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ABSTRACT Prediction of building energy consumption plays an important role in energy conservation,
management, and planning. Continuously improving and enhancing the performance of forecasting models
is the key to ensuring the performance sustainability of energy systems. In this connection, the current
paper presented a new improved hybrid model of machine learning application for forecasting the cooling
load (CL) and the heating load (HL) of residential buildings after studying and analyzing various types
of CL and HL forecasting models. The proposed hybrid model, called group support vector regression
(GSVR), is a combination of group method of data handling (GMDH) and support vector regression (SVR)
models. To forecast CL and HL, this study also made use of base methods such as back-propagation
neural network (BPNN), elastic-net regression (ENR), general regression neural network (GRNN), k-nearest
neighbors (kNN), partial least squares regression (PLSR), GMDH, and SVR. The technical parameters of
the building were utilized as input variables of the forecasting models, and the CL and HL were adopted
as the output variables of each network. All models were saved in the form of black box after training
and initial testing. Finally, comparative analysis was performed to assess the predictive performance of the
suggested model and the well-known basic models. Based on the results, the proposed hybrid method with
high correlation coefficient (R) (e.g. R=99.92% for CL forecasting and R=99.99% for HL forecasting) and
minimal statistical error values provided the most optimal prediction performance.

INDEX TERMS Heating load (HL), cooling load (CL), forecasting, machine learning, artificial neural
network (ANN), regression.

ABBREVIATIONS
HVAC Heating ventilation and air conditioning.
EBP Performance of buildings.
HL Heating load.
CL Cooling load.
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WSHP Water source heat pump.
GSVR Group support vector regression.
GMDH Group method of data handling.
SVR Support vector regression.
BPNN Back propagation neural network.
GPR Gaussian process regression.
MPMR Minimax probability machine regression.
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MLR Multiple linear regression.
ELN Elastic net.
RF Random forests.
XGB Extreme gradient boosting trees.
RNN Recurrent neural networks.
GRU Gated recurrent units.
LSTM Long short-term memory.
ENR Elastic-net regression.
GRNN General regression neural network.
kNN k-nearest neighbor.
PLSR Partial least squares regression.
ELM Extreme learning machine.
SVM Support vector machine.
DT Decision tree.
MILP Mixed-integer linear program.
OSELM Online sequential extreme learning

machine.
MARS Multivariate adaptive regression splines.
ANN Artificial neural network.
LS-SVM Least square support vector machine.
DNN Deep neural network.
FFNN Feed forward neural network.
RBFNN Radial basis function neural network.
MLP Multilayer perceptron.
ANFIS Adaptive neuro-fuzzy interference

system.
WDSVR Wavelet decomposition support vector

regression.
PCA Principal component analysis.
KPCA Kernel principal component analysis.
ARX Autoregressive with exogenous.
MNR Multiple nonlinear regression.
PENN Probabilistic entropy-based neural.
LSVM Least square support vector machine.
GBM Gradient boosted machine.
NN Neural network.
SLFF-ANN Single layered feed-forward artificial

neural network.
CART Classification and regression tree.
CHAID Chi-squared automatic interaction

detector.
GLR General linear regression.
AR Auto regressive.
GA-SVR Genetic algorithm support vector

regression.
GA-WD-SVR Genetic algorithm wavelet decomposi-

tion support vector regression.
EDL Extreme deep learning.
LR Linear regression.
ETR Extra tree regressor.
RC Resistance Capacitance.
GBDT Gradient Boosted Decision Tree.
XGBoost Extreme Gradient Boosting.
TB Tree bagger.
BoostedT Boosted tree.

BaggedT Bagged tree.
VAF Variance accounted for.
CV Coefficient of variation.
R Correlation coefficient.
R2 Accuracy.
MSE Mean square error.
RMSE Root mean square error.
MAE Mean absolute error.
MAPE Mean absolute percentage error.
MRE Mean relative error.
APNN Multi-layer hybrid.

I. INTRODUCTION
Today, the need for energy has increased in many folds,
and the significant energy consumption worldwide is mainly
related to residential and commercial sectors. Therefore,
managing industries such as transportation and construction
and saving energy can be challenging tasks [1], [2]. Recent
research has indicated that residential buildings have a signif-
icant share of energy consumption because of the increased
population [3], [4]. It is highly necessary to have complete
information concerning the performance of buildings in order
to manage and optimize their energy consumption. Initially,
this requires identifying the energy sources and end-uses
of the building [1]. District heating supply, electricity, and
natural gas are the important energy resources in a build-
ing; however, the main end-use applications include heating
ventilation and air conditioning (HVAC), lighting, elevators,
domestic hot water, and kitchen equipment. Of note, among
the aforementioned energy resources and major end-uses
of buildings, HVAC operation scheduling and indoor and
outdoor conditions are two effective factors in building per-
formance assessment [5], [6]. Considered as a fundamen-
tal infrastructure in a building, HVAC plays a major role
by either adding or removing the cooling load (CL) and
heating load (HL) to/from the indoor climate of residential
buildings. A major concern is that these systems consume
approximately 40% of the total energy, particularly in office
buildings [7], [8]. Nonetheless, very few fundamental solu-
tions have been developed to improve the performance and
management of HVAC systems. Due to the significant impact
of meteorological factors on HL and CL, the performance of
HVAC systems cannot be adapted to external climate change;
on the other hand, improper performance of these systems can
augment the energy consumption and reduce convenience in
terms of cooling and heating [9], [10]. Improving the energy
efficiency of buildings through sustainable construction man-
agement in urban environments and accurate dynamic load
forecasting can be key steps to ameliorating the performance
of HVAC systems and saving energy in residential build-
ings [11], [12].

