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ABSTRACT Missing data are unavoidable in the real-world application of unsupervised machine learning,
and their nonoptimal processing may decrease the quality of data-driven models. Imputation is a com-
mon remedy for missing values, but directly estimating expected distances have also emerged. Because
treatment of missing values is rarely considered in clustering related tasks and distance metrics have
a central role both in clustering and cluster validation, we developed a new toolbox that provides a
wide range of algorithms for data preprocessing, distance estimation, clustering, and cluster validation
in the presence of missing values. All these are core elements in any comprehensive cluster analysis
methodology. We describe the methodological background of the implemented algorithms and present
multiple illustrations of their use. The experiments include validating distance estimation methods against
selected reference methods and demonstrating the performance of internal cluster validation indices. The
experimental results demonstrate the general usability of the toolbox for the straightforward realization of
alternate data processing pipelines. Source code, data sets, results, and example macros are available on
GitHub. https://github.com/markoniem/nanclustering_toolbox

INDEX TERMS Missing values, distance estimation, clustering, cluster validation.

I. INTRODUCTION
In manymachine learning tasks, the volume of data is limited,
necessitating that all the available data values be utilized as
extensively as possible. The assumption that the data is com-
plete is often invalid in real-world applications [1]. A simple
strategy for avoiding the problem of missing data is to omit
incomplete observations. However, this is not an efficient
use of data because the important information may be lost.
A more sophisticated strategy is to impute missing values
as part of a data preprocessing step. Different imputation
mechanisms have been developed for various data types,
e.g., binary, ordinal, categorical, and string attributes [2]. The
nearest neighbors method is a common imputation approach
for numerical values, which uses an average (with or without
weights) of the k-nearest neighbors [2].
Estimating distances is an alternative way to address prob-

lems with missing values. A well-known distance estimation
method is the partial distance strategy (PDS) [3], which is
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also known as a general similarity measure [4]. This approach
involves similar limitations as the nearest neighbors method
so that its accuracy is highly correlated to the number of
missing values in data. In [5] and in [6], the expected distance
estimations were reported to be more accurate than the data
imputation or the PDS for selected real-world data sets. How-
ever, the performance of these methods has not been tested in
unsupervised machine learning tasks such as data clustering.
Clustering can benefit from accurate distance estimation with
missing values because both currently popular initialization
methods like K-means++ [7] and the computation of cluster
centroids are based on distances and not on observations
themselves. In [5] and in [6], data values were assumed to be
missing at random (MAR), where missingness may depend
on the available data. MAR is a less restrictive mechanism
than missing completely at random (MCAR) in which the
values are missing independently of any other data values.

Many unsupervised and supervised techniques, and their
combinations, have been used for data imputation. Imputation
of missing sensor spatially and/or temporally dependent data
using autoencoder and alternation projection onto convex sets
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based training was proposed in [8]. Shallow neural networks
(bothmulti-layered perceptron and radial basis function) with
genetic algorithms were put forward in [9]. Fuzzy clustering
and support vector regression, also with a genetic algorithm-
based parameter estimation, were hybridized in [10]. Deci-
sion trees and their ensembles were applied in [11]. More
recently, deep learning methods, especially deep autoen-
coders, have been proposed and tested for mainly spatio-
temporal data, e.g., in [12]–[18]. We do not address these
more complex techniques here because of laborious tuning
of an extensive number of metalevel parameters (e.g., what
network architecture, how many layers, what kind of layers,
which loss function, what training method, how much and
what kind of data needed, etc., see [13], [19]).

Cluster analysis is often considered as one of the core
techniques in descriptive data mining and knowledge dis-
covery [20], statistics [21], and pattern recognition [22].
It is a stepwise process with at least nine elements to be
chosen/carried out before achieving the results [23]–[25]. The
elements are related to data selection, data preprocessing,
selection of distance measure, choice of clustering criterion,
selection missing data strategy, validation of the created
algorithms, selection of the number of clusters, and finally,
interpretation of results.

Clustering divides data into disjoint groups (clusters)
where an ideal cluster is compact and isolated [24]. Partitional
clustering methods use prototype points to represent clusters
and, therefore, are also referred to as prototype-based clus-
tering methods [26]. The methods are aimed to minimize the
variance around the prototype points based on an error (score)
function, and they are also called variance minimization
techniques [27]. The iterative relocation procedure decreases
the values of the error function until final convergence is
reached [28], [29].

Cluster validation is a crucial part of cluster analysis,
in which a clustering solution’s quality (ideality) is being
assessed. Cluster validation indices (CVIs) provide quality
measures that indicate the number of clusters. The three main
types of indices are relative, external, and internal [30]. The
relative index compares multiple clustering results obtained
with different initial settings of the clustering algorithm,
whereas an external index utilizes additional information or
metadata that can explain the number or form of the clus-
ter structures. The external indices can be used, e.g., for
comparing different clustering methods using the metadata
of the actual cluster labels. However, internal cluster valida-
tion indices are probably the most commonly used estimates
because they utilize only the information obtainable from
data and clustering results. Numerous different clustering
methods, including internal cluster validation indices, have
been developed because of the high diversity of data [24]; for
example, challenging data sets may include noise, overlapped
clusters, multiple dimensions, and/or different densities [31].

This paper introduces a toolbox that encapsulates many
methods and algorithms to perform cluster analysis in the
presence of missing data. The versatile functionality allows a

toolbox user to generate many forms of experimental settings
and to realize various forms of new experiments to better
understand and improve unsupervised learning with missing
values.

The methodological bases in Sections II–V explain back-
ground theory related to distance computation with missing
values, data preprocessing, clustering, and cluster valida-
tion. Section VI gives an overview of the toolbox, including
descriptions of the sample data sets and essential toolbox
functions. Section VII describes experiments that are divided
into three parts. In the first part, the performance of distance
estimation algorithms is measured in the direct estimation
of pairwise distances in data sets with missing values. The
second part compares clustering methods and cluster valida-
tion indices on two-dimensional (2D) data sets with missing
values. In addition, the validation results, which are based
on a key point selection function [32], are given. The results
are validated against the reference results given in previously
published research papers. In the third part, experiments are
conducted on multidimensional data sets that were created by
a recently published data generator [33]. Finally, the content
and the toolbox performance are discussed and summarized
in Sections VIII–IX.

II. COMPUTATION OF DISTANCES WITH MISSING
VALUES
Let X = {xi}Ni=1, where xi ∈ Rn for all i, denote the
observational data set with N observations of size n.

A. AVAILABLE DATA STRATEGY
The available data strategy (ADS) (see [34]) restricts dis-
tance computations to available values via binary projection
vectors, {pi}Ni=1, pi ∈ {0, 1}n, which represent the sparsity
pattern of each observation:

(pk )i =

{
1, if (xk )i exists,
0, otherwise.

