
Received November 22, 2021, accepted December 3, 2021, date of publication December 13, 2021,
date of current version January 5, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3135298

Improving Heuristic Process Discovery Methods
Through Determining the Optimal Split/Join
Patterns of Dependency Graphs
MARYAM TAVAKOLI-ZANIANI AND MOHAMMAD REZA GHOLAMIAN
School of Industrial Engineering, Iran University of Science and Technology, Tehran 16844, Iran

Corresponding author: Mohammad Reza Gholamian (gholamian@iust.ac.ir)

ABSTRACT Identifying the split and join patterns of dependency graphs is an essential step in Heuristics
Mining process discovery methods. The existing methods determine the split/join patterns (consisting of
AND and XOR relations) according to the event log information about the activities involved in the splits
and joins. Hence, they neglect the event log information available for the other activities on the paths from
split points to join points. On the other hand, the current methods determine the patterns of each split/join
separately and do not aim to select the best set of patterns. Therefore, the outputs of the existing methods
can be non-optimal. Furthermore, the current methods cannot guarantee that there is a matching And-join
for each AND-split, and vice versa. This can make some split/join patterns incapable of being activated.
To handle these issues, this paper, for the first time, presents an integer linear programming model which
identifies the optimal patterns of splits/joins with regard to all succession information that is available in
the event log; simultaneously, it ensures that for each AND-split there is at least one matching AND-join,
and vice versa. The objective function of the proposed model is inspired by replay fitness and precision
dimensions of process model quality. According to the assessments, the process models obtained by the
proposed method are superior to the results of the most prominent methods of determining split/join patterns
in terms of replay fitness, precision, simplicity, and matching AND-splits with AND-joins.

INDEX TERMS Heuristics Miner, integer linear programming, process discovery, process mining, mining
split/join patterns, optimization.

I. INTRODUCTION
Process discovery is a branch of process mining and a field
of research that uses the recorded events of process execution
to analyze business processes. A process discovery method
takes the recorded event log of process execution as input and
produces a process model that best describes the behavior in
the event log. The discovery of process models from event
logs can be performed for numerous purposes. For exam-
ple, identifying the models of real processes running in an
organization can be an essential step in process improve-
ment since it can provide an accurate insight into the real
processes and existing issues. Furthermore, discovering the
real process models can be employed for other applications
such as documentation, performance analysis, configuring
systems, etc. [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

Heuristic mining methods are among the most popular pro-
cess discovery techniques due to their numerous advantages,
such as robustness to noise and effectiveness even in the
presence of unstructured process models [2], [3]. These algo-
rithms have two main steps. At the first step, the dependency
graph is discovered; this graph describes the pre-requisite and
post-requisite relations between activities. If there is an arc
from activity a to activity b in the dependency graph, it means
that a is a direct pre-requisite of b and b is a direct post-
requisite of a. However, when an activity has multiple post-
requisite activities (i.e., there is a split) or when an activity
has multiple pre-requisite activities (i.e. there is a join) the
dependency graph cannot describe the relationship between
the post-requisite or pre-requisite activities. For example,
supposing the dependency graph depicted in Fig. 1(a), it can
be understood that activity A is the direct pre-requisite of
activities B, C , and D. However, it cannot be inferred that
whether after occurring A, only one of B, C , or D can occur

1116 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-6830-8904
https://orcid.org/0000-0002-5135-5237

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

(i.e., they are involved in an XOR relation) or all of them can
occur in parallel (i.e., they are involved in an AND relation)
or any other possibility can occur (i.e., there is a combination
of XOR and AND relations). Hence, to clarify the mentioned
issue, the dependency graph split and join patterns are deter-
mined in terms of AND and XOR relations in the next step of
heuristic mining methods.

To the best of our knowledge, all existing methods in
determining the split/join patterns of dependency graphs
utilize only the event log information about the activities
involved in the splits/joins (i.e., activities that have the same
pre-requisite/post-requisite activity). In consequence, they
neglect the information about the other activities. However,
the patterns of splits/joins directly affect the behaviors that
the output process model can/cannot replay. For example,
all activities on a path from an AND-split to an AND-join
can concurrently occur with all other activities on a different
path from the AND-split to the AND-join. Thus, considering
the successions of activities that are on different paths from
a split to a join point can lead to a better decision about
split/join patterns. Moreover, the existing methods determine
the patterns of each split/join without considering their effects
on the overall quality of the process model; in consequence,
their results are likely to be non-optimal. On the other hand,
none of the existing methods can guarantee the matching of
AND-splits and AND-joins. i.e., none of them can ensure
that: 1) for each AND-split, there are some paths that are
branched from the AND-split and are joined in an AND-
join 2) for each AND-join, there are some paths that are
joined in the AND-join and are branched from an AND-split.
This can lead to the inability of some split/join patterns to
be activated.

