earlier than they preferred,
resulting in a significant reduction of the flock stay time
compared to the without drone experiment.

A. TEST ENVIRONMENT
The applicability of the system was evaluated on the roof of
the SwissTech Convention Center, a building located in an
urban area in Switzerland in which pigeons are spotted almost
every day.

FIGURE 7. Experiments were conducted on the roof of this building
positioned within an urban setting. To record the object detector dataset,
the camera orientation was changed as indicated by the orange cone. The
pigeon frequency in this dataset is represented by the overlaid blue dots.
Clearly, the southeast corner of the roof is by far the most common place
for pigeons to stay. Thus, the further experiments focused on this part of
the roof with a fixed camera field of view (green cone).

B. PIGEON HEATMAP
Fig. 7 shows a satellite image of the buildingwhere the system
was tested.

The horizontal ridge in the middle of the roof splits it into
two halves: an upper half that is inclined toward the north
and a lower half that is inclined towards the south. During
initial observations, pigeons were reported to stay mostly in
the southern half of the roof. Therefore, we focused on this
part of the roof in our experiments.

Based on this decision, we performed a preliminary
assessment to obtain a quantitative estimate of the pigeon
activity in the observed environment. Towards this goal,
we moved the camera according to a scanning routine of
the southern part of the roof (see Fig. 7, orange cone). The
pigeon detector detected pigeons in the images and estimated
their positions using the pigeon position estimator for each
PTZ value of the camera. Each of these positions is plotted
as a light blue circle on the satellite image of the building
in Fig. 7. The resulting heatmap enables the assessment of
the pigeon distribution on the roof. We found a significant
accumulation in the southeast corner of the roof. From this
preliminary assessment, we elicited another assumption that
simplified the evaluation of the proposed deterring system:
we let the camera be fixed in one orientation to observe only
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the section of the roof that was the most affected by the
pigeons (see Fig. 7, green cone). In addition, this assumption
enables our system to be used as often as possible (i.e., we
pointed the camera towards an area of the roof that often
contains pigeons).

C. SYSTEM VALIDATION
We analyzed pigeon behavior in two different scenarios
to assess the efficacy of the system for deterring pigeons:
a natural scenario with no drone interference (the with-
out drone experiment) and a scenario influenced by a
deployed drone (the with drone experiment). As mentioned
in Section III-B, we used the camera–detector combination
to ensure automatic and repeatable evaluation of the proposed
metrics.

For the without drone experiment, the video stream was
recorded and stored, while the pigeon detector was run
offline to count the pigeons over time and calculate the
metrics described in Section III-B. Meanwhile, the pigeon
detector was run online and the pigeon deterring system
was in place (see Fig. 3) during the with drone experiment.
The approximate positions of the drone takeoff location
and human operator (required for national regulations) are
shown in Fig. 8. The drone was deployed if the pigeon count
surpassed the threshold fth. It flew to the target position,
hovered there for a certain amount of time to drive the pigeons
away, and then returned to its starting position. Sometimes
a flight was not executed if weather conditions were too
adverse.

V. RESULTS
A. PIGEON DETECTION
The precision–recall curves were used to evaluate the pigeon
detector. As is common for object detectors, the chosen
metric was the mean average precision (mAP) with an
intersection of union (IoU) of 0.5, as used in the Pascal VOC
Challenge [49], [50]. Fig. 8 shows two plots, one for each
class known to the detector, namely, pigeons and other (see
Section III-A2). The average precision was 59.92% for the
pigeon class and 79.77% for the other class. Consequently,
the overall mAP was 69.84%.

Fig. 4 shows two representative examples of the detector in
action: although most pigeons are detected well, the detector
sometimes struggles with occlusions. In the top part of
Fig. 4, multiple partially occluded pigeons are enclosed in
one bounding box. Meanwhile, in the lower part of the figure,
very close-by pigeons in the middle of the flock are not
recognized.

