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ABSTRACT In computer vision applications, the visibility of the video content is crucial to perform
analysis for better accuracy. The visibility can be affected by several atmospheric interferences in challenging
weather – one such interference is the appearance of rain streaks. Recently, rain streak removal has achieved
plenty of interest among researchers, as it has some exciting applications such as autonomous cars, intelligent
traffic monitoring systems, multimedia, etc. In this paper, we propose a novel and simple method of rain
streak removal by combining three novel extracted visual features focusing on the temporal appearance,
wide shape and relative location of the rain streak. We called it the TAWL (Temporal Appearance, Width,
and Location) method. The proposed TAWL method adaptively uses features from different resolutions and
frame rates. Moreover, it progressively processes features from the upcoming frames so that it can remove
rain in real-time. Experiments have been conducted using video sequences with both real rain and synthetic
rain to compare the performance of the proposed method against the relevant state-of-the-art methods. The
experimental results demonstrate that the proposed method outperforms the state-of-the-art methods by
removing more rain streaks while keeping other moving regions.

INDEX TERMS Rain removal, deraining, rain-free video, rain streak location, rain streak shape.

I. INTRODUCTION
The visibility of a video is affected by many atmospheric
interferences that degrade the quality of the video content.
The video information is also affected by climatic events such
as rain [1]–[6]. The low visibility degrades the performance of
subsequent video analysis or processing applied in computer
vision techniques. This undesirable situation degrades the
performance of several computer vision applications such
as driverless cars, intelligent traffic monitoring systems and
surveillance systems [7]–[9]. As a result, it is necessary to
improve the visibility of a video affected by external things
like rain.

Many types of numeric methods have been proposed to
improve the visibility of images/videos captured with rain
streak noise [10]–[21]. Some literature [22], [23] treated the
rain removal as the missing information reconstruction in
the image processing field. The methods can be categorised
into two classes: multiple images/video-based approaches
and single image-based methods.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xinfeng Zhang.

The scope of the paper is to remove rain streaks from video
sequences. Fig.1 shows an example of the performance of
the proposed TAWL method in generating a rain-free frame
compared to the outcome using other existing methods.

Garg et al. [10] first raised a Rain Streaks Removal in
Video (RSRV) method with a comprehensive analysis of
the effects of visual properties such as spatial distribution,
shape and velocity of the raindrops on an imaging system.
They proposed that two camera properties, exposure time
and depth of field adjustment, could reduce or even remove
the effects of rain in a video sequence. Subsequently, many
approaches have been recommended for the RSRV method
and have achieved a good result in rain streak removal for
a variety of rain conditions. Tripathi and Mukhopadhyay
review wide-ranging primary video-based methods [11].
Chen and Chau study some very active scenes [12].
Kim et al. [13] have focused on the time-based relationship of
rain streaks and the low-rank characteristic of rain-free
videos. Santhaseelan et al. [14] marked and eliminated
the rain streaks based on phase congruency features.
You et al. [15] worked with environments where the rain-
drops were situated on window glass or car windscreens.
Jiang et al. [16] focused on the directional property to
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FIGURE 1. Low visibility scenario due to rain and the performance of the
rain removal algorithms to make a rain-free video where (a) a video
frame with rain, (b) rain-free frame using an existing algorithm [18],
(c) rain-free frame using another existing algorithm [19], and
(d) rain-free frame using the proposed TAWL method.

propose a tensor-based RSRV method. Wang et al. [21] also
proposed a tensor-based RSRV method using nonlocal low-
rank regularisation. Ren et al. [17] worked with conditions
of snow and rain. The authors considered a matrix decom-
position technique. Wei et al. [18] have stochastically mod-
elled rain streaks and have not considered the deterministic
features. A mixture of Gaussian distributions has been used
to model the rain-free background, while Li et al. [19] intro-
duced the multi-scale convolutional filters from the rain data.
Both methods reached a satisfactory level of performance
with surveillance videos. Li et al. [24] have considered the
dynamic indicator of both rain/snow and background scene.
The authors encoded the rain streaks as an online multi-scale
convolutional sparse coding (OMS-CSC) model.