(1)

The ADS is used in K-spatialmedians clustering (see,
e.g. [35]), and it generalizes easily for various distance
measures. For instance, the Euclidean distance between
two incomplete n-dimensional column vectors x1 and x2 is
defined as

d(x1, x2) =

√√√√ n∑
i=1

((p1)i(x1)i − (p2)i(x2)i)2. (2)

B. PARTIAL DISTANCE STRATEGY
The PDS computes the sum of pairwise available vector val-
ues and scales the sum by the ratio of the original dimension
of the vectors and the number of available pairwise values [4].
The Euclidean distance reads then as

d(x1, x2) =

√√√√ n
n∗

n∑
i=1

((p1)i(x1)i − (p2)i(x2)i)2, (3)
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where n∗ is the number of pairwise known values. Similarly
to the ADS, the PDS can be generalized to other distance
measures, such as the City block distance (see [36]).

C. EXPECTED SQUARED EUCLIDEAN DISTANCE
The framework for estimating the expected distance between
two data vectors is presented in [5]. The proposed framework
was designed for estimating squared Euclidean distances in
the presence of missing data values and under the assump-
tion of multivariate normal distribution. The assumption of
multivariate normally distributed data is used for estimating
expected values to replace the missing values in the data.
The central limit theorem states that normal distribution can
be used to approximate nearly any continuous distribution
with a sufficiently large sample (see, e.g., [37]). The basic
elements of the framework are given in Appendix A, and a
more detailed description is given in [5].

Let us define the index sets of missingMi and available Ai
values of observation xi as specified by pi, i.e., Mi = {1 ≤
j ≤ n|(pi)j = 0} and Ai = {1 ≤ j ≤ n|(pi)j = 1}. Following
the assumption that missing values are generated from condi-
tional multivariate normal distribution, in which data values
are independent, and missing values depend on the available
values under theMAR assumption on the sparsity pattern, the
expectation of the squared distance between two data vectors
reads as:

E
[
||x1 − x2||2

]
=

n∑
i=1

(
((x′1)i − (x′2)i)

2
+ (σ ′1)

2
i + (σ ′2)

2
i

)
,

(x′k )i =

{
(xk )i, if i ∈ Ak ;
E[(xk )i|(xk )Ak ], if i ∈ Mk ;

(σ ′k )
2
i =

{
0, if i ∈ Ak ;
Var[(xk )i | (xk )Ak ], if i ∈ Mk .

(4)

With the complete derivation given in Appendix B, the
ith observation concerning the missing values is normally
distributed with the mean vector

(µ′i)Mi = (µ)Mi +6MiAi6
−1
AiAi ((xi)Ai − (µ)Ai ), (5)

and covariance matrix

6′MiMi
= 6MiMi −6MiAi6

−1
AiAi6AiMi . (6)

Estimating µ and 6 for incomplete data is not a simple
task, especially if the number of missing values is large
compared to the number of available ones. A method based
on available data is a fast alternative for estimating the
covariance matrix [38]. However, the iterative expectation
maximization (EM) algorithm with the maximum negative
log-likelihood convergence criterion is more commonly used,
e.g., in [5], [39], and [6].

1) EXPECTATION MAXIMIZATION
The EM is an iterative method to find the best estimates
for the parameters in a statistical model [40], [41]. It con-
sists of two alternating steps: expectation and maximization.

The expectation step estimates the missing values in the data
set. The maximization step optimizes the model parameters
to fit the data best. The steps are repeated until the final
convergence is reached.

The EM algorithm for estimating the mean vector µ and
the covariance matrix 6 of a data set with missing val-
ues under the assumption of the conditional multivariate
normal distribution is given in Algorithm 1. The algorithm
includes a bias matrix B with the same size as the covariance
matrix 6.

Algorithm 1 Expectation Maximization
Input: An incomplete data set X = {xi}Ni=1, xi ∈ Rn.
1. Compute mean vector µ of available values of the data set.
2. Impute missing values by µ to obtain the imputed matrix Ximp.
3. Recompute µ and compute covariance matrix6 by using imputed data.
4. Create a zero matrix B which size is equal to 6.
until final convergence do

for each xi for which Mi is nonempty do
5. Impute missing values by using the formula (5).
6. Use formula (6) and compute BMiMi = BMiMi + 6′MiMi

.
7. Recompute µ and update covariance as 6 = 6 + B/N .
8. Remove the imputed values from the X.
9. Restore zeros to the matrix B.

Output: Mean vector µ and covariance matrix 6.

The termination criterion for Algorithm 1 is based on
the negative log-likelihood function that for the multivariate
normal distribution N (µ, 6) reads as:

ln(L(µ, 6))

=

N∑
i=1

1
2
[ln(det(6))+ (xi − µ)T6−1(xi − µ)+ n ln(2π)]

=
1
2
N [ln(det(L)2)+ n ln(2π )]

+
1
2

N∑
i=1

(xi − µ)T6−1(xi − µ)

=
1
2
N [2

n∑
j=1

ln(Ljj)+ n ln(2π)]

+
1
2

N∑
i=1

(xi − µ)T6−1(xi − µ), (7)

where L is obtained from the Cholesky decomposition of the
covariance matrix6, i.e.,6 = LLT . Convergence is reached
when there is no significant change in the values of the log-
likelihood function between successive iterations.

2) FINAL ALGORITHM
The steps for computing ESDs for incomplete data are given
in Algorithm 2.

D. EXPECTED EUCLIDEAN DISTANCE
In [6], the work in [5] and [39] was continued by extending
the ESD distance for the expected Euclidean distance (EED).
It was shown that the EED distance could be modeled with a
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Algorithm 2 Expected Squared Euclidean Distances
Input: An incomplete data set {xi}Ni=1, xi ∈ Rn.
1. Compute the mean vector µ and covariance matrix 6 of incomplete

data set using Algorithm 1.
for each xi for which Mi is nonempty do

2. Compute the conditional mean (µi
′)Mi using formula (5) and the

conditional covariance matrix6′MiMi
using formula (6), respectively.

3. Impute missing values of xi by values from (µi
′)Mi to obtain x′i.

4. Impute conditional variance terms of σ ′2i from the diagonal of
6′MiMi

.

for each pair of xi and xj in {xi}Ni=1 and in {xj}Nj=i+1 do
5. Compute the expected distance by utilizing the formula (4).

Output: Pairwise squared Euclidean distances d ij of data vectors.

Nakagami distribution if the distances are assumed to follow
the Gamma distribution. The expected Nakagami distributed
values can then be obtained as follows:

E
[
(
n∑
i=1

((x1)i − (x2)i)2)
1
2

]
= E[z

1
2 ] =

0(m+ 1
2 )

0(m)

(�
m

) 1
2
,

m =
E[z]2

Var[z]
, � = E[z], (8)

where m and � are the shape and spread parameters of the
Nakagami distribution, respectively, and 0 is the Gamma
function.