Improper design and structure of buildings lead to the
overuse of these technologies, high energy consumption, and
an increase in the emission of carbon dioxide by about 40 %.
Accordingly, widespread concerns regarding energy loss and
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its negative impacts on the environment havemade the energy
performance of buildings (EPB) the subject of more recent
research around the globe [13]–[15]. Designing energy-
efficient buildings with enhanced energy conservation prop-
erties are among the most important approaches to energy
management in order to decrease energy demand and save
energy. This can be achieved by initial forecasts of HL andCL
in residential buildings. To forecast the required cooling and
heating capacity, construction designers need information
concerning building specifications and weather conditions
in the area [16], [17]. Temperature, solar radiation, wind
speed, humidity, and pressure are among the most influential
climatic factors in forecasting the CL and HL of buildings.
When considering the CL and HL of a building, the following
should be taken into account: the relative compactness of
buildings, the roof size, the wall surface, the glazing area,
height of the roof, the number of walls, and area [18], [19].

Currently, building energy simulation tools are widely uti-
lized in various fields to facilitate an efficient design, optimal
performance of energy-efficient buildings, and comparison of
buildings with identical scales, where the effect of a single
modified parameter is observed over a range of values. The
simulation results regarding the design and comparison in
some work have often been able to accurately represent the
actual measurements [20], [21].

Generally, using building energy simulation software can
be a good solution for analyzing the impact of building design
indicators; however, this method is time-consuming and
requires expert users to perform the simulations, and some-
times there is inconsistency in the accuracy of the estimated
results in various building simulation software packages [20].
Hence, in some studies, modern methods such as statistical
analysis, artificial neural networks, and machine learning are
implemented to forecast the CL and HL of buildings and ana-
lyze the effect of various building parameters [15], [16]. The
advantage of these methods is that after sufficiently training
the model, an exact and reliable response can be obtained
even by changing certain design parameters of the building.
Furthermore, methods such as statistical analysis reinforce
our understanding concerning the impact of quantities that
are differently focused by designers or architects.

Various data mining techniques such as principal com-
ponent analysis (PCA) [24], extreme learning machine
(ELM) [10], [25], support vector machine (SVM) appli-
cations [26]–[32], k-means [33], deep learning tech-
niques [31], [32], [34]–[40], decision tree (DT) [13], diverse
regression approaches and artificial neural networks [16],
[20], [29], [41]–[64], and hybrid methods based on regression
models [32], [65]–[67] have been used in EPB and forecast-
ing the required energy of residential buildings. A valuable
study [68], examines facade retrofitting measures to mini-
mize the demand for heating and cooling in residential and
commercial buildings.

A mixed-integer linear program (MILP) in [69] has also
been applied to an integrated model prediction for opti-
mal operation of the HVAC in large-scale buildings. The

relationship between the design and structural features of a
building with HL and CL using new ELM-based methods
and its variants in online sequential ELM (OSELM) was
studied to forecast the HL and CL in [18]. The CL and
HL of a residential building in [25] were forecasted via
multivariate adaptive regression splines (MARS), ELM, and
hybrid model, where the structural parameters of the building
were considered as network inputs. In another study [70],
to design an energy-efficient building, ELM method was
employed to forecast the CL and HL of residential buildings.
In [26], the energy consumption of a building in a tropical
region was predicted by accounting for three samples of
weather data as input characteristics for the support vector
machine. In [27], the CL of an office building was forecasted
using artificial neural network (ANN) and SVM methods;
their results were ultimately compared to specify the impact
of input variables on the prediction accuracy. CL was pre-
dicted to optimize an HVAC system [28] by considering
the meteorological information for the least square support
vector machine (LS-SVM). In [37], a deep neural network
(DNN) was employed along with the structural features of
the building as inputs to predict CL and HL. A short-term
CL prediction in an educational building in Hong Kong
was performed in [34] by the deep neural network. In their
work, time variables and temperature data were considered
as input variables. Another study in Hong Kong [34] car-
ried out a short-term CL prediction of an educational build-
ing via deep recurrent neural network-based strategies; they
considered two types of time variables and indoor/outdoor
ambient temperature data as network input variables. In [36],
a deep learning application, called long short-term memory
(LSTM) network, was implemented to predict the lighting
loads, miscellaneous electrical loads, number of occupants,
and internal heat gains in two office buildings. In [13], the
energy demand forecasting model of a residential building
was expanded using the DT method. [58] employed a feed-
forward neural network (FFNN) for thermal comfort and
saved 36.5% of the energy in the building. Reference [59]
predicted the HL of a building for above-normal energy con-
sumption detection in a university campus with ANN tech-
niques such as FFNN, radial basis function network (RBFN),
and adaptive neuro-fuzzy interference system (ANFIS); in
this regard, the heating consumption of the previous day,
temperature data, and day of the week were selected as
input variables for networks. CL and HL prediction of a
building in [12], [44] was performed through the use of
ANN in order to manage the HVAC system; in these studies,
11 air-handling units and meteorological data were utilized as
input variables, respectively. Using back propagation neural
network (BPNN), [61] forecasted the cooling demand in a
building for operational planning of stable energy supply and
energy savings. This work considered air temperature and
relative humidity as additional inputs to the network. The CL
of a building was predicted in [62] so as to determine the
daily operation of the building, and it was optimized using
ANN method. In their approach, the network input variables
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TABLE 1. Reviewing and categorizing the conducted research based on the various datasets.