B. FLOCK STAY TIME
We extracted frames from the recorded video streams at
0.5 fps for both experiments (without drones andwith drones)
to calculate the stay times (see Section III-B). We chose
this relatively low rate to constrain the amount of data to
process without affecting the validity of the results (pigeons

FIGURE 8. Evaluation of the object detector model performance using
precision–recall curves. The blue curve shows the graph for the other
class with an AP of 79.77%. The orange curve shows the graph for the
pigeon class with an AP of 59.92%.

are not expected to change their behavior within sub-second
intervals). Furthermore, in both cases, we chose a flock
threshold fth = 2.5 (i.e., we considered a group of pigeons
a flock if there were more than two pigeons) and a window
length tw = 20 s for the moving average.
For the without drone experiment, the video data were

continuously recorded for 21 days fromOctober to November
2020 from 7 am to 6 pm. This recording resulted in
approximately 840,000 detections and 2,327 flock stay times.
Meanwhile, for the with drone experiment, the proposed
system was deployed for five days from December 2020 to
January 2021. The pigeon positions were estimated based on
an assumed pigeon height of 0.25 m. To deter the pigeons, the
drone flew to the position of the pigeons at a speed of 5 m/s
and hovered at that position before returning to its starting
position. The hovering times varied between 5 and 15 s. All
flights were executed during restricted time intervals between
9 am and 11 am and between 1 pm and 5 pm on the same day.
These restrictions were imposed on the flight time because
the building was located in an urban area. We included all
measured flock stay times (185 in total), while the drone
and operator were on the roof. Specifically, the drone was
deployed 55 times (day 1: 8 times, day 2: 20 times, day 3: 8
times, day 4: 15 times, and day 5: 4 times) for these 185 flocks
stay times.

The results of the two experiments (without drones and
with drones) were compared using the survival analysis
results. This term comprises various statistical procedures
with the common goal of analyzing the time until an event
occurs [51]. Examples of events are death in biological
organisms or failure in engineering systems. In our case,
we chose the flock departure as the event; that is, we analyzed
the time until the flocks left. The flock stay times below 10 s
were filtered out, as they were regarded as noise. The survival
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FIGURE 9. Survival analysis of the stay times for both experiments.
Please note the logarithmic scale on the x-axis. The flock stay times in the
without drone experiment (blue) reach 8, 848 s. In contrast, for the with
drone experiment (red) the largest flock stay time is only 290 s. The
probabilities Ŝ(t) of the two experiments are significantly different
(log-rank hypothesis test, p < 0.001), suggesting that the proposed
deterring system successfully prevents pigeons from staying as long as
they would naturally desire to.

curves (see Fig. 9) were estimated using the Kaplan–Meier
estimator. These curves plot the probability Sˆ(t) that a flock
is still roosting at any given time t . A log-rank hypothesis
test suggested that the drone significantly impacted the stay
time (p< 0.001). These tools are suitable for unequal sample
sizes [51], which makes them valid metrics for the conducted
experiments. Note that, contrary to what the term survival
analysis suggests, no pigeons were killed or harmed in the
experiments.

C. PIPELINE TIMING/ANALYSIS
Table 1 lists the runtime measurements for the different parts
of the proposed system.More precisely, the proposed pipeline
was divided into five categories, where the former four are
included under the time until takeoff. For each category,
we present the mean and standard deviation. These data were
measured during the with drone experiments (i.e., 55 full
cycles). Overall, the pipeline has an average total duration of
115.96 s to complete a full cycle.

VI. DISCUSSION
The survival curves in Fig. 9 show the distribution of
the flock stay times for both experiments. The maximum
flock stay time is considerably larger in the without drone
experiment (8848 s) than in the with drone experiment (290
s), indicating that pigeons tend to roost for up to multiple
hours if the deterring system is not in place. Moreover, the
survival probability starting at 30 s decreases more rapidly
in the with drone experiment than in the without drone
experiment. This difference is consolidated by the log-rank
analysis, given that the underlying null hypothesis of identical

TABLE 2. Timing results (mean and standard deviation) of our pipeline in
seconds for the 55 experiments with drone deployments.

survival curves [51] is rejected by a small p-value. This
result suggests that, overall, pigeons leave earlier when the
proposed deterring system is in place, proving the efficacy of
the system.