The methods based on deep learning for the RSRVmethod
also started to reveal their effectiveness [4], [25]–[30].
Most of the proposed models have been developed based
on single-image features but can also be applied to video
sequences. A video sequence is a combination of single
images called frames. These models have mostly addressed
the interference/difficulties in visibility caused by the accu-
mulation of rain streaks. Yang et al. [31] use binary mapping
representing rain and without rain pixels to train the rain
model. In the rain removal method, they used a contextu-
alised dilated network. Liu et al. [29] have proposed a joint
recurrent deep network for video deraining. A GAN based
deraining method has been proposed by Matsui and Ike-
hara [1]. The authors have also introduced residual learning
to develop a rain removal model. A two-stage RNN architec-
ture has also been proposed for video deraining [27]. Also,
a sequential deep unrolling framework has been proposed to
exploit spatial and temporal features for video deraining [28].

Recently, some approaches have been proposed to combine
feature based model and deep learning model [4], [32].

However, some insightful characteristics possessed by rain
streaks in a video still have not been explored. The literature
identifies two difficult aspects of rain removal in video rain
removal techniques: distinguishing rain streaks from moving
regions and removing the rain streaks completely. The exist-
ing methods can perform better in one or the other aspect
but not at the expected level in both aspects. Some of the
existing methods cannot remove rain streaks in real-time for a
video as theymay need to store future frames to learn/train the
models. Moreover, some existing methods cannot perform at
the expected level if the frame rate and resolution of the video
have been changed.

The insightful characteristics such as temporal duration,
relative position within a frame, shape, location, etc., of the
rain streak are crucial to distinguish the rain streak from the
background and moving regions for making a video free of
rain streaks. In this study, we propose a novel approach to
remove rain streaks from a video to produce a better video by
exploiting novel characteristics of the rain, such as appear-
ance duration, shape, and location. The proposed method
progressively learns the background, identifies rain streaks by
utilising various features, and removes the rain streaks frame
by frame. Furthermore, as our method extracts features for
every current frame that is being processed, it can be applied
in real-time application considering some processing time.

First, we modelled the background with Low-Rank Matrix
Factorisation (LRMF) and applied a Mixture of Gaussian
(MoG) to separate the background and foreground [4], [19],
[25]. After separation of the background, the foreground usu-
ally includes any rain streaks and moving objects. The main
challenge of the rain removal algorithms is to separate the rain
streaks from the moving object for the rain-free video. Here
we model the rain streaks based on the temporal appearance
(TA) of the rain streaks in the video. We have observed that
rain in identical locations in head-to-head frames of a video
sequence is highly unlikely.We have considered this property
to distinguish rain streaks from other moving objects, bearing
in mind the impact of the frame rates of the video. But
it misses some portions of moving objects that also have
a shorter appearance. To solve this issue and recover the
missing moving objects, we extract more features based on
the other properties of rain streaks. We exploit the width of
the rain streak, which filters some false positives from the
candidate rain pixels. We have observed that rain streaks have
a range of specific widths, bearing in mind the resolution
impact. Combining TA and width properties provides a good
rain removal performance; however, some false positives are
still detected. The candidate pixel’s location is also a signifi-
cant property to distinguish rain streaks frommoving objects.
We also exploit location-wise properties to identify rain from
other moving regions.

This paper proposes a novel algorithm by combining the
TA properties of rain streaks with the shape and location
properties of rain streaks to improve the recovered moving
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objects in rain-free videos. Please note that we identify each
pixel with rain or without rain considering the temporal cor-
relation of that pixel and relative position of the pixel against
neighboring pixels, whereas the algorithm in [10] considered
directional correlation of the rain streak by considering a
number of pixels. We avoid explicit rain streak direction
as the rain streak’s direction can be aligned with the mov-
ing object’s movement direction. This may lead to a wrong
prediction of the rain. We also see the performance of the
proposed method in different resolutions and frame rates as
the TA, shape and location properties have been changed with
frame rates and/or resolutions. We have adaptively used the
properties criteria to make the proposed method effective in
different resolutions and frame rates.