Under the independence assumption (as in [5], [39]), the
variance can be expressed as

Var[z] = Var
[ n∑
i=1

((x1)i − (x2)i)2
]

=

n∑
i=1

Var[((x1)i − (x2)i)2]

=

n∑
i=1

E[((x1)i − (x2)i)4]− E[((x1)i − (x2)i)2]2

=

( n∑
i=1

E[(x1)4i + (x2)4i − 4(x1)3i (x2)i

− 4(x1)i(x2)3i + 6(x1)2i (x2)
2
i ]
)

−

n∑
i=1

E[((x1)i − (x2)i)2]2, (9)

where the expected values are obtainable using non-central
moments. Table 1 presents moments of the normal distri-
bution that can be used directly in the case of multivari-
ate Gaussian distribution. However, weighted moments are
needed if the data are assumed to follow Gaussian mixture
distribution (see [6] for more details).
The computation of the EED distances is based on the same
framework as in Algorithm 2. However, additional steps are
required which are given in Algorithm 3.

TABLE 1. Non-central moments of normal distribution.

Algorithm 3 Expected Euclidean Distances
Input: An incomplete data set {xi}Ni=1, xi ∈ Rn.
1. Utilize Algorithm 2 to obtain the spread parameter � for each pair of

data vectors.
for each pair of xi and xj in {xi}Ni=1 and in {xj}Nj=i+1 do

2. Compute Var(z) by using formula (9) and non-central moments
(E[xk ], E[x2k ], E[x

3
k ], E[x

4
k ]) given in Table 1.

3. Use formula (8) to obtain the shape parameter m and the final
distance dij.

Output: Pairwise Euclidean distances d ij of data vectors.

III. DATA PREPROCESSING
A. FEATURE SCALING
Feature scaling is a typical preprocessing step in data analy-
sis. Various data types are often measured in different units,
which may lead to data types with large scales dominating the
other data types in data-driven models. Various feature scal-
ing approaches have been proposed, but the most commonly
used approaches are the z-score and min-max normalization.

The z-score method equalizes the data type weights by
transforming each one to a zero mean and unit variance. It is
obtained by a linear transformation, subtracting the mean and
by dividing the standard deviation:

x ′ =
x − µ
σ
=

1
σ
x −

µ

σ
= αx − β, (10)

where µ and σ are the sample mean and standard deviation
of the available values in the data set, respectively, and x ′ is
the scaled value.

Min-max normalization scales data to the selected range.
The range may depend on the performed task, but [−1, 1] and
[0, 1] are probably the most common choices. The min-max
formula for an arbitrary range [a, b] can be written as follows:

x ′ = a+
(x −min(x))(b− a)
max(x)−min(x)

, (11)

where min and max are computed for the available values.

B. K-NEAREST NEIGHBORS IMPUTATION
The k-nearest neighbors (kNN) method is a well-known and
popular approach for imputing numerical values [2]. This
method can be implemented by finding the closest complete
observation for an incomplete observation and imputing the
missing values or taking an average of k closest observations,
of which some can be partially incomplete. If the missing
values of the data vector are not available in the k clos-
est observations, the k should be increased until imputation
succeeds.
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In the literature, there exist many variants of kNN imputa-
tion, e.g., complete-case kNNI (CCkNNI), where a data vec-
tor with missing values is imputed by using the average value
of a set of k nearest complete observations, or incomplete-
case kNNI (ICkNNI), where data vectors are selected from
the case library in which the eligible nearest neighbors share
the same complete values as xi and a missing value is avail-
able. In [42], it was suggested that up to k = 5 neighbors
should be considered. If there are not enough neighbors, the
missing value is imputed by the sample mean of all the avail-
able values for that data type. Even though nearest neighbors
imputation is a straightforward approach for dealing with
missing values, it can be inefficient when the number of
missing values is relatively high [5].

C. LOW-RANK MATRIX COMPLETION
A low-rank solution for matrix completion is a common
technique for data imputation. The low-rank matrix has a
decreased number of degrees of freedom and, therefore,
it makes the estimation problem of missing values practical to
solve [43]. The rank minimization problem can be addressed
by using convex relaxation techniques utilizing the nuclear-
norm [43], [44], which yields to the minimization of the
following optimization problem:

min
X̃
||p · x− p · x̃||22 + λ||X̃||∗, (12)

where X̃ is the completed data matrix which will be esti-
mated, the data vectors x and x̃ are flattened versions of the
data matrices X and X̃, respectively, and · denotes the dot
product. Moreover, the vector p is the flattened version of
the projection matrix defined in (1), λ is the regularization
parameter, and ||·||∗ denotes the nuclear norm. The optimiza-
tion problem in (12) can be solved iteratively by using a soft-
thresholding technique to obtain the updated data vector x̃.
The initial guess of x̃ is given by the zero vector. Then, in the
kth iteration, x̃ is updated as follows:

x̃k = x̃k−1 + (p · x− p · x̃k−1). (13)

After that, x̃k is reshaped to a matrix form X̃k , the singular
value decomposition is applied to the reshaped matrix, the
singular values are soft-thresholded to obtain the updated 6̂k .
The X̃k = U6̂kVT is flattened to obtain the final x̃k in the
kth iteration. The λ is reduced by a cooling algorithm such
that λ1 > λ2 > . . . > λ∞. The final result is obtained
when there is a sufficiently small relative change in the target
function ||p · x − p · x̃||2 or when λ reaches the predefined
tolerance.

D. TRANSFORMATION INTO SPHERICAL FORM
The prototype-based K-means and K-spatialmedians cluster-
ing methods are not intended to discover any shape clus-
ters because the used location estimates (mean and spatial
median) assume spherical symmetry. That is the difference
from kernel-based methods; see, e.g., [45]. Such assumption

is also inherent in the computation of Inter for cluster vali-
dation indices (see Table 2). However, the assumption that a
data set contains clusters with spherical shapes can be unre-
alistic, making the clustering and cluster validation problems
more challenging. In [32], a new approach for transforming
and normalizing an arbitrarily shaped subset of data to an
approximately spherical shape with a specified radius was
introduced. The method is based on the notation of chains
around high-density key points. The original method assumes
a 2D data space. Thus, multidimensional scaling (MDS) [46]
can be applied to project high-dimensional data sets
into the 2D.

1) DEFINITION OF KEY POINT
TheM points fromXwith relatively higher density and larger
density-based distances are associated with the key points
which can be determined by selectingM largest values based
on the following equation:

pi = ρiri,

ρi = (
4∑

k=1

d(xi, xi,k ))−1, ri = min
j:ρj>ρi

d(xi, xj), (14)

where ρ denotes the density of xi and xi,1 . . . xi,k are
k = 4 nearest neighbors of xi, the minimum distance from
xi to other points with a higher density is denoted as ri. The
method connects points in the data set using density-based
distance as the connection rule. Density-based connections
are created until the key points are visited. In [32], the number
of key pointsM was suggested to be selected as |

√
N |.