were water temperature of in indoor equipment, outdoor
humidity/temperature, chilled water prepared in ice tanks or
elsewhere, electric current used by chiller, on/off status of
compressors, and date data. Reference [63] forecasted the HL
of a building by use of the MLP method and considering the
meteorological data as network input variables. In another
work [64], the MLPmethod was employed to forecast the CL
and HL of a building in order to design an energy-efficient
building, in which the meteorological and date data were
considered as input variables. In [41], prediction of the CL
of a building was done using an artificial neural network
model called multilayer perceptron, and climatic data inputs
were considered as parameters. In [16], the energy perfor-
mance of a building was examined by forecasting the CL
and HL via machine learning applications such as general
linear regression, ANN,DT, support vector regression (SVR),
and ensemble inference model. Reference [42] forecasted
the CL and HL of a building to discover the peak load of
water source heat pump (WSHP) in the building environ-
ment and supply the heating and cooling demand; in this
connection, six regression models of data mining methods
were used, in which the meteorological data, previous load
consumption, and time and date information were taken as
the input variables of the network. For increasing the build-
ing energy efficiency, four regression applications, namely
chaos-SVR, wavelet decomposition (WD)-SVR, SVR, and
BP were utilized to forecast the CL of the building in [71].
In some studies [28], [29], CL prediction was performed
in a non-residential building to enhance the operation of the
HVAC system using a combination of PCA, kernel (k)-PCA,
and SVR methods. In [57], autoregressive with exogenous
(ARX) method was employed to predict the CL and HL of
a building so as to manage supply and demand of energy;
the meteorological data were considered as network input
variables. The CL of a building in [45] was forecasted via
general regression neural network (GRNN), in which the

network input variable was the external hourly temperature
for a 24 h period obtained from the Kuwait Institute for Sci-
entific Research over the five years of data collection. In [46],
to predict the hourly CL of a building, four methods (tradi-
tional BPNN, radial basis function neural network (RBFNN),
GRNN and SVM) were used; finally, after comparing the
results, SVM and GRNN were proven to have a better per-
formance accuracy. Reference [47] investigated the influence
of the structural conditions of the building and its interior
design on the cooling load of residential and office buildings.
By developing different regression models, [48] predicted the
HVAC system energy demand from the CL andHL demand of
building. Reference [34], [35] forecasted the CL and electric
demand of commercial buildings in short-term and ultra-
short-termmodels tomanage the energy demand and improve
the energy efficiency of HVAC systems via hybrid SVR.
In [51], using the SVR method, the CL of a large office
building in a coastal town of China was forecasted, and a
newmodel of vector-based SVRwas presented to increase the
robustness and forecasting accuracy. Via a multiple nonlinear
regression (MNR) model, [52] predicted the optimal oper-
ation of HVAC systems and short-term cooling loads; in
their study, the network inputs were the physical character-
istics of the building, meteorological information, and HVAC
operational variables. Reference [53] forecasted the CL of a
building using a probabilistic entropy-based neural (PENN)
model. In [54], the HL of a building was predicted through
the use of a multiple regression method and considering cer-
tain climatic conditions such as sol-air temperature, thermal
resistance, and surface-to-volume ratio as network inputs.
In [55], CL and HL were predicted using neural networks
and extraction of a black box model, which was the trained
network. In their method, climate data include temperature,
humidity, wind speed, and sunlight were used as input data.
The prediction of HL and CL associated with residential
building has been performed based on existing historical data
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and using different machine learning techniques called SVM,
RF, FFNN, Gradient Boosted Regression Trees, XGBoost
in [72]. In another study, indoor temperature was predicted
using a network (called nonlinear autoregressive) based on
back-propagation neural networks; the considered network
inputs were meteorological parameters and HVAC equipment
parameters [56]. In [65], a hybrid regression model of ANN
and SVM applications was used to forecast the thermal load
of 10 residential buildings located in Rottne, Sweden, in order
to control district cooling and heating systems. In [73],
a multi-layer hybrid model (APNN) has been proposed to
forecast HL and CL of a residential building by considering
the technical specifications of the building and climatic data
as the input of the network. In this paper, the suggested
hybrid technique is based on combination an ARX and a
particle swarm optimization neural network. Reference [66]
presented a hybrid solution comprised of a gray box and
a black box containing certain machine learning methods
based on regression using internal heat gain and weather data
as inputs in order to predict the mean indoor air tempera-
tures. In another study [67], for energy planning, manage-
ment, and conservation, a novel enhanced integration model
(stacking model) was proposed to forecast the HL of two
educational buildings in Tianjin, China. The heating demand
estimating of buildings in [74] has been done by consider-
ing the weather conditions and presenting a Global Forecast
System sflux model. In a valuable study [75], considering
the two energy flexibility indicators called the efficiency of
active demand response events and the available heat storage
capacity, the thermal inertia potential of the three apartments
have been analyzed to correct their heat load pattern. In this
study, user behavior, the effects of building envelopes, and
weather conditions are selected as three effective indicators
in evaluations.

Based on the above literature, the CL and HL of buildings
were mainly predicted by implementing various methods on
different data. These methods are categorized according to
the type of datasets and utilized them to predict the CL and
HL of buildings. In the end, the accuracy of the presented
methods was assessed for similar data. Table 1 classifies the
studies performed based on various data. In this classification,
the datasets were divided into four clusters, namely real
measurements, simulated (Ecotect), simulated (Energy plus),
and simulated (DeST). Real-world measurement data were
specific to each study.

As mentioned in the literature above, different studies have
used different algorithms of ANNs, machine learning, deep
learning, ELM, and a variety of hybrid solutions to forecast
the CL and HL of buildings. In order to easily access the
analysis provided in each of these studies, they were reviewed
and categorized in Table 2 based on the type of algorithm
used.

As observed in Table 2, most studies typically used MLP,
SVM, and SVR algorithms to forecast the CL and HL of
buildings. However, a review of recent studies shows that
researchers are increasingly turning to the idea of combining

TABLE 2. Reviewing and categorizing the conducted research based on
the employed algorithm.

TABLE 3. Reviewing and categorizing the conducted research based on
the statistical performance metrics.

models to improve the prediction of CL and HL. Themethods
used to predict CL and HL have their own unique accuracy
coefficient and error. In different studies, various types of
statistical performance metrics have been utilized to evaluate
the performance of each algorithm. Table 3 categorizes and
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reviews the conducted research according to the statistical
performance metrics of each algorithm.