To handle the issues mentioned above, this paper suggests
benefiting from the potentials of mathematical programming.
Mathematical programming has been used in some process
mining applications; nevertheless, it has not been used to
determine the split/join patterns of dependency graphs to the
best of our knowledge. Hence, in this paper:
• A novel integer linear programming (ILP) model is pro-
posed for determining the dependency graph split/join
patterns. The objective function of the proposed ILP
model focuses on finding the optimal combination of
concurrent activities considering the event log occurred
successions for all activities.

• The proposed Objective function of the ILP model
employs the concept of replay fitness and precisionmea-
sures which are among the most prominent measures
in the literature of evaluating the quality of process
models. (The replay fitness measure describes whether
the behavior in the event log can be reproduced by the
processmodel.Whereas the precisionmeasure describes
whether the behaviors that the process model can pro-
duce are present in the event log [1]).

• The ILP model constraints guarantee the accordance of
all concurrencies, as well as the matching of AND-splits
and AND-joins. i.e., they ensure that if two activities are

on an AND-split, there are some paths started from them
that join in an AND-join, and vice versa.

• After determining the concurrent activities, a modified
version of the method has been used by HeuristicsMiner
is presented to convert the dependency graph into a
Causal net by describing the split/join patterns in terms
of output/input bindings of Causal nets.

The rest of this paper is organized as follows. A review
of the literature and formal definitions are presented in Sec-
tions 2 and 3. Section 4 discusses and introduces the pro-
posed model. The method applied for converting the ILP
model outputs to process models is presented in Section 5.
Section 6 presents the experimental results, and finally,
Section 7 concludes the paper and suggests some future
studies topics.

II. LITERATURE REVIEW
To the best of our knowledge, there is no study in the literature
dedicated only to determining the type of dependency graph
splits/joins, and this topic has always been discussed as a part
of studies that propose/modify a heuristic mining method.
Heuristics Miner [4] is the first heuristic mining method. The
outputs of this method are in Heuristic nets notation. After
constructing the dependency graph, this method calculates
a measure of concurrency between each pair of activities.
The mentioned measure is calculated based on the frequency
of the occurred successions in the event log. The split/join
patterns are determined based on a minimum concurrency
measure threshold for activities involved in the splits/joins.
Hence, Heuristics Miner neglects the concurrency measures
available for all other activities that are on a path from a
split to a join point. Consequently, its results are likely to
be non-optimal and can be improved. In addition, the men-
tioned method does not utilize any solution to guarantee the
matching of AND-splits and AND-joins. i.e., it is possible
that for an AND-split, there are no paths to an AND-join, and
vice versa.

For example, suppose the event log and the dependency
graph presented in Fig. 1. The result of the determination
of the dependency graph split/join patterns by the Heuristics
Miner method is illustrated in Fig. 2(a). The output process
model was converted to BPMN notation to make the result
more visually understandable. As it can be seen, according
to the output process model, activities F and E can occur in
parallel. However, in the event log, they never occurred in the
same trace; hence, the process model is not precise and can
replay the behaviors that are not seen in the event log. This
happened because the method employed by Heuristics Miner
only considers the concurrency measures for the activities B
and C that are involved in a split, and it does not consider
the concurrency measures for activities E and F that are on
a path from the split to a join. Moreover, in the obtained
process model, there is no matching AND-join for the AND-
split that activities B and C are involved in. The obtained
process model can also replay some infrequent traces, such
as < A,D,G >; this leads to reducing the precision and

VOLUME 10, 2022 1117

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

FIGURE 1. (a) An example of a dependency graph, and (b) the event log related to the dependency graph.