2) DEFINITION OF CHAIN
Points that are connected to a key point form a chain.Multiple
chains to one key point are allowed. Let us assume c chains.
Then the chain lengths can be defined as:

Tc =
nc−1∑
i=1

d(x(c)i , x
(c)
i+1), (15)

where nc is the total number of points in chain c. In data set
normalization, distances are transformed into a new one as
follows:

d∗(x(c)i , x
(c)
i+1) = d(x(c)i , x

(c)
i+1)/Tc. (16)

After normalization, the lengths of the longer chains are
shortened, whereas shorter chains are lengthened, i.e., longer
chains move closer to the key points, and shorter chains move
away from the key points. The normalized chains can be
optionally scaled to a fixed size.

IV. CLUSTERING
A. BASIC ALGORITHMS
Prototype-based clustering methods consist of two main
phases: selection of initial prototypes and iterative refine-
ment until final convergence is reached, i.e., the cluster par-
tition does not change (see Algorithm 4). In the classical
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K-means [47], MacQueen’s initialization phase is combined
with Lloyd’s search phase [48]. In general, the initialization
phase is based on the random selection of initial prototypes,
which most often causes the points to be selected from the
same dense region yielding a poor performance [48]. More-
over, due to the initial point selections, it is known that
the basic algorithm does not guarantee a unique solution to
the global minimum of the error function [24]. Finding the
global minimum is an NP-hard problem because there are
Stirling number of the second kind different partitions for N
observations intoK groups [49]. In practice, the commonway
to perform clustering is to repeat the algorithm with multiple
restarts and to use the smallest local clustering error as a
selection criterion for the final prototypes [50].

The mean of the cluster points is the statistical estimate
of the cluster prototype in K-means. The method assumes
that data are spherical Gaussian distributed with normally
distributed noise and equal variance in each cluster. The
median and the spatial median, the latter also referred to
as the Fermat-Weber or Weber point, are robust estimates
of location [51], whose spherical symmetric distributions
are uniform and Laplace distributions, respectively. The spa-
tial median is a multivariate generalization of the univariate
median. The median and the spatial median are robust proto-
types of a data distribution since they can tolerate up to 50%
of incorrect data values without being disturbed. The spatial
median is rotation invariant so that robustness improves as the
dimension of the continuous problem space grows [49].

Algorithm 4TheMain Phases of Prototype-Based Clustering
Input: Data set and the number of clusters K .
1. Select K observations as the initial prototypes.
until the partition does not change do
2. Assign each observation to the closest prototype.
3. Recompute the prototypes with the assigned observations.

Output: Partitions and prototypes corresponding K disjoint data subsets.

In the general case, the clustering error function can be writ-
ten as follows:

Jk =
∑
xi∈Ck

d(xi, ck )qp, J =
K∑
k=1

Jk , (17)

where d(·) is the distance computation strategy in the lqp space,
and {ck}Kk=1 is the set of cluster prototypes that minimizes
locally the error function (17) and partitions the data into
K disjoint subsets. Jk is the within-cluster error in cluster
Ck , and lp-norm to the q-th power is the distance mea-
sure corresponding to the different location estimates of the
error function (see [51], [52]). Specifically, the sample mean,
median, and spatial median are obtained by choosing (p =
q = 2), (p = q = 1), and (p = 2, q = 1), respectively.
The sample mean and the median are straightforward to com-
pute, whereas the spatial median requires minimization of
a non-smooth (i.e., nondifferentiable) optimization problem
(see [52]) that requires more complex iterative methods to
be computed [53]. For instance, the solution can be obtained

efficiently by using the successive over-relaxation (SOR)
method.

In the K-means++ initialization approach, the first pro-
totype is selected as the centroid of the data set. Then, the
following prototypes are selected iteratively fromX based on
the probability function obtained from previous prototype(s)
min d(xi, {c}K−1k=1 )/

∑
xi∈Ck

min d(xi, {c}K−1k=1 ). Thus, the initial

prototypes are very probably selected separately. The selec-
tion procedure can also be performed incrementally [54].
It means that previously obtained K − 1 cluster prototypes
are used as a fixed set of initial points where only one point
is sampled according to the K-means++ principle. In high-
dimensional problems, K-means++ may show deteriorating
behavior which can be compensated by using dimension
reduction techniques [33].

B. CLUSTERING BASED ON EXPECTED DISTANCES
Computing the expected distances rely on the assumption of
normally distributed data. The central limit theorem suggests
that the assumption is valid with many continuous data sets
with appropriate sample sizes [37], [55]. However, the sta-
tistical parameters of data distribution are usually unknown,
and missing values make estimating parameters more chal-
lenging. Usually, the EM algorithm can produce sufficiently
accurate estimators of the unknown parameters, making the
clustering task more approachable because the data charac-
teristics are better known.

A clustering algorithm based on estimated distances was
presented in [56]. The core steps of the method are shown
in Algorithm 5. The algorithm skeleton is identical to the
traditional clustering (see Algorithm 4) but consists of two
additional steps (steps 2 and 3) that utilize distance estima-
tion. Steps 4 and 5 are repeated with estimated distances
until final convergence is reached. We noticed in the previ-
ous study that, on average (over 100 repetitions), clustering
based on the distance estimation produced better initial proto-
types than the clustering based on the ADS. However, giving
the distance-estimated prototypes as the initial points to the
K-spatialmedians based on ADS produced even more accu-
rate solutions to the clustering tasks. Thus, step 6 was
included in the developed method in Algorithm 5.

V. CLUSTER VALIDATION INDICES
Many clustering algorithms require the number of clusters as
an input parameter. However, often this information is not
available, and deciding the number can be challenging, espe-
cially in the case of multidimensional data, which humans
cannot directly conceive. Even though there are many meth-
ods for illustrating multidimensional data, i.e., using different
multidimensional visualization techniques [57] or dimension
reduction techniques [58], [59], the data structure may not
be obvious. Cluster validity provides a way to validate the
quality of the clustering results by discovering the partition
that best fits the nature of the data. Thus, because of the high
diversity of data, cluster validation measures, e.g., CVIs, are
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Algorithm 5 Clustering Based on EED-ADS Distance
Computation
Input: Data set X with missing values and the number of clusters K .

1. Select the spatialmedian as the first prototype of the data set.
2. Iteratively select the initial prototypes by using

previously selected K − 1 prototypes and K-means++
initialization.

2. Compute the mean vector and covariance matrices of the data using
the EM method.

3. Compute the expected distances between the observations and
prototypes.

repeat
4. Assign individual observations to their closest prototypes.
5. Recompute the prototypes with the assigned observations.

until The final convergence
6. Repeat steps 4 and 5 without distance estimation.

Output: Partitions and prototypes corresponding K disjoint data subsets.

recommended, even essential, methods for determining the
final number of clusters [31].