Regarding the lower end of the stay time spectrum, it is
important to note that the runtime of the system plays a crucial
role. Table 2 lists the duration of each phase of the proposed
system. The average time until the drone took off was 68.11 s,
whereas the minimum was 29.84 s. Therefore, with the
current state of the system, flock stay times shorter than
29.84 s cannot be addressed, as shown in Fig. 9. However,
we believe that with specific optimizations, our system could
address shorter stay times. First, no user confirmation will
be requested in fully autonomous experiments, reducing
the minimum time until takeoff by an average of 21.75 s
(see Table 2). Moreover, further studies are required to
develop the pigeon detection process. In addition, false
negatives, as indicated in Fig. 4, could partially affect the
calculation of the flock stay time because of the erroneously
reduced flock sizes. In the worst case scenario, a flock could
mistakenly drop below the flock size threshold, preventing
the drone from being deployed. Therefore, the detector can
be re-trained with more clearly labeled images of such cases
to provide better detection in crowded regions. Moreover,
more recent detector models can be considered in future
studies.

Although not quantified as specific results in Section V,
several interesting observations regarding the interactions of
pigeons and the drone were made during the experiments.
First, the distance at which pigeons perceive the drone
as a threat is highly variable and may be related to the
number of pigeons. Whereas larger flocks were often scared
simply by takeoff (which happened at a distance of 40–60 m
from the pigeons), smaller groups of birds often let the
drone come as close as a few meters. Furthermore, the
duration in which the drone stays in the target region is
an important tuning parameter. Some pigeons attempted to
return almost immediately but were repelled by the hovering
drone.

As a next step, additional experiments should be conducted
to enable more in-depth evaluation of the system, including
testing in other urban environments with a moving camera
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and the consideration of the long-term behavior of pigeons.
Although the deterring effect shown in Section V addresses
short-term behaviors only, the drone might also have
long-term effects on the pigeons (i.e., flight could affect
their behavior on the same day or the succeeding ones).
Such effects must be analyzed over time to check if they
are consistent or if pigeons become habituated to drones,
as is the case for other well-known deterring systems.
Moreover, because of group behavior, the effects may be
more prominent if only larger flocks are intimidated by
the drones. In this case, the efficiency of the system could
be enhanced by simply increasing the flock size threshold,
reducing the number of flights while maintaining the
same performance. However, to examine such assumptions,
it would be helpful to collaborate with zoologists. Finally,
the amount of data gathered for training the object detector
should be increased to cover more edge cases (e.g., pigeons
occluded by humans working on roof) and specifically
degraded visual environment scenarios (e.g., rain, fog, hail,
snow). Finally, even if the number of flight tests is aligned
with the related works (Section II), they are only sufficient
for a proof of concept. More experiments are needed to make
our solution more robust and possibly scale it to a real-world
continuous deployment.

VII. CONCLUSION
Urbanization drastically changes the environments and
behaviors of animals, causing long-term effects on these
animals that are yet to be understood fully. Among them,
pigeons have mostly adapted to living in urban areas.
However, a qualitative analysis of their behavior has not been
realized fully. UAVs are also emerging in urban areas, and
their increasing presence will likely produce further changes
in animal behavior. Our study is the first to demonstrate
the effects of UAVs on the behavior of pigeons in urban
areas.

To the best of our knowledge, this is the first drone-
based system to deter pigeons fully autonomously. Our
approach could reduce damage to buildings and decrease
the transmission of diseases spread by pigeons. In addition,
the gathered data could be used to understand the complex
relationship between pigeons and drones.

Future work will include more sophisticated studies on
pigeon behavior to evaluate the long-term effectiveness of our
solution, including the determination of whether our system
is subject to habituation from pigeons. From this perspective,
we believe that our drone-based system has the potential
to deter birds because it can be actively reprogrammed to
prevent habituation. Another interesting addition to this work
could be a systematic evaluation of the system performance
in degraded visual environment scenarios (e.g., fog, rain, hail,
snow). It is also important to point out that our drone did
not have any collision avoidance feature due to the limited
possibility of customization. A possible solution to this
problem would be to use a more customizable platform [52].
Finally, it would be interesting to show if the efficiency of the

system could be radically changed by leveraging knowledge
about the behaviors and interactions of pigeons.

ACKNOWLEDGMENT
The authors would like to thank Leonardo Cencetti, Simon
Honigmann, and William Stewart for the helpful discussions
and EPFL infrastructure and security services for the logistics
support.