FIGURE 2. The result of applying (a) Heuristics Miner, (b) Flexible Heuristics Miner, and (c) Fodina methods to determine
the split/join patterns of the dependency presented in Fig. 1 (to make the results more visually understandable, the
output process models were converted to BPMN notation).

increasing the visual complexity (and as a result decreasing
the understandability) of the process model.

Flexible Heuristics Miner [5] is another heuristic min-
ing method. The outputs of this method are in Causal nets
notation which, compared to Heuristic nets, uses a different
representation for the split/join patterns. Using a specific pro-
cedure, for each split point, this method counts the frequency
of appearance of each possible pattern (i.e., each subset of
activities that are involved in the split) after the split point.
For each join point, the same approach is used to calculate the
frequency of occurrence of each possible pattern (i.e., each
subset of activities involved in the join) before the join point.
Then, based on the achieved values, the method describes
the split/join patterns in terms of AND and XOR relations.

The method also does not guarantee the matching of AND-
splits and AND-joins. Back again to the previous example,
Fig. 2(b) shows the result of the determination of the depen-
dency graph split/join patterns by employing the Flexible
Heuristics Miner method. It can be seen that the obtained
process model suffers from issues that are similar to the
problems that exist in the process model obtained by applying
the Heuristics Miner method.

In 2012, [6] introduced a version of Heuristics Miner that
was dedicated to discovering process models from stream-
ing event data. This method uses an approach similar to
Heuristics Miner in determining split/join patterns; how-
ever, to make the algorithm stream-aware, it utilizes a dif-
ferent method for achieving the frequency of activities and

1118 VOLUME 10, 2022

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

FIGURE 3. (a) Representation of input bindings of activity
r : I (r) =

{{
j
}

,
{
h
}

,
{
g
}}

in Causal net notation, (b) representation
of input bindings of activity r : I (r) =

{{
j
}

,
{
h
}

,
{
g
}}

in BPMN notation
(c) representation of output bindings of activity r : O (r) =

{{
b, e

}
,
{
d , e

}}
in Causal net notation, and (d) Representation of output bindings of
activity r : O (r) =

{{
b, e

}
,
{
d , e

}}
in BPMN notation.

number of occurred direct successions. In 2015, [7] proposed
a version of Heuristics Miner that uses the information about
the time interval (i.e., start and end time) of occurrence of
events. This study uses the approach comparable to Heuristics
Miner for determining the split/join patterns; nonetheless,
it introduced a new concurrency measure that utilizes the
information about the time interval of events.

In 2017, [8] introduced another heuristic mining method
called Fodina. This method uses an approach similar to Flex-
ible Heuristics Miner for mining spit/join patterns. However,
it introduced a technique to filter less frequent patterns.
It also presented some configurable options to make the
method more robust to noise. Reference [9] and [10] also
introduced another improvement to Heuristics Miner; nev-
ertheless, their methods did not present any innovation in
detecting the split/join patterns of dependency graphs. They
presented a method to make the process models extracted
by Heuristic Miner structured and sound. Considering the
previously mentioned example, Fig. 2(c) depicts the result of
employing the Fodina method to determine the dependency
graph split/join patterns. Accordingly, it encountered issues
similar to the problems that exist in the results of Heuristics
Miner and Flexible Heuristics Miner methods. Nevertheless,
due to the utilized filtering technique, it cannot replay some
infrequent traces such as < A,D,G > and as a result, it is
visually simpler (and in consequence more understandable)
and enjoys higher precision.

To address the existing issues in determining the split/join
patterns of dependency graphs, this paper suggests utilizing
the potentials of mathematical programming, especially ILP.
Employing ILP for process mining applications is not a new
topic, and there are numerous studies in this regard, for
instance, [11]–[18]. However, to the best of our knowledge,
there is no study in the literature dedicated to employing ILP
for determining the split/join patterns of dependency graphs.
Therefore, the mentioned studies are not related to this study.