A. INTERNAL CLUSTER VALIDATION INDICES
Internal cluster validation indices are commonly based on two
measures: 1) Compactness, also referred to as Intra, indicates
how close the observations are to each other within the same
cluster. A commonly used Intra is a clustering error itself,
e.g., in the Ray-Turi index. 2) Separability, also known
as Inter, indicates how distant a cluster is from the other
clusters. Typically, Inter is computed as the minimum ormax-
imum distance between all prototypes. Variability between
prototypes around the centroid of the data is also used by
many indices, e.g., in the Calinski-Harabasz index.
In general, the purpose of CVIs is to minimize Intra and to
maximize Inter, so that the argument minimum or maximum
of division indicates the number of clusters.

Table 2 specifies the Inters and Intras of the best inter-
nal cluster validation indices according to [56]. Indices are
presented in a general fashion for lqp -norm settings. Expla-
nation of abbreviations are given in Table 3. The whole data
prototype is denoted by m, whereas nk indicates the num-
ber of observations in the kth cluster. The special distance
computation strategies given in Section II, denoted by d(·),
are required if at least one data vector includes missing val-
ues. Note that theWB-index,Calinski-Harabasz, and
kCE-index include penalization terms for a high number
of clusters that were originally derived in the context of the
squared formulas. Therefore, l2p -norms were used for these
indices regardless of the clustering error criterion used. In the
Silhouette index, Intra is the average dissimilarity of xi to
all other points in the same cluster, and Inter is the minimum
average dissimilarity of xi to all points in a different cluster:

Intra(xi) =
1

nk − 1

∑
xj∈Ck

d(xi, xj),

Inter(xi) = min
k 6=k ′

1
nk ′

∑
xj∈Ck′

d(xi, xj), (18)

where xi belongs to cluster Ck .

TABLE 2. Internal cluster validation indices in general fashion.

TABLE 3. Explanations of abbreviations.

B. EXTERNAL CLUSTER VALIDATION INDICES
External cluster validation indices can validate the quality
of the clustering result if the actual clustering labels are
known. The simple external index is Accuracy-index
(ACC) which computes the quotient of the correctly
predicted data labels and the total number of the
labels [60]. The normalized mutual information
index (NMI) origins from information theory. Themutual
information explains the reduction in the entropy between the
real and the predicted cluster labels [61]. The normalization
is used to scale the result to the range of [0, 1]. Many variants
exist to normalize the mutual information, e.g., min, max,
and square-root normalizations [61]. However, the arithmetic
method is often used, which divides the mutual information
by the average value of entropy terms as follows:

NMI =
I (Lreal,Lpred )

(H (Lreal)+ H (Lpred ))/2
, (19)

where I (·, ·) denotes the mutual information between the real
and predicted clusters and H (·) denotes the entropy function.
The adjusted Rand index (ARI) measures similar-
ity between two clusterings of the same data using the per-
mutation model [61]. The equation can be written as:

ARI =
6ij(

nij
2 )− [6i(

ai
2 )6j(

bj
2
)]/( n2 )

1
2 [6i(

ai
2 )+6j(

bj
2
)]− [6i(

ai
2 )6j(

bj
2
)]/( n2 )

, (20)
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where nij is an intersection table between the real and pre-
dicted cluster labels, the row and column sums of the inter-
section table are denoted by ai and bj, respectively.

VI. OVERVIEW OF THE TOOLBOX
The toolbox was implemented by using MATLAB (R2018b,
64-bit), and it is freely available with the MIT License on
GitHub online1. The toolbox contains benchmark_data,
toolbox, test_macro, and results folders.

Eight real-world classification data sets were selected from
the University of California at Irvine (UCI)2 Machine Learn-
ing Repository [62]. Seven were used in the first part of
the experiments, and three were used in the second part.
Further, eight synthetic data sets, including the four S sets3

(15 centers and 5000 observations in each set), the Sim5D2
set4 (5 centers and 2970 observations), the Sim2D2 set4

(2 centers and 2000 observations), the O200 set4 (5 cen-
ters and 200 observations), and the O2000 set4 (5 cen-
ters and 2000 observations) were selected from a previous
study [56] for the second part of the experiments. These
synthetic data sets are two-dimensional. In addition, in total,
12 synthetic multidimensional data sets (10D, 50D, 100D)
with 15 centers and 6000 observations in each set were cre-
ated with the data set generator5 [33] for the third part.
The toolbox includes routines for handling missing values,

data preprocessing, clustering, and validating clusters. All the
developed methods generalize to missing values in the data.
The descriptions of the most vital MATLAB functions are
given in Table 4. Notice that more detailed descriptions of
functions are available using the help command in MAT-
LAB (see the next section for the use case examples). Fur-
ther, the help command shows the function calls, input and
output parameters, and default values of the input parameters
for each toolbox function. The toolbox supports computation
strategies based on available data (ADS), partial distance
(PDS), and expected distances (ESD, EED) that are used
by clustering methods, cluster validation indices, and data
preprocessing methods. In total, ten well-performing internal
cluster validation indices depicted in Section V are supported.
Further, as depicted in Sections II–III, the preprocessing
functionality includes routines for data imputation, distance
computation with a selected distance strategy, selecting key
points, and transforming data sets into spherical forms.

A. GENERAL USE OF THE TOOLBOX
General use of the toolbox is demonstrated in the
toolboxdemo macro (see the next section). The correct
functionalities of the toolbox functions can be evaluated
with test macros divided into three test case folders. The
first test case folder includes the Main macro that performs
comparisons of techniques for handling missing values. The

1https://github.com/markoniem/nanclustering_toolbox
2https://archive.ics.uci.edu/ml/index.php
3http://cs.uef.fi/sipu/datasets/
4http://users.jyu.fi/ mapeniem/CVI/Data/
5https://github.com/jookriha/M_Spheres_Dataset_Generator

macro selects the parameters used from the params file. The
cluster validation process can be divided into three tasks in
the second test case folder: data preparation, clustering, and
cluster validation. The Main macro pipelines these tasks to
one process and outputs an Excel file of the cluster validation
results. Further, the toolbox offers missing values generation,
clustering, and cluster validation as separate processes imple-
mented in the generatemissdata, clusterdata, and
validateclustdata macros, respectively. An option-
ally visualizeresults macro can be used to visualize
the final results of the clustering and cluster validation.

The third test case folder includes the same Main macro
functionalities as given in the second test case folder. How-
ever, the mechanism for generating missing values was mod-
ified to restore 0.5% of the original observations. It was
required because the initialization of clustering uses the com-
plete observations, and removing data values completely at
random from high-dimensional data causes all observations
to contain missing values.

TABLE 4. Core functions.