SUPPLEMENTARY MATERIAL
Supplementary Video: S1 drone based bird deterrent

REFERENCES
[1] J. B. Tracey, B. Mary, Q. Hart, G. Saunders, and R. Sinclair, ‘‘Managing

bird damage to fruit and other horticultural crops,’ Bureau Rural Sci.,
Canberra, NSW, Australia, 2007.

[2] D. Pimentel, L. Lach, R. Zuniga, and D. Morrison, ‘‘Environmental
and economic costs of nonindigenous species in the United States,’’
BioScience, vol. 50, no. 1, pp. 53–65, Jan. 2000, doi: 10.1641/0006-
3568(2000)050[0053:EAECON]2.3.CO;2.

[3] D. H. R. Spennemann, M. Pike, and M. J. Watson, ‘‘Effects of acid pigeon
excreta on building conservation,’’ Int. J. Building Pathol. Adaptation,
vol. 35, no. 1, pp. 2–15, Apr. 2017, doi: 10.1108/IJBPA-09-2016-0023.

[4] D. Haag-Wackernagel, ‘‘Health hazards posed by feral pigeons,’’
J. Infection, vol. 48, no. 4, pp. 307–313, May 2004, doi:
10.1016/j.jinf.2003.11.001.

[5] P. Mattmann, H. Marti, N. Borel, M. Jelocnik, S. Albini, and
B. R. Vogler, ‘‘Chlamydiaceae in wild, feral and domestic pigeons in
Switzerland and insight into population dynamics by Chlamydia psittaci
multilocus sequence typing,’’ PLoS ONE, vol. 14, no. 12, Dec. 2019,
Art. no. e0226088, doi: 10.1371/journal.pone.0226088.

[6] J. Gasparini, N. Erin, C. Bertin, L. Jacquin, F. Vorimore, A. Frantz,
P. Lenouvel, and K. Laroucau, ‘‘Impact of urban environment and
host phenotype on the epidemiology of chlamydiaceae in feral pigeons
(Columba livia),’’ Environ. Microbiol., vol. 13, no. 12, pp. 3186–3193,
Dec. 2011, doi: 10.1111/j.1462-2920.2011.02575.x.

[7] M. Perez-Sancho, T. García-Seco, C. Porrero, N. García,
S. Gomez-Barrero, J. M. Cámara, L. Domínguez, and J. Álvarez,
‘‘A ten-year-surveillance program of zoonotic pathogens in feral
pigeons in the City of Madrid (2005–2014): The importance of a
systematic pest control,’’ Res. Vet. Sci., vol. 128, pp. 293–298, Feb. 2020,
doi: 10.1016/j.rvsc.2019.12.006.

[8] J. Xu, S. Zhao, T. Teng, A. E. Abdalla, W. Zhu, L. Xie, Y. Wang, and
X. Guo, ‘‘Systematic comparison of two animal-to-human transmitted
human coronaviruses: SARS-CoV-2 and SARS-CoV,’’ Viruses, vol. 12,
no. 2, p. 244, Feb. 2020, doi: 10.3390/v12020244.

[9] T. Ahmad, M. Khan, T. H. M. Haroon, S. Nasir, J. Hui, D. K. Bonilla-
Aldana, and A. J. Rodriguez-Morales, ‘‘COVID-19: Zoonotic aspects,’’
Travel Med. Infectious Disease, vol. 36, Jul./Aug. 2020, Art. no. 101607,
doi: 10.1016/j.tmaid.2020.101607.

[10] L. van Dorp, M. Acman, D. Richard, L. P. Shaw, C. E. Ford, L. Ormond,
C. J. Owen, J. Pang, C. C. S. Tan, F. A. T. Boshier, A. T. Ortiz, and
F. Balloux, ‘‘Emergence of genomic diversity and recurrent muta-
tions in SARS-CoV-2,’’ Infection, Genet. Evol., vol. 83, Sep. 2020,
Art. no. 104351, doi: 10.1016/j.meegid.2020.104351.

[11] R. F. Johnston and M. Janiga, Feral Pigeons. New York, NY, USA:
Oxford Univ. Press, 1995.

[12] D. Giunchi, Y. V. Albores-Barajas, N. E. Baldaccini, L. Vanni, and
C. Soldatini, ‘‘Feral pigeons: Problems, dynamics and control methods,’’ in
Integrated Pest Management and Pest Control. Current and Future Tactics.
London, U.K.: InTech Open, 2012, pp. 215–240.