III. FORMAL DEFINITIONS
Definition 1 (Event Log (L)): An event log L is a multiset

of traces, each mapped onto one process instance. Supposing
TL as the set of all traces in L, each trace t ∈ TL is an ordered
set of events occurring for the process instance corresponding
to t , and |TL | is the total number of traces in the event log.
Each event is mapped to an activity a ∈ AL , where AL is the
finite set of all distinct activities that are present in L and |AL |
is the size of the set AL .
Definition 2 (Causal Net (C)): A Causal net is a mul-

tiset like C = (AC , as, ae,D, I ,O), in which AC is a
limited set of activities modeled by the causal net. Sup-
posing ρ (AC) =

{
A′ |A′ ⊆ AC

}
as a power set of AC ,

I : AC 7−→ {X ⊆ ρ (AC) |X = {∅} ∨ ∅ /∈ X} is the set of
possible input bindings for each activity, whereasO : AC 7−→
{X ⊆ ρ (AC) |X = {∅} ∨ ∅ /∈ X} is the set of possible output
bindings for each activity (input and output bindings are sets
of the subsets of activities). The Causal net should have
an initial activity as ∈ AC and a final activity ae ∈ AC ,
such that I (as) = {∅} and O (ae) = {∅}. The dependency
relation is expressed as D ⊆ AC × AC , such that D ={
(a1, a2) ∈ AC × AC | a1 ∈ ∪as∈I (a2)as ∧ a2 ∈ ∪as∈O(a1)as

}
,

and all of the activities in Graph (AC ,D), should be placed
on a path from as to ae.
The output bindings of each activity create certain obli-

gations, which are resolved by input bindings. For instance,
if r ∈ AC is an activity with I (r) = {{j} , {h} , {g}} (illus-
trated in Fig. 3(a)), it means that r can be executed if g,
h, or j has already been executed. In other words, it means
that g, h, and j are involved in an XOR-join. If O (r) =
{{b, e} , {d, e}} (illustrated in Fig. 3(c)), it means that after
execution of r either both of b and e, or both of d and e
should be executed in a parallel (concurrent) manner. In other
words, this binding expresses that b and e are involved in an
AND-split, it also expresses that d and e are involved in
an AND-split, whereas both of the AND-splits are involved
in an XOR-split. The equivalents of the bindings mentioned
above in BPMN notation are presented in Fig. 3(b) and
Fig. 3(d).
Definition 3 (Dependency Graph (G)): assuming a Causal

net C = (AC , as, ae,D, I ,O), the graph DG = (AC ,D) is
called the dependency graph of C . The function θ : a ∈
AL 7−→ AC maps each activity in the event log to an activity
in the Causal net/dependency graph.
Definition 4 (Succession and Direct Succession): Assume

a log L, activities a, b ∈ AL , and a trace t ∈ TL . For trace t , if b
occurred after occurring a, it means that b is a successor of a,
while, if b occurred immediately after occurring a, it means
that b is a direct successor of a. |a > b| is the total number of
direct successions of a by b that occurred for all t ∈ TL .

IV. PROPOSED ILP MODEL
This section introduces the proposed ILP model. The ILP
model takes a dependency graph, and its corresponding event
log as inputs and aims to find the optimal patterns for the
dependency graph splits/joins, considering all successions

VOLUME 10, 2022 1119

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

TABLE 1. The notations used in the rest of the paper.

that can be extracted from the event log. The proposed model
also guarantees the matching of the AND-splits and AND-
joins. In the rest of this section, first, Assuming the depen-
dency graph DG = (AG,DG) and event log L as the problem
inputs, the utilized notations and variables are defined in
Table 1 and Table 2. Then after presenting the definitions
and objective function, the model constraints are discussed.
Finally, the model constraints are presented in mathematical
terms.

It should be noted that according to Definition 2,
we assume that DG is connected and all activities in DG are
on a path from the initial to the final activity. However, DG
can contain cycle subgraphs/ loops (according to [19], a cycle
graph is a connected graph consisting of a single cycle/loop,
and the number of graph nodes is equal to the number of
graph arcs).

The proposed model identifies the optimal combination
of concurrent activities regarding the mentioned considera-
tions. The obtained result can be converted to Causal nets
input/output bindings by the method described in Section V.

A. DEFINITIONS UTILIZED IN THE ILP MODEL
In order to explain the proposed objective function and con-
straints, the following definitions are utilized.
Definition 5 (Concurrent Activities): in Causal net C =

(AG, as, ae,DG, I ,O) containing the dependency graph
DG = (AG,DG) activities a, b ∈ AG are supposed as
concurrent (i.e., they can occur concurrently) if:
• There is at least one AND-split from which there are
paths to both a and b such that at least one of the paths
from the AND-split to a has no common activities with
any of the paths from the AND-split to b.