B. EXAMPLES OF BASIC USE
The basic use of the toolbox is given in the toolboxdemo
file. It includes function calls for data preprocessing, clus-
tering, and cluster validation. In the first example, 10% of
missing values are generated for the input data. The result
is min-max scaled to a range of [-1, 1], and the k-nearest
neighbors imputation with five neighbors is performed. Then,
the dimensionality of the imputed data set is reduced to 2D
and transformed into a spherical form (Section III-D). Finally,
the transformed data are visualized on a scatter plot.

load fisheriris;
X = meas;
addpath(‘../../../toolbox/preprocess’);
Xm = genmissdata(X, 0.1);
Xnorm = normalizedata(Xm, ‘min-max’, [−1, 1]);
Ximp = knnimpute(Xnorm, 5);
Xmapped = datasetmap(Ximp);
scatter_data(Xmapped);

In the second example, clustering is performed based
on available data in distance computation, i.e., using a
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K-spatialmedians clustering method. The toolbox also
supports clustering algorithms based on partial (kcen-
troids_partial) and expected (kcentroids_expected) distances.
The clustered data set, the number of clusters, the number of
replicates, the distance metric, the initialization criterion, and
the initial values of the centroids are given as input parameters
for the clustering function. The output parameters are cluster
labels for each observation, the cluster centroids, and the
within-cluster sums of points-to-centroid distances:

addpath(‘../../../toolbox/kcentroids’);
[ L, C, sumd] = kcentroids(Xnorm, 5, 100, ‘euc’,
‘kmeans++’, [ ] );

In the final example, clustering is performed itera-
tively, with K ranging from 2 to 10. The default val-
ues of the parameters are used in clustering (see help
iterative_kcentroids). The centroids and labels are
used as input parameters for the cluster validation function.
There are two ways to specify the indices (see the exam-
ple). Finally, the results of the cluster validation indices are
visualized:

addpath(‘../../../toolbox/cluster_indices’);
% help iterative_kcentroids;
[ centers, labels] = iterative_kcentroids(Xnorm, 10);
% Select the cluster validation indices. The ‘dist’ parameter
% defines the selected distance metric used by inidices.
dist = ‘euc’;
indices = {@CalinskiHarabasz; @DaviesBouldin; @kCE;};
% An optional way to define indices. This overrides the ‘dist’ option.
indices = [@CalinskiHarabasz, ‘sqe’; @DaviesBouldin, ‘euc’; @kCE,
‘sqe’; ] ;
indices_values = cluster_validation(Xnorm, centers, labels, dist,
indices);
%
% In default, indices use available data strategy based computation.
% However, expected distances or partial distances are supported as well.
% indices_values =
% cluster_validation(Xnorm, centers, labels, dist, indices, ‘exp’);
%
plot_indices(indices, indices_values);

VII. EXPERIMENTAL RESULTS
Experiments were divided into three parts which are dis-
cussed in the following sections.

A. VALIDATION OF DISTANCE ESTIMATION METHODS
In the first case, the experimental settings and the reference
results were obtained from [5]. The real-world data sets were
selected from the UCI repository. The experiments consisted
of the z-score scaling of the data to the zero mean and unit
variance. Then, the fixed probabilities (5, 15, 30, and 60%)
of the data values were removed completely at random from
each data set. The estimated distances were compared to the
real distances, which were computed beforehand. The root
mean square error (RMSE) between the real distances and
the estimated distances was used. The RMSE included only
the cases where estimations were needed, i.e., distances over
complete observations were omitted. Further, in the cases

of empty data vectors, the average distances over the data
samples were used in error computing. The mean values
and standard deviations of the results were recorded utilizing
measurements over 250 repetitions.

We validated the functionalities of the implemented dis-
tance estimation algorithms against the reference methods
given in [5]. An extension of the reference paper was the
self-made implementation of the EM algorithm so that the
ecmnmle function was not required (available only in MAT-
LAB’s commercial Financial Toolbox). Further, in addition to
the ESD, PDS, and ICkNNI (k = 5) methods, the EED, ADS,
kNNI (k = 5), and iterative soft-thresholding methods were
added to the comparisons. Table 5 shows the results, which
are in line with the reference results in the six cases over seven
data sets. The exception is the wine data set, in which all
distance computation mechanisms produced different results.
In [5], a Monte Carlo simulation was used to remove data val-
ues in each repetition, whereas in our experiments, data val-
ues were removed completely at random. That may explain
the differences in the results. In general, the results indicate
that the EED is the best-performing algorithm. However,
the ESD results are only slightly worse, and the method is
computationally less expensive. Thus, the ESD method is
highly recommended for computing pairwise distances.

B. PERFORMANCE EVALUATION OF CLUSTERING AND
CLUSTER VALIDATION
In the second part, the data clustering and cluster validation
indices methods were evaluated. The initial settings were
selected from [56]. These settings included removing data
values completely at random from data sets (see the toolbox
overview section for detailed descriptions of the data sets),
min-max scaling that results in a range of [−1, 1], repeat-
ing the K-spatialmedians clustering with 100 replicates, and
selecting the lowest local minima as the best clustering par-
tition. The prototypes were initialized incrementally, ben-
efiting the previous prototypes (see the last paragraph in
Section IV-A). In [56], the clustering method based on
the expected distances and giving the obtained prototypes
as inputs in the K-spatialmedians with ADS algorithm was
suggested. The clustering and cluster validation indices were
revealed to be slightly more accurate based on the two-stage
clustering approach. Thus, the same procedure was repeated
in this study among the K-spatialmedians clustering.

The results given in [56] were reproduced to validate
the functionality of the cluster validation. Note that the
results/params folder includes the parameter files used
in different experiments related to cluster validation. The
experiments showed that the best cluster validation results
are obtained using K-spatialmedians clustering based on
EED-ADS distance estimation. The new approach improved
the performance, especially when compared to the results,
which were available using the real centers of the synthetic
data sets as the initial points to K-spatialmedians based on the
ADS (see results folder). The best-performing index was
Calinski-Harabasz (CH) that always recommended
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TABLE 5. The average RMSEs and standard deviations (over 250 repetitions) of distance computation algorithms in the direct estimation of pairwise
distances with data sets consisting (5, 15, 30, and 60%) of missing values. The best results for each test set are underlined, and the results that are not
statistically significantly different (two-tailed paired t-test, α = 0.01) are in bold.

the correct numbers of clusters even if the data sets and
degrees of missing values varied. The other well-performing
indices were kCE-index (KCE), Silhouette, and
Ray-Turi.

Three external cluster validation indices were selected
to measure the quality of the K-spatialmedians cluster-
ing results based on ADS and EED-ADS distance estima-
tions strategies. The selected indices were: Accuracy (ACC),
adjusted Rand index (ARI), and normalized mutual informa-
tion (NMI). Table 6 shows the comparison results. Clearly, the
EED-ADS-based estimation produces better solutions for the
synthetic data sets. Especially, the better results were obtained
with theS2 data set andwith the challengingS4 andSim5D2
data sets. These results are in line with the results obtained by
the internal indices, which especially recommended the better
solutions with the EED-ADS estimation for the Sim5D2 data
set.