The preliminary idea based on the TA is published in a
conference paper [7]; however, our contributions are:

• We introduced and formulated the temporal appearance
(modified compared to [7] in the light of frame rate
invariant) of rain streaks to differentiate them from other
moving objects.

• In addition, we also developed and formulated the two
other vital features of rain streaks based on the shape and
location where the correlation of the neighboring pixels
of an already identified rain streak has been exploited.

• We have fused different criteria to make the final deci-
sion. We have adaptive thresholds to make the proposed
method effective in different resolutions and frame rates.

• We have compared the proposed method with differ-
ent approaches like deep learning-based model, self-
learning model and feature-based model. We have also
implemented proposed method on few more video
sequences which include different rain streaks pat-
tern and environmental condition. These comparative
results and analysis are not included in the conference
proceedings.

The rest of the paper is organized as follows: Section II
describes the proposed method and justifies and explains
every step. Section III contains the setup of the experiment
and analysis of the results, and Section IV concludes the paper

II. PROPOSED METHOD
The proposed rain streak removal algorithm contains five
significant steps (see the schematic diagram in Fig. 2):
(i) background and foreground extraction, (ii) TA feature of
rain streaks, (iii) width feature of rain streaks, (iv) location
feature of rain streaks, and (v) rain-free video generation.
The red marked block indicates two added features which is
an extended contribution to our preliminary work published
in conference. In this method, we explore insightful rain
streak properties to refine the candidate rain streak pixels.
First, we separate all moving regions, including rain and
moving objects, using the generated background frame from
a current frame. The background frame is generated from the
past frames of a video using an existing method [4], [19],
[25]. To separate the rain streaks from other moving regions,

FIGURE 2. Block diagram of the proposed TAWL rain streak removal
method.

we exploit the TA property of rain streaks, including some
briefly appearing moving regions with rain streaks. Then we
apply the width property to filter out moving regions that are
brief appearing but relatively bigger in size as the rain streaks
usually are smaller in width. Finally, we apply the location
of candidate pixels to filter out the false-positive selection
of rain streaks as the rain streaks are generally isolated and
scattered. All the five significant steps are discussed in the
following sections in details. Note that here input frames are
in YCbCr color format and the processes are applied on the
Y component of the input frame.

A. BACKGROUND MODELING
Many dynamic background modelling approaches [33]–[35]
are available and the basic concept to develop these models
is very similar. The background remains the same over all the
frames in a video scene captured by a static camera except
for the interference of moving objects and change of light.
Thus, this background layer can be formulated as recovering
a low-dimensional subspace [36]–[40]. The regular approach
to subspace learning is the subsequent low-rank matrix fac-
torisation (LRMF):

B = Fold
(
UV T

)
(1)

where, U ∈ Rd×r , V ∈ Rn×r , d = hw, r < min (d, n) .

The operation of ‘Fold’ refers to folding up each column of a
matrix into the corresponding frame matrix of a tensor.

At each frame, we generate a background frame. We use
the background frame to find rain streaks and other fore-
grounds to generate the rain-free video in the proposed
method.

Initially, we have generated the foreground by subtracting
the background from the input frame,

Fn =

{
1, |In − Bn| > Threshold
0, otherwise

(2)

where F is a foreground binary image of the nth frame, In is
the original nth frame and Bn is the background frame at the
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nth frame. Here we use an intensity threshold value of 20 to
eliminate the effect of other light or illumination interference
from the generated foreground. This image contains rain
streaks and moving objects.

B. TEMPORAL APPEARANCE (TA) WITH FRAMES RATE
INVARIANT
After subtracting the background frame from the current
frame, we can get the foreground, which comprises rain
streaks and moving objects. Fig. 3(a) shows the original
frame 85, Fig. 3(b) shows the Y component of the origi-
nal input frame. Fig. 3(c) shows the background frame of
frame 85 and Fig. 3(c) shows the rain streaks and mov-
ing objects of frame 85 in greyscale for the Traffic video
sequence. The figure demonstrates that the background
modelling with the threshold successfully detected mov-
ing regions, including rain streaks. To separate the moving
objects from the rain streaks, we exploit the TA property
of the rain streaks in a video sequence. We have observed
that the appearance of the rain streaks in the same location
in adjacent frames of a video sequence is highly unlikely.
We have exploited this property to separate rain streaks from
other moving objects.