This paper reviewed most of the studies performed to
predict the CL and HL of buildings based on different cri-
teria. Table 4 depicts a comparative approach to assessing the
effectiveness of each of the methods employed in the studies.
Given that the comparison of results should be made for the
same data used for each algorithm, these comparisons are
made for the same datasets used in several studies.

Most of the above-mentioned methods were studied and
considered as a conventional method for forecasting and
controlling the CL and HL of residential buildings. However,
some of the work showed that building specifications could
have a significant impact on the CL and HL of a building
[37], [76]. To forecast the CL and HL of buildings with high
accuracy coefficient and least prediction error by regression-
based methods, it is necessary to establish a linear mapping
between the input variables (building characteristics) and
output variables (CL and HL). In this paper, a hybrid model
called group support vector regression (GSVR) is proposed
by combining the group method of data handling (GMDH)
and SVRmodels in order to estimate the relationship between
input and output data and improve the CL and HL prediction
results. GMDH and SVM have already been combined in
several areas with significant improvements in predictive
accuracy over other neural networks, machine learning, and
other statistical models; these studies have also shown that
combining these two models can improve the efficiency and
robustness in the prediction operation [55], [56]. To present a
comparative analysis approach to evaluating the results of CL
and HL forecasting, in addition to the proposed hybrid model,
other artificial neural network and machine learning applica-
tions, including BPNN, elastic-net regression (ENR), GRNN,
k-nearest neighbors (kNN), partial least squares regression
(PLSR), GMDH, and SVR are implemented. Technical speci-
fications and structural characteristics of a building influence
its energy; therefore, structural characteristics are used such
as relative compactness, surface area, overall height, roof
area, orientation, wall area, glazing area distribution, and
glazing area as inputs for the proposed methods to determine
the output variables: CL and HL of residential buildings.
CL and HL were considered as the output variables of the
networks in this study. The energy forecasting framework is
shown in Fig. 1.

In general, the article share is listed as follows:
â Comprehensive review of studies related to modeling

and forecasting the CL and HL of residential and com-
mercial buildings

â Classification of various methods, data type, and per-
formance evaluation metrics related to forecasting the
cooling and heating load of various buildings

â Presenting a novel hybrid regression approach based on
machine learning applications called GSVR to model
and forecast the CL and HL based on the technical
specifications related to the building without the need
for meteorological variables

FIGURE 1. Energy forecasting framework.

â Implementing various conventional machine learning
methods to the data used and evaluate their results with
the results of the proposed GSVR method

The remainder of this paper is organized as follows:
Section 2 introduces the case study. The proposed methods
are described in Section 3. Section 4 presents the CL and HL
forecasting results using the suggested methods. In Section 5,
the results and performance analysis of the suggested solu-
tions are compared. Finally, Section 6 concludes the paper.

II. CASE STUDY
A dataset comprising 12 different building shapes is used,
which is simulated by Tsanas and Xifara (2012) in Ecotect
software [76]. Regarding the simulations, it was assumed that
the buildings were located in Greece, Athens. The shapes
of the buildings were created through considering the ini-
tial cubes (3.5 × 3.5 × 3.5), each with 18 elements. All
buildings were constructed with the same materials and a
volume of 771.75 m3. The simulated buildings differed in
orientation, glaze area, interior dimensions, glaze area distri-
bution, and certain other parameters. The envelope U-values
of these buildings were considered as the ceiling (0.500),
walls (1.780), window (2.260), and floor (0.860). U-values
indicated the overall performance in retaining heat and pre-
venting it from escaping to the outside. The interior design
of a building can have a major impact on its energy. In the
simulation, the values of air speed: 0.30 m/s, clothing: 0.6,
humidity: 60%, lighting level: 300 Lux were considered as
interior design conditions. The internal gains were set to
rational: 5 and latent: 2 W/m2 while the infiltration rate was
set to 0.5 for the rate of air change with the wind sensi-
tivity being 0.25 air changer per hour. 95% of the complex
state was assumed for thermal properties, and a temperature
range of 19-24◦ C was considered for the thermostat range.
15-20 hours of weekdays and 10-20 hours of weekends were
set for thermostat operation hours [1], [11].
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TABLE 4. Performance comparison of various algorithms implemented for the same data in predicting the CL and HL of buildings.
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The dataset consisted of 768 simulated buildings, eachwith
eight characteristic properties (considered as input variables
and represented in the data by X ) and two actual valuable
responses (CL and HL intended as output variables and
marked with Y ). Table 5 lists the input and output variables
with the mathematical delegation for each variable and shows
the number of conceivable values for these data [76].

TABLE 5. The input and output variables with mathematical symbols for
each variable.

The data used in this study were obtained by simulating
and modeling different aspects of building energy and can
be contrasted with real-world data; nevertheless, according
to the literature cited by the producers of this dataset, recent
works have shown that no inconsistency in real-world data
and simulated data can affect the results of the used methods.

III. METHODOLOGIES
This section briefly describes artificial neural network algo-
rithms and regression techniques used to analyze the data for
predicting the CL and HL of buildings and finally evaluate
the results.

A. ARTIFICIAL NEURAL NETWORKS AND
REGRESSION TECHNIQUES
Artificial neural networks are a suitable means of model-
ing and estimation purposes. They are capable of learning
from data and show generalized behavior after the learn-
ing process. Alongside artificial neural networks, regression
applications can be used as statistical tools for analyzing or
understanding a binary or multivariate relationship [29], [79].
Today, regression is used as a powerful tool in the scientific,
commercial, and industrial fields for forecasting, modeling,
and optimization [80]–[82]. In the remainder of this section,
different types of neural networks and regression methods are
discussed.

1) BACK-PROPAGATION NEURAL NETWORK (BPNN)
Developed by Parker in 1972, BPNN is one of thewell-known
and widely used neural network algorithms in engineering
applications. This algorithm is similar to a FFNN in every
aspect except that it adds a back propagation to its structure.

FIGURE 2. The structure of BPNN.