1120 VOLUME 10, 2022

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

TABLE 2. The variables used in the proposed ILP model.

• There is at least one AND-join that from both a and b
there are paths to it, such that at least one of the paths
from a to the AND-join has not any common activities
with any of the paths from b to the AND-join.

Definition 6 (Divergent Activities): for each activity
a ∈ AG, the set of activities that is divergent from a is defined
as follows:

S (a) = {b ∈ AG | ∃x ∈ AG : (x, a) ∈ DG ∧ (x, b) ∈ DG}

(1)

For example, supposing the dependency graph presented
in Fig. 4, S (B) = {E,H}.
Definition 7 (Joined Activities): for each activity a ∈ AG,

the set of activities that are joined to a is defined as follows:

J (a) = {b ∈ AG | ∃x ∈ AG : (a, x) ∈ DG ∧ (b, x) ∈ DG} (2)

For example, supposing the dependency graph presented
in Fig. 4, J (D) = {G,H}.

Each set of the divergent or joined activities is the set of
activities that are respectively involved in a split or a join.
However, to express the proposed conditions and determine
the activities that can be concurrent more definitions are
required that are introduced as follows.
Definition 8 (Corresponding Divergent Activities): for

activities e, f ∈ AG, the set of the ordered pair of activities
that are their corresponding divergent activities is defined as
follows:

MS (e, f) = {(a, b) ∈ AG × AG|a ∈ S (b)

∧
(
plf a,e = 1 ∨ a=e

)
∧plf a,f = 0∧plf b,e=0

∧
(
plf b,f = 1 ∨ b = f

)
(3)

For example, supposing the dependency graph presented
in Fig. 4,MS (C,F) = {(B,E)} andMS (H ,G) = {(H ,E)}.

For activities e, f ∈ AG, The above definition determines
the pair of activities (a, b) ∈ AG × AG that are involved in
a split, such that: 1) there are paths from a to e, and from b
to f . 2) In the graph obtained after removing the loops of the
original input dependency graphDG, there should be no paths
from a to f , or from b to e. The second condition is applied to

ensure that none of the paths that are from a to e have common
activity with any of the paths from b to f . This condition
needs to be guaranteed since this definition is intended to be
utilized in the constraints determining the activities that can
be concurrent, and according to Definition 5, it is one of the
required conditions that determine whether two activities can
be concurrent or not. For this purpose, the paths in the graph
obtained after removing the loops of the dependency graph
DG are used instead of the paths in the original dependency
graph DG, because in the original dependency graph, the
existence of a path from a to f , or from b to e can be due to
loops; thus, it is not necessarily an indicator of the presence
of a common activity in at least one of the paths from a to e
with at least one of paths from b to f . Deriving the loop-free
graph from the original dependency graph is performed so
that only the loop closure arcs are removed, and no other arcs
are removed. The details about the employed procedure for
removing the loop closure arcs are presented in the appendix.
After obtaining the graph, detecting the graph paths is simply
possible by various methods in the literature for achieving
reachability matrix, like Warshall’s Algorithm [20]. Simi-
larly, the following definitions are proposed.

FIGURE 4. An example of a dependency graph.

Definition 9 (Corresponding Joined Activities): for activi-
ties e, f ∈ AG the set of the ordered pair of activities that are
their corresponding joined activities is defined as follows:

MJ (e, f) = {(c, d) ∈ AG × AG|c ∈ J (d)

∧
(
plf e,c=1 ∨ e=c

)
∧ plf e,d=0 ∧ plf f ,c=0

∧
(
plf f ,d = 1 ∨ f = d

)
(4)

VOLUME 10, 2022 1121

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

For example, supposing the dependency graph presented
in Fig. 4,MJ (C,F) = {(D,G)} andMJ (H ,C) = {(H ,D)}.
Definition 10 (Activities on the Different Paths from Diver-

gent Activities): for divergent activities a ∈ AG and b ∈ S (a),
the set of ordered pair of activities that are on the different
paths from a and b is defined as follows:

PS (a, b) = {(e, f) ∈ AG × AG|
(
plf a,e = 1 ∨ e = a

)
∧plf a,f =0 ∧ plf b,e=0 ∧

(
plf b,f =1 ∨ f =b

)
(5)