[13] R. E. Harris and R. A. Davis, ‘‘Evaluation of the efficacy of products and
techniques for airport bird control,’’ Dept. Transp., Ottawa, ON, Canada
Tech. Rep. TP-13029, Mar. 1998.

[14] R. C. Beason, ‘‘What can birds hear?’’ inProc. Vertebrate Pest Conf., 2004,
vol. 21, no. 21, pp. 92–96.

[15] T. Rossing, Handbook of Acoustics. New York, NY, USA: Springer,
2007.

VOLUME 10, 2022 1753

http://dx.doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
http://dx.doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
http://dx.doi.org/10.1108/IJBPA-09-2016-0023
http://dx.doi.org/10.1016/j.jinf.2003.11.001
http://dx.doi.org/10.1371/journal.pone.0226088
http://dx.doi.org/10.1111/j.1462-2920.2011.02575.x
http://dx.doi.org/10.1016/j.rvsc.2019.12.006
http://dx.doi.org/10.3390/v12020244
http://dx.doi.org/10.1016/j.tmaid.2020.101607
http://dx.doi.org/10.1016/j.meegid.2020.104351


F. Schiano et al.: Autonomous Detection and Deterrence of Pigeons on Buildings by Drones

[16] E. Harris, E. P. de Crom, J. Labuschagne, andA.Wilson, ‘‘Visual deterrents
and physical barriers as non-lethal pigeon control on University of South
Africa’s Muckleneuk campus,’’ SpringerPlus, vol. 5, no. 1, p. 1884,
Oct. 2016, doi: 10.1186/s40064-016-3559-5.

[17] Z. Wang, D. Fahey, A. Lucas, A. S. Griffin, G. Chamitoff, and K. C. Wong,
‘‘Bird damage management in vineyards: Comparing efficacy of a bird
psychology-incorporated unmanned aerial vehicle system with netting and
visual scaring,’’ Crop Protection, vol. 137, Nov. 2020, Art. no. 105260,
doi: 10.1016/j.cropro.2020.105260.

[18] A. Gagliardo, E. Pollonara, L. Vanni, and D. Giunchi, ‘‘An experimental
study on the effectiveness of a gel repellent on feral pigeons,’’ Eur.
J. Wildlife Res., vol. 66, no. 2, pp. 1–8, Feb. 2020, doi: 10.1007/s10344-
020-1365-4.

[19] W. Cresswell, ‘‘Non-lethal effects of predation in birds,’’ Ibis, vol. 150,
no. 1, pp. 3–17, Jan. 2008, doi: 10.1111/j.1474-919X.2007.00793.x.

[20] S. M. Kross, J. M. Tylianakis, and X. J. Nelson, ‘‘Effects of introducing
threatened falcons into vineyards on abundance of passeriformes and
bird damage to grapes,’’ Conservation Biol., vol. 26, no. 1, pp. 142–149,
Feb. 2012, doi: 10.1111/j.1523-1739.2011.01756.x.

[21] Vogels op Schiphol opgepast Voor de ‘Horck’. Accessed: Feb. 19, 2021.
[Online]. Available: https://www.trouw. nl/nieuws/vogels-op-schiphol-
opgepast-voor-de-horck?b41f4fcf/

[22] UAS Vision BirdXPeller Predator Drone Scares Off Real Birds.
Accessed: Feb. 19, 2021. [Online]. Available: https://www.uasvision.com/
2011/03/24/birdxpeller-predator-drone-scares-off-real-birds/

[23] B. A. Grimm, B. A. Lahneman, P. B. Cathcart, R. C. Elgin,
G. L. Mesh- nik, and J. P. Parmigiani, ‘‘Autonomous unmanned aerial
vehicle system for controlling pest bird population in vineyards,’’ in
Proc. ASME Int. Mech. Eng. Congr. Expo., Houston, TX, USA, 2012,
pp. 499–505.

[24] E. Vas, A. Lescroël, O. Duriez, G. Boguszewski, and D. Grémillet,
‘‘Approaching birds with drones: First experiments and ethical guide-
lines,’’ Biol. Lett., vol. 11, no. 2, Feb. 2015, Art. no. 20140754, doi:
10.1098/rsbl.2014.0754.