It is estimated that today, this algorithm is utilized in some
80% of the structure of other neural networks [58], [61].
As shown in Fig. 2, BPNN comprises an input layer, a hidden
layer, and an output layer in its structure [84]. The number
of nodes in the input layer, hidden layer, and the output layer
are represented by letters m, T , and n, respectively. wij,wjk
reflects the weights of connections in the layers. Network
input values and network prediction values are expressed
by X and Y , respectively. Input signals with weight are
received by the input layer and transmitted to the hidden layer
after processing. As an internal processing layer, the hidden
layer processes the signals and transmits them to the output
layer [85]. The neural network training process requires an
activation function; f (X ) is the sigmoid activation function
used in this paper [79]:

f (x) =
1

(1+ e−x)
(1)

The output of each neuron in the input layer is calculated
as follows [86]:

Oik = f

 l∑
j=0

WkjOij

 , k = 1, 2, . . . , n (2)

whereWkj is the connection weight from the jth input neuron
to the kth hidden neuron. The output of each neuron in the
output layer providing the network prediction is calculated as
follows [86]:

Yi = f

(
n∑

k=0

WkOik

)
, k = 1, 2, . . . , n (3)

where n is the number of hidden neurons, and Wk is the
connection weight from kth hidden neuron to the output
neuron.

2) GENERAL REGRESSION NEURAL NETWORKS (GRNN)
The general regression neural network (GRNN) is a one-
pass learning algorithm suggested by Specht as an alterna-
tive to the back-error propagation training algorithm for the

VOLUME 10, 2022 2203



A. Moradzadeh et al.: Heating and Cooling Loads Forecasting for Residential Buildings

FFNN [87]. In fact, GRNN is an RBFN that can be used to
predict and assess continuous variables, estimate nonlinear
relationships between the output variable and a set of inde-
pendent variables, and converge to the underlying regression
level. Similar to other probabilistic neural networks, GRNN
requires training samples to process. In this network, pre-
dictability and processing are also dependent on the data
type [88]. Among the important advantages of this neural
network, mention can be made of rapid learning even with
large numbers of samples, establishing a relationship between
the input variables and target variables of time series data,
and fast convergence to a desirable regression level. As can
be seen in Fig. 3, in the structure of GRNN, there are four
layers, the input (X), pattern (P), summation (S), and output
(Y ), which are completely interconnected [89].

FIGURE 3. The four layers of GRNN.

The input layer transfers the input variables to the pattern
layer without any processing. The number of neurons in
the training layer is determined by the training data, which
functions as follows [90], [91]:

pi = exp

[
−
(X − Xi)T (X − Xi)

2σ 2

]
, i = 1, 2, . . . , n (4)

The outcome of the neuron i is expressed as follows:

D2
i = (X − Xi)

T (X − Xi) (5)

where D2
i is the square of the Euclidean distance between the

input variable and the sample corresponding to X , X is the
network input variable, T is the transpose symbol, and Xi is
the learning sample corresponding to the neuron i.
The extracted patterns are transferred to the summation

layer as input, where two types of summation are calculated.
The first summation is derived from equation (6), in which
the arithmetic sum of all neurons is computed and the output
is demonstrated as equation (7). The second summation is
derived from equation (8), in which the weight coefficients
are added to the neurons and the output is expressed as
equation (9) [89], [91]:

n∑
i=1

exp

[
−
(X − Xi)T (X − Xi)

2σ 2

]
(6)

SD =
n∑
i=1

pi (7)

n∑
i=1

Yiexp

[
−
(X − Xi)T (X − Xi)

2σ 2

]
(8)

where Yi defines the i-th connection weight.

SNj =
n∑
i=1

YijPi, j = 1, 2, . . . , k. (9)

After calculating both weighted and arithmetic summa-
tions, their results are transferred to the output layer. Finally,
through dividing the two summation types, the final output of
the network is calculated as follows [92]:

Yj =
SNj
SD
, j = 1, 2, . . . , k. (10)

3) K-NEAREST NEIGHBORS (KNN)
kNN is an efficient technique for regression problems, clas-
sification, and non-parametric feature extraction. The main
objective behind kNN is to provide an appropriate estimate
based on Euclidean distance or, in other words, the mean of
the nearest neighbors in feature space for the training set.
These neighbors are selected from a set of training points.
kNN is a precision algorithm with a unique property as it
delays and continues the calculation operation until it obtains
the best results [93]. As in other artificial neural networks
and machine learning algorithms, datasets and, in particular,
the number of k neighbors selected, have a great impact
on the performance of kNN. Choosing small quantities for
k leads to over-fitting, while large quantities entail a poor
performance. A comparison of different subsets of training
data is the best approach to selecting the optimal value of k .
If the feature space is multi-dimensional, the data must be
normalized beforehand due to the distance comparison to
selecting the nearest neighbor [94]. In this paper, kNN is used
for regression. In this case, the response of testing point Xt is
estimated as the weighted mean of the reactions of k training
points such as X1,X2, . . . ,Xk . A kernel function was utilized
to calculate the weight of each neighbor. If X is a dataset of
X1,X2, . . . ,Xk members, each with N features, equation (11)
calculates the proximity of each training pointXi to the testing
point Xt using the weighted Euclidean distance [95], [96].

d (Xt ,Xi) =

√√√√ N∑
n=1

wn(xt,n − xi,n)2 (11)

The following equation shows how to derive the arrange-
ment statistics for distances d (Xt ,Xi) , i = 1, 2, . . . ,M .

0 ≤ d
(
Xt ,X(1)

)
≤ d

(
Xt ,X(2)

)
≤ . . . ≤ d(Xt ,X(M )) (12)

Then, k nearest training points X(1),X(2), . . . ,X(k) as the
k-nearest neighbors of Xt are calculated.