FIGURE 3. Results of background modelling [19] using the ‘‘Traffic’’ video
sequence to demonstrate the separation of moving regions, including
rain streaks from the background using dynamic background modelling.

The red circles marked in Fig. 4 demonstrate the
TA property of the rain streaks. Two adjacent frames
(frame 84 and frame 85) represent rain streaks in four loca-
tions of each frame. Rain streaks appear at two red circles
(i.e., top and top right) in frame 84 but disappear in frame 85.
Rain streaks do not appear at two red circles (i.e., bottom
and left bottom) in frame 84 but appear in frame 85. This
observation demonstrates that the rain streaks appear at a
particular location of a frame in a video very briefly and may
comprise a few frames depending on the frame rate of the
capturing devices. However, themoving object normally does
not show low appearance characteristics like rain streaks in

FIGURE 4. Observation of the temporal appearance property of rain
streaks in the ‘‘Traffic’’ video sequence.

an area. Rain streaks appear in a video discreetly; normally,
they change location frequently for low to mid-intensity rain.
In comparison, moving objects change location smoothly (see
the moving car).

We have used this temporal appearance characteristic of
rain streaks to separate the rain streaks from the moving
objects of the foreground. To model the rain streaks and
analyze their temporal characteristics, we created a mask
that uses the binary image F of each frame for the previ-
ous m frames adjacent to each other. In a binary image,
a ‘‘1’’ represents the foreground, including rain and other
moving objects, and a ‘‘0’’ represents the background.

Mn =

n−m∑
i=n

Fi; (i = n, n− 1, n− 2, . . . n− m) (3)

where M represents a mask of the nth frame, F represents
the foreground binary images of adjacent frames (described
above), and m is the maximum number of adjacent frames.
We use the previousm number of frames to make the decision
contemporary, as the scene may be changing significantly
enough so that the mask may not be relevant to represent the
recent changes. We consider the appearance value of every
pixel location in the mask. If the appearance value is more
than a certain duration threshold in terms of the frame rate of
the video, it is considered as the part of the object area and
any value more than zero and up to that duration threshold is
considered as the rain area; otherwise, it is considered as part
of the background area. We use the duration threshold as 20%
of the frame rate to classify the rain, object, and background
areas as the appearance duration vary with capturing frame
rates (see explanation below). In Fig. 5, all the yellow area is
considered as the object area, the red area as the rain streaks
area and the blue area as a background area.

The TA value mostly depends on the frame rate because
if the capture device is operating in a high frame rate, a rain
streak may appear in a greater number of frames. That’s why
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FIGURE 5. Mask of the 85th frame represents background, rain and
moving objects with blue, red and yellow areas, respectively.

for better rain removal, we need to make the proposedmethod
invariant of frame rates or, in other words, the proposed
method should be applicable for different frame rates. Thus,
the threshold we have used against the mask M is a function
of the frame rates so that the threshold can be adaptive with
the frame rate for successful rain removal. Fig. 6 shows the
effect of different frame rates of a video if we use a constant
threshold value in different frame rates. For the video with
higher frame rates, the loss of moving objects is less com-
pared to that of lower frame rates. The results are different for
different frame rates of the video with a fixed threshold. Thus,
we can successfully exploit the TA property using an adaptive
threshold for different frame rates. The rain-free frame and
the rain streak detected using only the TA property are shown
in Fig. 7.

FIGURE 6. The effect of the different frame rates on TA output with a
constant threshold value of TA modelling using the ‘‘Traffic’’ video
sequence.