[25] Z. Wang, A. Lucas, K. Wong, and G. Charmitoff, ‘‘Biomimetic design
for pest bird control UAVs: A survey,’’ in Proc. 17th Austral. Int. Aerosp.
Congr. (AIAC), Melbourne, VIC, Australia, 2017, p. 469.

[26] Z. Wang and K. Wong, ‘‘Autonomous bird deterrent system for vineyards
using multiple bio-inspired unmanned aerial vehicle,’’ in Proc. 10th Int.
Micro Air Vehicle Conf. Competition (IMAV), Melbourne, VIC, Australia,
vol. 2018, pp. 256–281.

[27] Z. Wang and K. C. Wong, ‘‘Autonomous pest bird deterring for
agricultural crops using teams of unmanned aerial vehicles,’’ in Proc.
12th Asian Control Conf. (ASCC), Kitakyushu, Japan, Jun. 2019,
pp. 108–113.

[28] A. A. Paranjape, S.-J. Chung, K. Kim, and D. H. Shim, ‘‘Robotic herding
of a flock of birds using an unmanned aerial vehicle,’’ IEEE Trans.
Robot., vol. 34, no. 4, pp. 901–915, Aug. 2018, doi: 10.1109/TRO.2018.
2853610.

[29] D. Stowell, M. Wood, Y. Stylianou, and H. Glotin, ‘‘Bird
detection in audio: A survey and a challenge,’’ in Proc. IEEE
26th Int. Workshop Mach. Learn. Signal Process. (MLSP), Vietri
sul Mare, Italy, Sep. 2016, pp. 1–6, doi: 10.1109/MLSP.2016.
7738875.

[30] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
‘‘PointPillars: Fast encoders for object detection from point clouds,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Long
Beach, CA, USA, Jun. 2019, pp. 12697–12705, doi: 10.1109/CVPR.2019.
01298.

[31] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and
K. Q. Weinberger, ‘‘Pseudo-LiDAR from visual depth estimation:
Bridging the gap in 3D object detection for autonomous driving,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Long
Beach, CA, USA, Jun. 2019, pp. 8445–8453, doi: 10.1109/CVPR.2019.
00864.

[32] M. Shakeri and H. Zhang, ‘‘Real-time bird detection based on back-
ground subtraction,’’ in Proc. 10th World Congr. Intell. Control Autom.,
Beijing, China, Jul. 2012, pp. 4507–4510, doi: 10.1109/WCICA.2012.
6359241.

[33] S.-J. Hong, Y. Han, S.-Y. Kim, A.-Y. Lee, and G. Kim, ‘‘Application
of deep-learning methods to bird detection using unmanned aerial
vehicle imagery,’’ Sensors, vol. 19, no. 7, p. 1651, Apr. 2019, doi:
10.3390/s19071651.

[34] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards
real-time object detection with region proposal networks,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi:
10.1109/TPAMI.2016.2577031.

[35] S. Bhusal, U. Bhattarai, and M. Karkee, ‘‘Improving pest bird
detection in a vineyard environment using super-resolution and deep
learning,’’ IFAC-PapersOnLine, vol. 52, no. 30, pp. 18–23, 2019, doi:
10.1016/j.ifacol.2019.12.483.

[36] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, ‘‘Speed/accuracy
trade-offs for modern convolutional object detectors,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 3296–3297, doi: 10.1109/CVPR.2017.351.

[37] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-V4,
inception-resnet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[38] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in
context,’’ in Proc. Eur. Conf. Comput. Vis., vol. 8693. New York,
NY, USA: Springer, 2014, pp. 740–755, doi: 10.1007/978-3-319-10602-
1_48.

[39] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, ‘‘Deep ordinal
regression network for monocular depth estimation,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018,
pp. 2002–2011, doi: 10.1109/CVPR.2018.00214.

[40] F. Liu, C. Shen, G. Lin, and I. Reid, ‘‘Learning depth from single
monocular images using deep convolutional neural fields,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 38, no. 10, pp. 2024–2039, Oct. 2015, doi:
10.1109/TPAMI.2015.2505283.