Fig. 4 depicts a transparent example of a two-dimensional
feature space (N = 2) of the k-nearest neighbors. In this
example, k = 5 is assumed. As observed, the five training
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FIGURE 4. kNN of a testing point in a two-dimensional feature space.

points are in the nearest Euclidean distance, with one test
point selected as the nearest neighbor [96]. A kernel function
can be used for the flexibility of the kNN regression model.
In this paper, the Gaussian radial basis function (RBF) kernel
was used and defined as follows:

φ
(
Xt ,X(i)

)
= e−d(Xt ,X(i))/β (13)

where φ(Xt ,X(i)) is a kernel function centered at the ith
training point X(i) and β is a Gaussian rottenness factor [97].
Ultimately, by applying the kernel regression, the follow-

ing estimate of the response Xt is obtained [96]:

f̂ (Xt) =

∑k
i=1 φ

(
Xt ,X(i)

)
f (X(i))∑k

i=1 φ
(
Xt ,X(i)

) (14)

where k defines the number of the closest neighbors used for
regression and f (X(i)) is the known response of X(i).

4) GROUP METHOD OF DATA HANDLING (GMDH)
GMDH was first introduced in 1968 by Prof. Alexey Grig-
orevich Ivakhnenko as one of the data mining applications
for performing nonlinear regression, prediction, function
approximation, mathematical modeling, and pattern recog-
nition. GMDH is further considered as a polynomial neu-
ral network. Continuous change during the training process
is the major difference between GMDH and other neural
networks [98], [99]. This network attempts to generate a
performance in a feedback network based on a quadratic
transmission function. Fig. 5 illustrates the GMDH neural
network structure, which includes the input layers, the hidden
layers, and the output layers. This network automatically
specifies the effective input variables, the structure of an
optimal model, the number of layers, and the number of
neurons in the hidden layers [100]. High prediction accuracy,
self-organized learning process, the accurate linear mapping
between input and output variables, and precise identifica-
tion of complex nonlinear systems are among the significant
advantages of GMDH over other neural networks [101].

As a brief introduction for GMDH formulation description,
a nonlinear system with n number of input variables (Xn) and

FIGURE 5. The principle structure of GMDH.

output variables (Y ) connected by the function f is considered
as follows [100], [101]:

Y = f (X1,X2, . . . ,Xn) (15)

The relationship between the input and output vari-
ables in the above system can be rewritten based on the
Kolmogorov–Gabor polynomial as below [102]:

Y = a0 +
m∑
i=1

aiXi +
m∑
i=1

m∑
j=1

aijXiXj

+

m∑
i=1

m∑
j=1

m∑
k=1

aijkXiXjXk + . . . (16)

where X stands for inputs,m is the number of inputs, a shows
the weights or coefficients, and Y is the model estimation
of output. Each layer in the neural network functions based
on its neurons. In a GMD neural network, each neuron must
have two inputs per output. The following equation describes
the number of neurons in the first layer for the n number of
inputs [101]:

m =
n2 − n

2
(17)

In order for the GMDH algorithm to identify unknown αi
coefficients in the Kolmogorov–Gabor polynomial relation,
it can be analyzed as follows [102], [103]:

G
(
Xi,Xj

)
= a0 + a1Xi + a2Xj + a3X2

i + a1X
2
j + a5XiXj

(18)

The regression methods for each pair of input variables Xi
and Xj can optimally solve the coefficients αi, according to
which, the functionG is given by considering the least squares
error (19) principle as equation (20) [100], [102].

E =
1
M

M∑
i=1

(Yi − GiO)2 (19)

where E is the least squares error, M shows the number of
samples, and GiO depicts the desired output or target of the
network.

Yi = f (Xi1,Xi2,Xi3, . . . ,Xim) , i = 1, 2, 3, . . . ,m (20)
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FIGURE 6. The principle approach of SVR.

5) ELASTIC-NET REGRESSION (ENR)
In machine learning applications and the methods related to
regression, classification, and prediction of different models,
such factors as variance and bias affect the accuracy coeffi-
cient of the model. Until now, different methods have been
proposed for regression or linear modeling in machine learn-
ing. The linear regression (LR) is one of the most common
methods for linear modeling. Nevertheless, this method is
sometimes observed to have poor performance in forecasting
and analyzing. Over the recent years, researchers have pro-
posed various suitable techniques for improving LR perfor-
mance such as lasso, ridge regression, and ENR [104], [105].
ENR combines ridge regression and lasso, which was pri-
marily introduced by Zou and Hastie in 2003 as a powerful
technique for prediction and variable selection. Therefore,
this method is utilized to generate regression and linear
mapping between input and output variables for practical
solutions requiring high analytical accuracy [105], [106]. For
an observed vector/signal (Y εRn), a certain measurement
matrix (XεRn×p), an unknown correct vector/signal to be
recovered (β∗εRp), and the Gaussian noise term (z), the linear
regression in the standard model is generally expressed as
follows [107]:

Y = Xβ∗ + z (21)

ENR is feasible by solving the following minimiza-
tion [107], [108]:

minλ1 ‖β‖1 +
λ2

2
‖β‖22 +

1
2
‖Xβ − Y‖22 (22)

where λ1, λ2 ≥ 0 are both regularization parameters. In the
above equation, two particular cases of elastic regression are
further included: ridge regression in [109] with λ1 = 0 and
lasso in [110] with λ2 = 0.