For example, supposing the dependency graph presented
in Fig. 4, PS (B,E) = {(B,E) , (B,F) , (B,G) , (C,E) ,
(C,F) , (C,G) , (D,E) , (D,F) , (D,G).
Definition 11 (Activities on the Different Paths to Joined

Activities): for joined activities c ∈ AG and d ∈ J (c), the set
of ordered pair of activities that are on different paths to c and
d is defined as follows:

PJ (c, d) = {(e, f) ∈ AG × AG|
(
plf e,c = 1 ∨ e = c

)
∧plf e,d=0 ∧ plf f ,c=0 ∧

(
plf f ,d=1 ∨ f =d

)
(6)

For example, supposing the dependency graph presented
in Fig. 4, PJ (D,G) = {(D,E) , (D,F) , (D,G) , (C,E) ,
(C,F) , (C,G) , (B,E) , (B,F) , (B,G).
Definition 12 (Support): Support (i) is the frequency of

occurring i ∈ AL in L, whereas, Support (i > j) is the total
number of direct successions of i ∈ AL by j ∈ AL that
happened for all t ∈ TL . In fact, it is equal to |i > j| (see
Definition 4).

B. OBJECTIVE FUNCTION
The proposed objective function is inspired by two of the
most prominent measures in assessing the quality of process
models, namely, replay fitness and precision. The replay fit-
ness describes towhat extent the processmodel can reproduce
the behaviors that exist in the event log. On the other hand,
the precision describes to what extent the behaviors that the
process model can reproduce are present in the event log.
Replay fitness and precision are complementary measures,
and a model with high replay fitness but low precision (and
vice versa) is not an appropriate descriptor for the behaviors
in the event log. Thus, the proposed objective function con-
siders both measures.

To consider replay fitness and precision, two ideas are
utilized. For event log L and process model C , the more
C allows the direct successions that exist in L, the higher
the replay fitness. Similarly, the more C allows the direct
successions that do not exist in L, the lower the precision.
To apply these ideas, first, the direct successions allowed by
a process model should be identified. The following rules are
employed for this purpose:
• For i, j ∈ AL ,if in the process model there is an arc from
θ (i) to θ (j), it means that the model allows the direct
succession of θ (i) by θ (j).

• For i, j ∈ AL , if in the process model θ (i) and θ (j)
are concurrent, it means that the model allows the direct
succession of θ (i) by θ (j), and it also allows the direct
succession of θ (j) by θ (i).

Hence, the formula presented in (7) is proposed for the
objective function. By optimizing this objective function,
it can be ensured that maximum precision is achieved while
attaining a certain level of replay fitness.

Min
∑

e∈AG

∑
f ∈AG

he,f × APene,f

+

∑
e∈AG

∑
f ∈AG

(1− are,f − he,f)× NAPene,f (7)

where, are,f is a binary parameter that if in the input depen-
dency graph DG, there is an arc from e to f , it is equal to
one; otherwise, it is equal to zero. he,f is a binary variable
that if it is equal to one, it means that in the output process
model e and f are concurrent, otherwise, e and f cannot be
concurrent. APene,f and NAPene,f are penalties assigned to
respectively allowing and not allowing the direct succession
of e by f in the output process model. Therefore, the first
part of the objective function relates to optimizing the model
precision, whereas the second part pertains to obtaining a
certain level of fitness. Prior to explaining the calculation
of APene,f and NAPene,f , the term Confidence, which is
borrowed from the data mining (association rule learning)
literature [21], should be introduced. For event log L and
activities i, j ∈ AL , Confidence (i > j) is an indicator of
causal dependency between i and j. It can be calculated as
follows:

Confidence(i > j) = Support(i > j)/Support(i) (8)

Support(i) and Support(i > j) are previously described
in Definition 12. It is intended that the higher the
Confidence(i > j), the lower the penalty assigned to allowing
the direct succession of θ (i) by θ (j), and the higher the
penalty assigned to not allowing the direct succession of
θ (i) by θ (j).Thus, the proposed formulation for APene,f and
NAPene,f are as follows:

Apenθ(i),θ(j) =

MConfidence(i > j) = 0
1− Confidence(i > j)0

< Confidence(i > j) < th
0Confidence(i > j) ≥ th

(9)