We applied the expected distance estimation to the
actual cluster validation indices. It appeared that only
Silhouette, Wemmert-Gançarski (WG), and
Davies-Bouldin (DB) benefited from the distance esti-
mation, and the other indices decreased the performance
for finding the correct number of clusters in the data sets.
Compared to the other indices, which compute the pair-
wise distances between observations and complete centroids,
Silhouette computes the pairwise distances between
observations, which may be incomplete (see eq. (18)). Thus,

it was expected that Silhouette performed better using
the expected distances.

Key point selection (presented in Section III-D1) was used
in the cluster validation. The number of key points can be
fixed to ||

√
N ||, as recommended in [32]. However, we pro-

vided two modified versions of the original algorithm based
on key point pruning, i.e., the algorithms started from the
given maximum for the key points and then removed irrel-
evant points one by one. This was performed iteratively until
the value of K of the chosen number of clusters was reached.
The selected points were then used in the initialization of the
selected clustering algorithm in each iteration. The experi-
ments were performed for 2D data sets. For this purpose,
Ecoli, Iris, and Seeds real-world data were transformed
to 2D using multidimensional scaling. The selection assumed
that the data sets were complete, therefore, the ICkNN
(k = 2) imputation strategy was applied to the data sets with
missing values. The figures for the key point selection result
are given in results/key_point_selection/img
folder in toolbox. The results for the cluster validation indices
are given in Table 7. The reference results for the synthetic
data sets were obtained from [56]. On average, the validation
results for the key point selection were almost the same as the
reference results, which were based on available data strategy
and replicated clustering. The most challenging synthetic
data set was Sim5D2. None of the indices was able to get
all correct recommendations with the different degrees of
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TABLE 6. The quality of clustering results determined with external cluster validation indices. The K-spatialmedians clusterings with available data
strategy (ADS) and using both expected distance and available data computations (EED-ADS) were compared. The highest scores are bolded only if they
differ between the two clustering methods.

missing values. The high-density clusters in Sim5D2 caused
many incorrect validation results. The sparse clusters were
connected to higher-density ones after clustering, and there-
fore, many indices supported three as the correct number.
Especially, the sparse clusters almost disappeared based on
the ICkNN imputed data with 20% of missing values (see
images from results folder). The validation results with
real-world data were improved using the key point selection
with all data sets. It appeared that CH, KCE, and WB indices
recommended a very high number of clusters for Ecoli and
Iris data sets without the key point selection.

C. CLUSTER VALIDATION WITH MULTIDIMENSIONAL DATA
In the third part of the experiments, the cluster validation
indices were applied to multidimensional data sets that were
created by the data set generator presented in [33]. The gen-
erator draws a random point on the M-dimensional sphere
centered on c with radius d . The distance between centers is
defined as dc = ||ci − cj||, ci, cj ∈ C , where i 6= j, and C is
a set of centers. The radius d is uniformly selected from the
range of (0, 1] for each data point. It means the clusters do not
overlap in the multidimensional space when the distance of
the centers is dc ≥ 2, and the cluster overlap is approximately
50% if the distance is dc = 1.
Table 8 shows the results of the cluster validation indices

with the predefined number of missing values (0, 5, 10, and
20%) and different degrees of cluster overlap (dc = [0.9, 0.8,
0.7, 0.6]). The best performing index was WG which recom-
mended the correct number of clusters in almost all test cases
(45/48 correct recommendations). Interestingly, the CH, KCE,
and WB-index, which included the squared penalization
term, always recommended the incorrect number of clusters.
We also tested the non-squared penalizations but were not
able to improve the results. The KCE uses only Intra which
explains that the better separation in the multidimensional
space depends on the quality of Inter. It supports the find-
ing given in [33] that the difference between the clustering

errors of good and bad clustering results in high-dimensional
spaces is small. The curse of dimensionality can explain
the findings, which causes relative differences between the
distances to vanish in high dimensional spaces [63]. The
other well-performing indices were GD, RT, and DB∗, which
recommended 37, 33, and 30 correct solutions, respectively.
The highest overlapping clusters (dc = 0.6) were chal-
lenging for the indices because only WG (11/12 times), RT
(3/12 times), andGD (3/12 times) were able to find the correct
numbers.

The experiments were also conducted with 2D-scaled
M-Sphere data sets. However, the performance of all
indices was poor in 2D data space (only a few correct recom-
mendations), and therefore, these results were not reported.
The generated clusters were compact and isolated in the high-
dimensional space, which explains the far better validation
results with these data sets in their original dimensions [63].
Further, the dimension reduction leads to a loss of infor-
mation which also supports the findings. Nevertheless, the
developed key point selection algorithms with ICkNN
(k = 2) imputed data possess multidimensional functionality.
The results of cluster validation indices with the key point
selection and multidimensional M-Sphere data sets are
given in the results folder in the toolbox. The indices can
be concluded to perform better when the key point selection
procedure was used to initialize the K-spatialmedians cluster-
ing with 0%, 5%, and 10% of missing values in the data sets.
However, a decreased performance was observed with 20%
of missing values in data.

VIII. DISCUSSION
The results indicate that the ESD distance estimation could
be a better choice than EED in the general case due to the
lower computational complexity. The overall best clustering
models with synthetic 2D data sets seem to be obtained using
expected distances in clustering and giving the prototypes
as inputs to the K-spatialmedians originally based on the
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TABLE 7. The number of clusters determined with internal cluster validation indices based on key point selection (every second row). The data sets
consisted of predefined numbers of missing values, and experiments were performed using the K-spatialmedians clustering algorithm. Reference results
were obtained using K-spatialmedians clustering with available data strategy.

available data distance strategy. In the case of multidimen-
sional data, we noticed that the quality of the clustering mod-
els highly depends on the form of the Inter term. In addition,
significantly better validation results were achieved when
the data sets resided in their original dimensions than in 2D
presentation. The WG index clearly overperformed the other
indices on the multidimensional sets.

The experiments to demonstrate the performance of the
cluster validation indices were performed both on synthetic
and real-world data sets. One challenge for testing indices
with real-world data sets is that the correct number of clusters
is not obvious. For instance, a clustering model may produce
a useful presentation about the inherent structure of a data set
while it does not necessarily agree with the given class distri-
bution for the same data. In data mining, the goal of cluster

analysis is, however, to discover new knowledge instead of
training a prediction model in a supervised manner. In this
scenario, one approach for validating a cluster model and
estimating the number of clusters is to apply multiple indices
that have previously performed well on several data sets.