C. WIDTH AND LOCATION PROPERTIES FOR FRAME RATE
AND RESOLUTION INVARIANT
After applying the rain streak model based on the TA feature
of rain streaks, we missed a few portions of a moving object
in the rain-free video frame as the model misclassifies some
parts of the object as a rain streak (Fig. 7). For example,
a portion of the moving car is also identified as a rain streak
in the TA process (see Fig.7 (c)), together with the rain streak.
As a result, the separated object is distorted (Fig. 7(d)), which
affects the rain-free frame (Fig. 7(a)). To overcome this issue
and reduce the false positives due to the inclusion of moving

FIGURE 7. The outcome of the rain streak model based on TA properties
only.

objects in the outcome of the TA process, we need to filter
out the moving objects from the identified rain streaks using
other properties of the rain streaks. We refine the candidate
rain streak pixels by two consecutive filters. Before applying
these filters, we created two binary images for each frame
based on TA properties. One consists of candidate rain streaks
and the other includes moving objects. We modelled both
filters based on rain streak characteristics – the rain streak’s
width and the relative position of the candidate pixels. They
are discussed in detail below:

1) RAIN STREAK WIDTH
From the candidate rain streaks, we filtered out the false
positives by measuring the rain streak width. The rationale
for using the width of the rain streak is that the width is
not very wide and normally discrete. We check the number
of consecutive 1s in every row of the binary image that
includes candidate rain streaks. In this filter, we consider
a length threshold with respect to the frame width as a
maximum rain streak width. Thus, any rain streak candidate
with a number of consecutive 1s in a row that is less than
the length threshold of the frame width is considered a rain
streak. We use 5% of the frame width as the length threshold.
We experimentally observed many datasets with different
types of rain streaks and found our considerationworks better.
We consider the threshold against the frame width to make
the filter resolution-independent, so the adaptive threshold
should work in different resolutions.

The pixel value of rain streak width is highly dependent on
the image resolution. We experimentally observed the effect
of different resolutions of a video sequence. Fig. 8 shows the
results with different resolutions of a video sequence where
the threshold of rain streak width is considered constant. The
figure demonstrates that the rain streak width filter missed
some rain streaks for higher resolution video by considering
them as objects, as their pixel size is increased due to the
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FIGURE 8. The effect of different resolutions on the results with a
constant threshold of rain streak width.

larger resolution. On the other hand, the rain streak width
filter can select more rain streaks at a lower resolution.

2) RAIN STREAK LOCATION
After refining the width property, some false positives are fil-
tered out; however, some false positives remain as it includes
some moving regions with a similar width to the rain streaks.
To further filter out the moving areas, we check the neigh-
bourhood pixels of the candidate rain streaks to determine
how close they are to the moving objects. If they are very
close and connected with the moving objects, they are con-
sidered part of the moving objects rather than the rain streaks.
Thus, they need to be filtered out as false positives. The
neighbour pixels of each candidate pixel is checked using
the separated binary objects image. The same number of
neighbour pixels in each quadrant (up-right, up-left, down-
left and down-right) of the candidate pixels are checked to
see whether they are an isolated cluster of 1s or not. If they
are an isolated cluster of 1s, then we assume that they are
a rain streak; otherwise, they are a part of a moving object.
The rationale of this assumption is that if the cluster of 1s has
connected with another cluster of 1s, then they are part of a
moving object rather than a rain streak as the rain streak is
usually isolated.

Fig. 9 shows the results and comparative improvement in
outcomes after applying the width and location features with
TA features. Fig. 9(a) & (b) show that the object is well recov-
ered after applying the width and location features, where it
is distorted after applying only the TA features. Likewise,
the separated rain streaks are improved after applying the
width and location features. The distorted object portions are
selected as rain streaks after applying only the TA features
(Fig, 9(c)), whereas no object portion is selected as a rain
streak in Fig 9(d).

D. RAIN-FREE VIDEO GENERATION
After applying all those extracted features, we have generated
an object mask for the current processing frame. We have
used both the generated background frame at the current
frame position and the current frame to generate a rain-free
video frame. For example, we use both the ith background and
the ith frame to generate the rain-free frame for the current
ith frame. We identify each of the pixels as a background,
rain or moving object through processes mentioned earlier.