NAPenθ(i),θ (j) =
{
0Confidence(i > j) < th
MConfidence(i > j) ≥ th

(10)

where, th is a user-defined threshold. Considering the formu-
lation of APene,f and NAPene,f , the first part of the objective
function guarantees that only for allowing direct successions
with Confidence(i > j) higher than th, no penalty is included
in the objective function. (Since in the dependency graph,
the arcs are predetermined, allowing direct succession in
the output process model is possible only through setting
activities as concurrent). For allowing the other direct suc-
cessions, a penalty will be included in the objective function,
especially when Confidence(i > j) is equal to zero, a very

1122 VOLUME 10, 2022

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

high penalty is included in the objective function for allowing
the direct succession of θ (i) by θ (j). The second part of the
objective function ensures that for each θ (i) , θ (j) ∈ AG with
Confidence(i > j) higher than th, the direct succession of θ (i)
by θ (j) should be allowed, i.e., there should be an arc from
θ (i) to θ (j), or θ (i) and θ (j) should be concurrent; other-
wise, a very high penalty will be included in the objective
function.

Therefore, users can determine their preference for fitness
or precision by utilizing the th threshold. The higher the th,
the higher the preferred precision, and the lower the preferred
replay fitness.

C. DISCUSSING CONSTRAINTS
In this section, the model constraints are discussed and
explained. According to the aim of the proposed model
that is mentioned above, we proposed three sets of required
conditions. In Section 3.5, the conditions are formulated in
mathematical terms. The proposed required conditions are as
follows:
Conditions Related to the Matching of AND-Splits and

AND-Joins:
Condition 1 The divergent activities a ∈ AG and b ∈
S(a) can be concurrent only if for them, there exist at
least a pair of corresponding joined activities c ∈ AG
and d ∈ J (c) that are concurrent.
Condition 2 The joined activities c ∈ AG and d ∈ J (c)
can be concurrent only if for them, there exist at least
a pair of corresponding divergent activities a ∈ AG and
b ∈ S(a) that are concurrent.

Conditions Related to the Accordance of Split/Join
Patterns With the Activities That Are Identified as
Concurrent

Condition 3 If divergent activities a ∈ AG and b ∈ S(a)
are concurrent and their corresponding joined activities
c ∈ AG and d ∈ J (c) are also concurrent, then all
activities that are on a path from a to c should be
concurrent with all activities that are on a path from
b to d .
Condition 4 The activities e, f ∈ AG can be concurrent
only if they have at least one pair of corresponding
divergent activities a ∈ AG and b ∈ S(a) that are
concurrent.
Condition 5 The activities e, f ∈ AG can be concurrent
only if they have at least one pair of corresponding
joined activities c ∈ AG and d ∈ J (c) that are
concurrent.
Condition 6 If for the activities e, f ∈ AG there
exist no corresponding divergent activities or corre-
sponding joined activities, then e and f cannot be
concurrent.

Condition Related to the Accordance of the Activities
That Are Identified as Concurrent With Each Other

Condition 7 If for the activities e, f ∈ AG, e is
identified as concurrent with f , then f should also be
identified as concurrent with e.

D. CONSTRAINTS IN MATHEMATICAL TERMS
The conditions discussed in Section 3.4 are formulated as
follows:

∀a, b ∈ AG : b ∈ S (a) ,∀c, d : (c, d) ∈ MJ (a, b) :

hc,d − r(a,b),(c,d) ≥ 0 (11)

∀a, b ∈ AG : b ∈ S (a) :

ha,b ≤
∑

(c,d)∈MJ (a,b)

r(a,b),(c,d) (12)

∀c, d ∈ AG : d ∈ J (c) ,∀a, b : (a, b) ∈ MS (c, d) :

ha,b − q(a,b)(c,d) ≥ 0 (13)

∀c, d ∈ AG : d ∈ J (c) :

hc,d ≤
∑

(a,b)∈MS(c,d)

q(a,b),(c,d) (14)

∀a, b ∈ AG : b ∈ S(a),∀c, d ∈ AG : d ∈ J (c),

∀e, f : (e, f) ∈ PS (a, b) ∧ (e, f) ∈ PJ (c, d) :

he,f ≥ ha,b + hc,d − 1 (15)