We provided two modified versions of the original key
point selection algorithm based on key point pruning. The
developed algorithms included a mechanism for removing
irrelevant key points. The algorithms resulted in good solu-
tions for most of the data sets with a varying portion of
missing values. However, there is still room for improvement
in the heuristics to identify appropriate locations of the key
points for diverse data sets. The development of clustering
heuristics is not a trivial task because the notion of a cluster
itself can be weakly defined [64]. It is also good to remember
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TABLE 8. The number of clusters determined with internal cluster validation indices using K-spatialmedians clustering. The data sets consisted of
predefined number of missing values, and different degrees of cluster overlap.

that clustering is often in the eye of the beholder [65]. Before
a clustering algorithm is applied to the data, one may also
want to determine whether the data even has a clustering
tendency [66]. The most central properties of clusters are
density, variance, dimension, shape, and separation [67]. Fur-
ther, what type of clustering model is the most useful always
depends on the target application.

IX. CONCLUSION
Even though the basic idea behind cluster analysis is simple,
the process presumes many decisions and choices with mul-
tiple options in different parts of the analysis. This study pro-
posed a toolbox that enables researchers and practitioners to
achieve reliable and consistent clustering results regardless of
missing values in their data. The priorities of the present work
were on data preprocessing, clustering, and cluster validation.

The toolbox supports missing values and enables its user to
build automated data clustering pipelines from preprocessing
to cluster analysis and model validation. The validity and
performance of the algorithms were demonstrated using mul-
tiple test cases and several data sets. One should note that
the aim of the presented experiments was not to perform a
systematic method comparison since most of the underlying
development work has already been accomplished in the
previous studies cited in this paper.

We remind that some of the implemented functions
can also be useful in other machine learning tasks. For
instance, the distance computation methods for missing
data cases provided in the preprocessing folder are readily
applicable in supervised learning with the distance-based
methods [68], [69].

The functionality of the toolbox was verified against the
reference results from the previous publications. In the study,
the two expected distances measuring metrics’ performance
were thoroughly demonstrated in handling missing values.
Further, a recently published key point selection mechanism,
which associates the data points with relatively higher den-
sity and larger density-based distances to the so-called key
points, was applied to improve the cluster validation process.
The cluster validation was experimented with challenging
multidimensional data sets with various cluster overlap and
numbers of missing values.

Even though the key point selection strategy seems to
improve the performance of many cluster validation indices,
further investigations are recommended, especially related
to the key point selection procedure and the initialization
of clustering algorithms. The initialization is an important
part of the clustering process, and several studies are already
available on the topic [33], [70]–[72]. The purpose of this
toolbox is to facilitate and promote this research further. The
UCI Repository provides a multitude of data sets, of which
some are particularly proposed for clustering experiments.
This toolbox enhances the testing of its methods with a wider
range of sets.

APPENDIX A
EXPECTED SQUARED EUCLIDEAN DISTANCE
Let us assume the data are missing at random (MAR),
i.e., missingness may depend on the value of available data:

P(M |xavail, xmiss) = P(M |xavail). (21)

364 VOLUME 10, 2022



M. Niemelä et al.: Toolbox for Distance Estimation and Cluster Validation on Data With Missing Values

The expected squared Euclidean distance between two data
vectors can be partitioned into four parts depending on the
missing and available values of each data vector:

E
[
||xi − xj||2

]
=

∑
l∈Ai∩Aj

((xi)l − (xj)l)2 +
∑

l∈Ai∩Mj

E[((xi)l − (Xj)l)2]

+

∑
l∈Mi∩Aj

E[((Xi)l − (xj)l)2]

+

∑
l∈Mi∩Mj

E[((Xi)l − (Xj)l)2], (22)

where Ai and Aj denote the available values of data vectors xi
and xj, respectively, andMi andMj denote the missing values
of the vectors. The first term (l ∈ Ai ∩ Aj) represents pairwise
known values of both vectors, and they can be computed
directly. The rest of the sum contains terms where at least one
part contains only missing values. The missing value can be
replacedwith a random value, i.e., (xi)l is denoted by (Xi)l for
every l ∈ Mi. Thus, the equation can be expanded as follows:

E
[
||xi − xj||2

]
=

∑
l∈Ai∩Aj

(
(xi)l − (xj)l

)2
+

∑
l∈Ai∩Mj

(
((xi)l − E[(Xj)l])2 + Var[(Xj)l]

)
+

∑
l∈Mi∩Aj

(
(E[(Xi)l]− (xj)l)2 + Var[(Xi)l]

)
+

∑
l∈Mi∩Mj

(
(E[(Xi)l]− E[(Xj)l])2

+Var[(Xi)l]+ Var[(Xj)l]
)
. (23)

In more detail, the third summation (l ∈ Mi ∩ Mj) can be
written as:

E[((Xi)l − (Xj)l)2]

= E[((Xi)l)2 − 2((Xi)l)((Xj)l)+ ((Xj)l)2]

= E[((Xi)l)2]− 2E[((Xi)l)]E[((Xj)l)]+ E[((Xj)l)2]

+E[((Xi)l)]2 − E[((Xi)l)]2 + E[((Xj)l)]2 − E[((Xj)l)]2

= (E[((Xi)l)]− E[((Xj)l)])2 + E[E[(Xi)2l ]− (Xi)2l ]

+E[E[(Xj)2l ]− (Xj)2l ]

= (E[((Xi)l)]− E[((Xj)l)])2 + Var((Xi)l)+ Var((Xj)l).

(24)

Thus, it is sufficient to compute the expected value and
variance of each random value separately to obtain the final
distance.

APPENDIX B
CONDITIONAL MEAN AND COVARIANCE
Let us assume multivariate normally distributed data which

are partitioned as x =
[
x1
x2

]
and define a linear combination

x = x1 + Ax2, where A = −6126
−1
22 . Now, we notice the

following equality:

Cov[x, x2] = Cov[x1, x2]+ Cov[Ax2, x2]

= 612 + AVar[x2]

= 612 −6126
−1
22 622

= 0.

Thus, x and x2 are uncorrelated. In addition, they are jointly
normally distributed, and therefore, independent. Following
the initial assumptions, the conditional mean of x1 given x2
is obtained as follows:

E[x1|x2] = E[x− Ax2|x2]

= E[x|x2]− E[Ax2|x2]

= E[x]− Ax2
= µ1 + A(µ2 − x2)

= µ1 +6126
−1
22 (x2 − µ2).

Further, we find out the following equality:

Var[x1|x2] = Var[x− Ax2|x2]

= Var[x|x2]+ Var[−Ax2|x2]

+Cov[x,−Ax2]+ Cov[−Ax2, x]

= Var[x|x2]+ AVar[x2|x2]AT

−Cov[x, x2]AT
− ACov[x2, x]

= Var[x].

Therefore, the conditional variance is defined as:

Var[x1|x2] = Var[x1 + Ax2]

= Var[x1]+ AVar[x2]AT

+Cov[x1, x2]AT
+ ACov[x2, x1]

= 611 +6126
−1
22 6226

−1
22 621

−6126
−1
22 621 −6126

−1
22 621

= 611 +6126
−1
22 621 − 26126

−1
22 621

= 611 −6126
−1
22 621.

Note that the basic rules of matrix algebra are given in [73].
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