FIGURE 9. Outcomes after applying the width and location features.

For a rain-free frame, if the pixel is identified as background
or rain, then the corresponding pixel intensity is taken from
the background frame, and if the pixel is identified as a
moving object, then the corresponding pixel intensity is taken
from the current frame. Fig. 10 shows the outcomes after
applying all steps.

FIGURE 10. The result after applying all steps.

III. EXPERIMENTAL RESULTS
We have conducted experiments using video sequences with
real rain to compare the performance of the proposed method
and other contemporary and relevant methods. This com-
parison provides a subjective quality assessment as there is
no ground truth for the real rain-free videos. We also com-
pare the performance using video sequences with synthetic
rain to understand subjective and objective measurements,
as the synthetic video sequences have a ground truth for
comparison. We have not compared the time cost of different
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methods here. The comparedmethods (i.e., PMoG,MS-CSC)
extract features from all frames together, where the proposed
method uses just the current frame and few previous frames
to extract features so that the proposed method can be used in
real-time applications. The features extraction process is not
the same. Thus, comparing time costs will not represent a fair
scenario.

We have considered six methods to compare the perfor-
mance of the proposed method including three model-based
video deraining methods PMoG [18], MS-CSC [19], and
OMS-CSC [24] and three DL-based video deraining meth-
ods SPAC-CNN [25], SLDNet [41], and S2VD [30]. These
methods are relatively recent and work on the RSRV; thus,
we select these six methods to compare. The feature extrac-
tion with physical meaning gives us a better understanding of
the rain characteristics for classification.

A. EXPERIMENTS ON REAL RAIN VIDEO
Fig. 11 shows the experimental results of the ‘‘Traffic’’ video
sequence at frame 72. The figure demonstrates that the pro-
posed method outperforms the state-of-the-art methods in
both rain removal and object retain cases. The identified
areas using green rectangles show some distortions in the
MS-CSC [19] andOMS-CSC [24]method’s results. This por-
tion is a part of an object reflection. Moreover, the proposed
method successfully removes more rain streaks compared to
other methods by maintaining a better quality for moving
regions.

FIGURE 11. Rain removal results and comparison between the proposed
method and other methods for the video sequence ‘‘Traffic’’.

Fig. 12 shows the results of the ‘‘Yard’’ video sequence
at frame 97. The proposed method performs better than the

FIGURE 12. Rain removal results and comparison between the proposed
method and other methods for the ‘‘Yard’’ video sequence.

FIGURE 13. Rain removal results and comparison between the proposed
method and other methods for a video sequence called ‘‘Wall’’.

othermethods. It has removedmore rain streaks than the other
methods. The rectangle and circle marked areas clearly show
that the proposed method can remove more rain streaks.

Fig. 13 shows the results of the ‘‘Wall’’ video sequence
at frame 15. The proposed method outperforms the other
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two methods. It has removed more rain streaks and generated
a high-quality rain-free video frame compared to the other
methods [18], [19].

Fig. 14 shows the visual comparison of different methods
on frame 35 of a real testing video sequence called ‘‘Ra4’’
from dataset NTURain [25]. The proposed method outper-
forms the other two methods. The selected area shows that
the rain-free frame is cleaner in the result for the proposed
method.

FIGURE 14. Rain removal results and comparison between the proposed
method and other methods for a video sequence called ‘‘Ra4’’. from
dataset NTURain.

Figure 15 shows the visual results of different methods on
frame 93 of a real video sequence called ‘‘Saigon’’ from a
dataset MS-CSC [19]. The proposed method outperforms the
other methods to remove the rain and also retains the moving
objects. However, the MS-CSC method fails to retain some
parts of the moving object (see the highlighted area).

FIGURE 15. Rain removal results and comparison between the proposed
method and other methods for the ‘‘Saigon’’ video sequence.

Figure 16 shows the visual comparison of different meth-
ods (including DL-based methods) on frame 3 of a real video
sequence ‘‘Saigon’’ dataset MS-CSC. The proposed method
outperforms all the DL-based methods (see the highlighted
area).