[41] A. Saxena, S. H. Chung, and A. Y. Ng, ‘‘Learning depth from
single monocular images,’’ in Proc. 18th Int. Conf. Neural
Inf. Process. Syst. (NIPS), vol. 18, Dec. 2005, pp. 1–8, doi:
10.1109/TPAMI.2015.2505283.

[42] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun,
‘‘Towards robust monocular depth estimation: Mixing datasets for
zero-shot cross-dataset transfer,’’ IEEE Trans. Pattern Anal. Mach.
Intell., early access, Aug. 27, 2020, doi: 10.1109/TPAMI.2020.
3019967.

[43] J. Zhu and Y. Fang, ‘‘Learning object-specific distance from a monoc-
ular image,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Seoul, South Korea, Oct. 2019, pp. 3839–3848, doi: 10.1109/ICCV.2019.
00394.

[44] J. M. Facil, B. Ummenhofer, H. Zhou, L. Montesano, T. Brox, and
J. Civera, ‘‘CAM-Convs: Camera-aware multi-scale convolutions for
single-view depth,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019, pp. 11826–11835,
doi: 10.1109/CVPR.2019.01210.

[45] Parrot, ‘‘Anafi white paper,’’ Parrot Drone SAS, White Paper, 2020.
[Online]. Available: https://www.parrot.com/assets/s3fs-public/2020-
07/white-paper_anafi-v1.4-en.pdf

[46] W. Luo, B. Yang, and R. Urtasun, ‘‘Fast and furious: Real time end-
to-end 3D detection, tracking and motion forecasting with a single
convolutional net,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Salt Lake City, UT, USA, Jun. 2018, pp. 3569–3577,
doi: 10.1109/CVPR.2018.00376.

[47] D. Gibbs, E. Barnes, and J. Cox, Pigeons and Doves: A Guide to
the Pigeons and Doves of the World, vol. 13. Edinburgh, U.K.:
A&C Black, 2001, doi: 10.1642/0004-8038(2001)118[1117:]2.
0.CO.2.

[48] G. Ciaparrone, F. Luque Sánchez, S. Tabik, L. Troiano,
R. Tagliaferri, and F. Herrera, ‘‘Deep learning in video multi-object
tracking: A survey,’’ Neurocomputing, vol. 381, pp. 61–88, Mar. 2020,
doi: 10.1016/j.neucom.2019.11.023.

[49] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andW. Zisserman,
‘‘The PASCAL visual object classes (VOC) challenge,’’ Int. J. Comput.
Vis., vol. 88, no. 2, pp. 303–338, Sep. 2010, doi: 10.1007/s11263-009-
0275-4.

[50] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B. da Silva,
‘‘A comparative analysis of object detection metrics with a companion
open-source toolkit,’’ Electronics, vol. 10, no. 3, p. 279, Jan. 2021, doi:
10.3390/electronics10030279.

[51] D. G. Kleinbaum and M. Klein, Survival Analysis, 3rd ed. New York, NY,
USA: Springer, 2010.

[52] F. Schilling, F. Schiano, and D. Floreano, ‘‘Vision-based drone flocking
in outdoor environments,’’ IEEE Robot. Autom. Lett., vol. 6, no. 2,
pp. 2954–2961, Apr. 2021, doi: 10.1109/LRA.2021.3062298.