6) SUPPORT VECTOR REGRESSION (SVR)
As one of the SVM applications, SVR is used for regression,
producing a linear mapping between input and target vari-
ables, and function estimation. Solving regression problems
is the main function of SVR [111], [112]. Among SVR mod-
els, the classical model (ε-SVR) is a version of SVR basically
considered in engineering and also used in this work. Fig. 6
shows the principle structure of SVR. This method presents
the principle idea byminimizing the rate of error and singular-
izing the hyperplane, which gives the maximum margin [46].
In the SVR, the risk function (23) is minimized by training
the function (24) and vectors contained in (25) [113]:

R =
1
2
‖w‖2 + C

l∑
i=1

(y1, 〈w, x〉) (23)

f (x)=<w, x> +b (24)

{(x1,y1) , . . . , (xi, yi) , i= 1, . . . ,l} (25)

where w adjusts the model smoothness, 〈w, x〉 is a function
of the input space fitting to the feature space, b shows the
bias, and (y1,〈w, x〉) depicts the selected loss function. Solv-
ing this model requires solving an optimization problem as
follow: [113], [114]:

min

(
1
2
‖w‖2 + C

l∑
i=1

(
ξi + ξ

∗
i
))

(26)

Subject to:
yi − 〈W ,Xi〉 − b≤ε + ξi
〈W ,Xi〉 + b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(27)

where ξi and ξ∗i apply the functional constraints.
The following expression is obtained after solving
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equation (26) [115], [116]:

f
(
X , αi, α∗i

)
=

Nsv∑
i=1

(
αi − α

∗
i
) (
K
(
Xi,Xj

))
+ b (28)

where αi and α∗i are Lagrange coefficients. According to (28),
new predictions are made using new training data [115].

7) PARTIAL LEAST SQUARES REGRESSION (PLSR)
PLSR is known as data-driven modeling and multivariate
regression. This method is able to create a linear regression
model and analyze a wide range of data via transmitting
the input variables (input matrix X ) and output variables
(output matrix Y ) to a new space. PLSR basically uses the
covariance between the input and output variables instead of
analyzing the hyperplanes with the least variance between
the dependent and independent variables [117], [118]. This
method interrelates input and output variables in a database
using a linear multivariate model. The analysis of X and Y for
m number of pulse components is as follows [117], [119]:

X =
m∑
h=1

thpTh + E = TPT + E (29)

Y =
m∑
h=1

uhqTh + F = UQT + F (30)

where X shows n×K matrix whileK stands for the number of
input variables, Y depicts n×M matrixwhileM represents the
number of output variables, n displays the number of observa-
tions, E shows the input residual, while p is the input loading
vector, and F depicts the output residual, while q is the output
loading vector [117]. PLS is comprised of inner and outer
parts [120]; in the inner part, the relationship between the X
and Y matrices is established indirectly through their scores
via the internal model which is a function of (t) on (u). In the
outer part, T and P are the score and loading matrices for the
X data set, U and Q are the score and loading matrices for
the Y data set.

8) GROUP SUPPORT VECTOR REGRESSION (GSVR)
GSVM is a hybrid model of GMDH and SVR. The input
data of the proposed hybrid model are selected based on
the decision made by GMDH and utilized as the input data
of SVR to forecast the output [56], [100]. In each layer of
GSVR, all combinations of the two input variables (Xi,Xj)
are generated, for each of which the regression is constructed
through forming the polynomial function which approxi-
mates the output y in Eq. (18). The GMDH output data,
which generates the least error, is used together with the input
variables as the SVR inputs. In order for the output data to
have the least error, the GSVRmodel must have 3-5 iterations
[56], [101]. Finally, the GSVR model with the least error is
chosen as the output model. The GSVR structure is shown in
Fig. 7 [121].

FIGURE 7. The principle structure of GSVR.

B. EVALUATION OF MODEL PERFORMANCE
Different methods can be used to ensure the accuracy of
results and their evaluation. The correlation coefficient of
determination (R), mean absolute error (MAE), mean squared
error (MSE), and root mean squared error (RMSE) are sta-
tistical performance metrics used in this paper to assess the
performance of the proposed methods [123], [124]. Each of
the indicators has various emphases. R indicates the corre-
lation coefficient between the forecasted value and actual
value of the designed model. MAE shows the mean distance
between the forecasted value and the actual value. MSE is the
mean of the squares of the errors, meaning the mean squared
difference between the forecasted values and the actual value
of the designed model. RMSE is utilized to recognize great
errors and assessment of the variation in method response
regarding variance and. The larger the value for R indicator is,
and the smaller the values of MAE, MSE, and RMSE are, the
better the model performance will be. The above-mentioned
statistical performance metrics for N number of inputs were
calculated using the following formulas [32], [123]:

R =

∑N
i=1 (Xi − X̄ )(Yi − Ȳ )√∑N

i=1 (Xi − X̄ )
2∑N

i=1 (Yi − Ȳ )
2

(31)

MAE =
1
N

N∑
i=1

|(Xi − Yi)| (32)

MSE =
1
N

N∑
i=1

(Xi − Yi)2 (33)
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RMSE =

√√√√ 1
N

N∑
i=1

(Xi − Yi)2 (34)

where Xi, X̄ , Yi, and Ȳ represent the actual value, mean of
actual values, estimated value, and mean of actual values,
respectively.

IV. SIMULATION RESULTS
The proposed methods in this paper require initial design,
structure formation, and selection of the number of neurons
and the related coefficients in the hidden layers and struc-
tures. After the design, any neural network or machine learn-
ing application requires a dataset as input to enter the training
phase. In the operational data of this study, as described in
the relevant section, there exist two outputs (CL and HL)
for each sample. Therefore, each network must be trained
twice to perform forecasts, one for CL forecasting and the
other for HL forecasting. Out of the total available datasets
of 768 samples, 90% (688 samples) are selected for initial
training and testing of each network; moreover, the remaining
10% (80 samples) are kept as unknown data to test the trained
networks and forecast the required energy of buildings. For
each network in each case of CL and HL, 70% and 30% of
the intended dataset are considered as training and testing
data, respectively. The neural networks and machine learning
algorithms to forecast CL and HL models were applied in the
MATLAB environment (Ver. 2018b).

The proposed networks were trained with relevant data and
the results of each are described below. Fig. 8 demonstrates

FIGURE 8. Fit regression between input variables and outputs: (a) for CL
and (b) for HL.

FIGURE 9. Prediction of CL and HL for testing data via GSVR: (a) for CL
and (b) for HL.