FIGURE 16. Rain removal results and visual comparison of different
methods (including DL-based methods) on the ‘‘Saigon’’ video sequence
from dataset MS-CSC.

B. EXPERIMENTAL RESULTS OF SYNTHETIC RAIN
STREAKS
To understand the performance of the proposed method com-
pared to the other two methods, we also provide experimen-
tal results using videos with synthetic rain. Fig. 17 shows
the results of a synthetic video sequence called ‘‘Truck’’ at
frame 65. The proposed method can remove almost all rain
streaks, while the other methods fail to remove rain streaks in
several areas.

Fig. 18 shows the results of another video sequence called
‘‘Park’’ at frame 124. This video has synthetic rain. The visual
result shows the proposed method andMS-CSC [19] perform
very well in rain removal, whereas PMoG [18] is not as good
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FIGURE 17. Rain removal results and comparison between the proposed
method and other methods using a video sequence called ‘‘Truck’’.

FIGURE 18. Rain removal results and comparison between the proposed
method and other methods for the video sequence ‘‘Park’’.

as the proposedmethod. The identified areas using red rectan-
gles show some distortions in the results of MS-CSC [19] and
OMS-CSC [24]. This portion is a part of a moving man’s leg.

Moreover, the proposed method successfully removes more
rain streaks compared to the other methods by maintaining a
better quality for the moving regions.

Fig. 19 shows the results of another video sequence called
‘‘Highway’’ at frame 97. This video has synthetic rain.
The visual result shows the proposed method, MS-CSC and
OMS-CSC perform verywell in rain removal, whereas PMoG
is not as good as the proposed method. The results of the
proposed method are cleaner.

FIGURE 19. Rain removal results and comparison between the proposed
method and other methods for video sequence ‘‘Highway’’.

Figure 20 shows the quantitative comparison of the pro-
posed method against the other two methods using the video
sequence ‘‘Truck’’ in terms of the PSNR value in each frame.
In the figure, the input PSNRsmean the PSNRs of the original
frames against ground truth frames (i.e., without rain), which
should be the lowest as they have rain. The proposed method
outperforms the method in [18] for all frames. It outperforms
the method in [19] in most of the frames. This demonstrates
that the proposed method successfully removes rain from the
frames and maintains a better quality for moving objects.

Table 1 shows a comparison of average PSNR values of all
frames for the two synthetic datasets, ‘‘Truck’’ and ‘‘Park’’.

TABLE 1. Average PSNR comparison between different methods.
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FIGURE 20. Quantitative comparison of the proposed method with other relevant methods for frame-level PSNR values using the ‘‘Truck’’ video
sequence.

For both datasets, the proposed method performs better than
the other methods.

IV. CONCLUSION
This paper tries to understand the insightful characteristics
of rain streaks and then use them to make a rain-free video.
To do this, we identify three crucial characteristics: tempo-
ral duration appearance, width, and relative location of the
rain streaks. The appearance of the temporal duration is an
important phenomenon of rain streaks, as a rain streak lasts
in a pixel location for a short time, i.e., for a few frames. The
rain streak has a certain width for low or medium density
rain. Moreover, the location of the rain streak is naturally
scattered or isolated. We use dynamic background modelling
to gradually exploit these features to identify rain streaks from
normal moving regions after separating the rain and moving
regions. We also process the features in such a way that
they can be applicable for different resolutions and frames of
the video sequences. Moreover, we also extract the features
and use them in such a way that the proposed method can
work in real-time. To verify the superiority of the proposed
method, we use video sequences with both real and synthetic
rains and compare the performance against two contemporary
and relevant methods. The experimental results confirm that
the proposed method outperforms those methods in terms
of better rain-free video and higher quality moving regions.
In the proposed method we did not consider heavy rain
explicitly. In our future works, we may consider different
types of rains e.g., heavy rains, light rains, etc. and make the
proposed method adaptive to provide a unified solution for
rain removal.
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