1754 VOLUME 10, 2022

http://dx.doi.org/10.1186/s40064-016-3559-5
http://dx.doi.org/10.1016/j.cropro.2020.105260
http://dx.doi.org/10.1007/s10344-020-1365-4
http://dx.doi.org/10.1007/s10344-020-1365-4
http://dx.doi.org/10.1111/j.1474-919X.2007.00793.x
http://dx.doi.org/10.1111/j.1523-1739.2011.01756.x
http://dx.doi.org/10.1098/rsbl.2014.0754
http://dx.doi.org/10.1109/TRO.2018.2853610
http://dx.doi.org/10.1109/TRO.2018.2853610
http://dx.doi.org/10.1109/MLSP.2016.7738875
http://dx.doi.org/10.1109/MLSP.2016.7738875
http://dx.doi.org/10.1109/CVPR.2019.01298
http://dx.doi.org/10.1109/CVPR.2019.01298
http://dx.doi.org/10.1109/CVPR.2019.00864
http://dx.doi.org/10.1109/CVPR.2019.00864
http://dx.doi.org/10.1109/WCICA.2012.6359241
http://dx.doi.org/10.1109/WCICA.2012.6359241
http://dx.doi.org/10.3390/s19071651
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1016/j.ifacol.2019.12.483
http://dx.doi.org/10.1109/CVPR.2017.351
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1109/CVPR.2018.00214
http://dx.doi.org/10.1109/TPAMI.2015.2505283
http://dx.doi.org/10.1109/TPAMI.2015.2505283
http://dx.doi.org/10.1109/TPAMI.2020.3019967
http://dx.doi.org/10.1109/TPAMI.2020.3019967
http://dx.doi.org/10.1109/ICCV.2019.00394
http://dx.doi.org/10.1109/ICCV.2019.00394
http://dx.doi.org/10.1109/CVPR.2019.01210
http://dx.doi.org/10.1109/CVPR.2018.00376
http://dx.doi.org/10.1642/0004-8038(2001)118[1117:]2.0.CO.2
http://dx.doi.org/10.1642/0004-8038(2001)118[1117:]2.0.CO.2
http://dx.doi.org/10.1016/j.neucom.2019.11.023
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.3390/electronics10030279
http://dx.doi.org/10.1109/LRA.2021.3062298


F. Schiano et al.: Autonomous Detection and Deterrence of Pigeons on Buildings by Drones

FABRIZIO SCHIANO received the bachelor’s and
master’s degrees (cum laude) in automation engi-
neering from the University of Napoli Federico II,
Italy, in 2010 and 2013, respectively, and the Ph.D.
degree in robotics from the University of Rennes 1,
Inria Rennes, France, in 2018. He was a Research
Scientist at Zentrum Fur Telematik, Wurzburg,
Germany, from 2013 to 2014, where he was
working with dielectric elastomer generators for
energy harvesting applications. In 2018, he visited

Boston University USA. In 2018, he joined the Swiss Federal Institute of
Technology in Lausanne (EPFL) as a Postdoctoral Researcher. Since 2021,
he has been a Senior Research Fellow at Leonardo Company s.p.a., where
he is working on aspects related to the autonomous flight of helicopters.
His research interests include multi-robot systems, aerial swarms, modular
drones, and human–robot interfaces.

DOMINIK NATTER received the Dipl.-Ing.
degree in automation technology from Technis-
che Universität Wien, Vienna, Austria, in 2020.
From 2020 to 2021, he was an Intern at EPFL.
He is currently with the Robotics and Control
Group, SINTEF, Norway. His research interests
include robotics and autonomous systems, with a
focus on control and computer vision.

DAVIDE ZAMBRANO received the M.Sc. degree
(cum laude) in biomedical engineering and the
Ph.D. degree in health technologies from the
University of Pisa, Pisa, Italy, in 2008 and
2012, respectively. He worked as a Postdoctoral
Researcher in different laboratories, including
SSSA, Pisa; CWI, Amsterdam, The Netherlands;
and EPFL. He is currently a Deep Learning
Engineer with the Innovation Laboratory of Syn-
ergy Sports. His research interests include spiking

neural networks, deep learning, and reinforcement learning.

DARIO FLOREANO (Senior Member, IEEE)
received theM.A. degree in vision, theM.S. degree
in neural computation, and the Ph.D. degree in
robotics. Since 2010, he has been the Founding
Director at the Swiss National Center of Compe-
tence in Robotics, a research program that brings
together more than 20 labs across Switzerland.
He has held research positions at Sony Computer
Science Laboratory, Caltech/JPL, and Harvard
University. He is currently the Director with the

Laboratory of Intelligent Systems, EPFL. He made pioneering contributions
to the fields of evolutionary robotics, aerial robotics, and soft robotics.
He served in numerous advisory boards and committees, including the
Future and Emerging Technologies Division of the European Commission,
World Economic Forum Agenda Council, International Society of Artificial
Life, International Neural Network Society, and editorial committees of
several scientific journals. In addition, he helped start two drone companies
(senseFly.com and Flyability.com) and a non-for-profit portal on robotics and
AI (RoboHub.org). His main research interests include robotics and artificial
intelligence (AI) at the convergence of biology and engineering.

VOLUME 10, 2022 1755