FIGURE 10. Testing error for CL and HL prediction in the form of MSE and
RMSE: (a) for CL and (b) for HL.

an acceptable correlation and excellent overlap between the
target data and the output of the designed GSVR for CL and
HL training data. After training the network via CL and HL
training data, the CL and HL were predicted as the testing
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FIGURE 11. Testing error for CL and HL prediction in the form of histogram: (a) for CL and (b) for HL.

TABLE 6. Results of accuracy and error for CL prediction via all proposed methods.

TABLE 7. Results of accuracy and error for HL prediction via all proposed methods.

TABLE 8. Various errors in forecasting CL and HL.

data (Fig. 9). Figs. 10 and 11 depict the GSVR testing error
for CL and HL prediction in the forms of MSE, RMSE, and
histogram.

The regression and types of errors were shown only for the
GSVR network. These results are expressed numerically for
the rest of the methods in the following tables. Tables 6 and 7
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show the CL andHL prediction results for training and testing
data, respectively.

Tables 6 and 7 present the results of accuracy coefficients
and error of training and testing for each of the networks. The
results showed that the proposed methods were capable of
predicting the test data after training. Studies of data mining
applications showed that training and prediction operations
were highly dependent on the type of data in regard to a
variety of neural networks and machine learning algorithms.
After training, all of the above networks were saved in the
form of black box and utilized as a toolbox. This toolbox
contained the features and detected patterns extracted from
data or input variables. The CL and HL for new and unknown
data were extracted using these black boxes. To do this,
10% (80 samples) of the main database (kept as new and
unknown data) were utilized as inputs for each trained and
saved network. Fig. 12 shows that each of the input variables
(building characteristics) and output variables (CL and HL)
were used as new and unknown data.

The key step in performing operations such as load fore-
casting and home energy forecasting is to perform forecasting
operations for new and unknown data based on prior train-
ing. The CL and HL of residential buildings were predicted
through the networks saved for the new data (Fig. 13).

Based on the results of Fig. 13, it can be deduced that
each of the proposed methods was able to forecast the CL
and HL for the new data based on the recognized patterns of
the input variables via the training operation. The forecasted
results were very close to the actual values, indicating that the
proposedmethods can be used as powerful tools formanaging
and saving the energy of residential and office buildings.
Table 8 presents the precision and error rates for each of the
proposed methods. The results of the proposed solutions are
compared in the next section.

V. ANALYSIS AND COMPARISON OF RESULTS
The effectiveness of eachmethod was determined by compar-
ing the results with other similar solutions. The parameters R,
MSE, RMSE,MAE obtained from the results of the proposed
methods were compared with each other and with the results
obtained in other papers. All of the comparison methods were
implemented in the same dataset. The division of the database
for training, testing, and validation operations was different
among these studies, hence the fact that the direct comparison
should be drawn with caution. Table 8 summarizes the results
obtained after testing the saved networks with the new data.
As seen, the GSVR model with the best R value obtained for
HL on new test data (0.9999) was in the range of best forecast-
ing models. For HL prediction, GSVR had minimal errors in
terms of MSE (0.0630), MAE (0.2078), and RMSE (0.2509).
ENRwith the lowest R value (0.9924) had the maximal errors
in the form of MSE (2.6267), MAE (1.4933), and RMSE
(1.6207). After the GSVR model, the GMDH and GRNN
models were themost suitablemethods for forecasting theHL
with the R values of 0.9992 and 0.9989, respectively. Regard-
ing CL prediction, GSVR had the most optimal R value

FIGURE 12. The characteristics and the energy load data of buildings:
(a) surface area, wall area, and roof area; (b) overall height, orientation,
and glazing area distribution; (c) relative compactness and glazing area;
and (d) HL and CL.

(0.9992), and the minimal errors in terms of MSE (0.1783),
MAE (0.3130), and RMSE (0.4222). In this forecasting, after
GVR, GMDH and GRNN were the most appropriate models
with R values of 0.9989 and 0.9986, respectively. However,
the kNN method with the lowest R value (0.9704) and the
highest error values in the forms of MSE (8.0046), MAE
(2.7200), and RMSE (2.8292) provided the weakest forecast
for CL. By comparing the results presented in Table 8 with
the information presented in Table 1, the energy prediction
results associated with buildings using the proposed methods
can be compared with other models used in other studies for
similar data.
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FIGURE 13. Forecasting the CL and HL of residential buildings for new data: (a) CL forecasting and (b) HL forecasting.

VI. CONCLUSION
The importance of forecasting the energy consumption of
buildings, especially CL andHL in order to estimate, manage,
and save energy, has raised many challenges. Today, most
researchers are looking for an improved model with high
predictive performance. This paper introduced a variety of
energy forecasting models for residential and non-residential
buildings and assessed the performance of each. Through the
use of hybrid models, this paper proposed a new (hybrid)
model of machine learning application called GSVR to fore-
cast the CL and HL of a residential building. The principle
goal of the proposed model was to combine the GMDH
and SVR models. In addition to the proposed model, several
other models of neural network and regression applications,
including BPNN, ENR, GRNN, kNN, PLSR, GMDH, and
SVR were used in this paper to forecast CL and HL. Eight
technical parameters of the building (X1, X2, . . . , X8) were
employed as input variables, and CL and HL were selected
as the output variables of the proposed models. After training

and saving the trained networks, the CL and HL were fore-
casted using new data. The presented results indicated that
the suggested hybrid model was the best model for predicting
building energy as it had the highest R value (0.9999) and
the lowest error values in the forms of MSE (0.063), RMSE
(0.2509), and MAE (0.2078) for forecasting HL and the most
optimal R value (0.9992) and minimal errors in terms ofMSE
(0.1783), RMSE (0.4222), and MAE (0.313) in forecasting
CL. Noteworthy, the proposed method is also applicable to
real-world data as well as all available energies, such as water
and gas.
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