∀e, f ∈ AG,∀a, b : (a, b) ∈ MS (e, f) :

ha,b − u(a,b),(e,f) ≥ 0 (16)

∀e, f ∈ AG :

he,f ≤
∑

(a,b)∈MS(e,f)

u(a,b)(e,f) (17)

∀e, f ∈ AG,∀c, d : (c, d) ∈ MJ (e, f) :

hc,d − v(c,d),(e,f) ≥ 0 (18)

∀e, f ∈ AG :

he,f ≤
∑

(c,d)∈MJ (e,f)

v(c,d),(e,f) (19)

∀e, f ∈ AG : MS (e, f) = ∅ ∨MJ (e, f) = ∅ :

he,f = 0 (20)

∀e, f ∈ AG :

he,f = hf ,e (21)

∀a, b, c, d, e, f ∈ AG :

Binary : ha,b, r(a,b),(c,d), q(a,b),(c,d), u(a,b),(e,f), v(c,d),(e,f)
(22)

Equations (11) and (12) ensure that Condition (1) is met,
while; (13) and (14) guarantee that Condition (2) is met.
Equation (15) pertains to the trueness of Condition (3).
Meeting Condition (4) is guaranteed by (16) and (17),
whereas (18) and (19) guarantee meeting Condition (5).
Equations (20) and (21) pertain respectively to the trueness of
Conditions (6) and (7), and finally, (22) determines the types
of the variables.

V. CONVERTING THE ILP MODEL VARIABLES TO CAUSAL
NET INPUT/OUTPUT BINDINGS
The proposed ILP model determines the optimal combina-
tion of concurrent activities considering several conditions.
However, to make the ILP model result applicable, it should
be converted to the split/join patterns representation of a
process modeling notation. This allows converting the input

VOLUME 10, 2022 1123

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

FIGURE 5. The result of applying the proposed method to determine the split/join patterns of the
dependency graph presented in Fig. 1 (to make the result more visually understandable, the output process
model was converted to BPMN notation).

dependency graph to a process model. For this purpose,
we decided to convert the result of the ILP model to the
split/join patterns representation of Causal nets since it is
the most popular process modeling notation among heuristic
mining methods. According to Definition 2, in this notation,
the split/join patterns are presented as input/output bindings
of activities. Therefore, this section proposes a method to
infer the input/output bindings from the identified concurrent
activities. By adding the input/output bindings to the input
dependency graph, the dependency graph is simply converted
to a Causal net.

The proposed method for converting the ILP model results
to Causal net input/output bindings is similar to the technique
used by Heuristics Miner. Heuristics Miner method identifies
the concurrent divergent/joined activities and then based on
it; the split/join patterns are built. This is comparable to the
approach that we intend to utilize; however, the Heuristics
Miner representation for split/join patterns is somehow dif-
ferent from Causal net notation. Therefore prior to applying
the procedure used by Heuristics Miner, we need to modify it
to make it able to build Causal net input/output bindings. The
proposed modified procedure is presented in Algorithm 1.

Supposing the dependency graph and the event log pre-
sented in Fig. 1 as the inputs of the proposed ILP model,
Fig. 5 shows the process model achieved after applying Algo-
rithm 1 to the outputs of the ILP model. To make the result
more visually understandable, the output process model was
converted to BPMN notation. It can be seen that in contrast to
the results of HeuristicsMiner, Flexible HeuristicsMiner, and
Fodina methods, the process model obtained by the proposed
method cannot replay the behaviors that are infrequent or
not observed in the event log. Therefore, the result of the
proposed method has higher precision than the mentioned
methods. In addition, for the AND-split in the process model,
there is a matching AND-join and vice versa. Hence the
proposed method can handle the previously mentioned defi-
ciencies that exist in the current methods.

VI. EXPERIMENTAL RESULTS
This section presents the evaluations made to assess the pro-
posed method. To the best of our knowledge, determining
the split/join patterns of dependency graphs has been done
only as a step of heuristic mining process model discov-
ery. Therefore, in this paper, we compare the performance
of the proposed method with the methods of detecting the
dependency graph split/join patterns used by the most promi-
nent heuristic mining algorithms, including Heuristics Miner
(HM), Flexible Heuristics Miner (FHM), and Fodina.

Algorithm 1 TheModified Version of the Procedure Used by
Heuristics Miner for Building Input/Output Bindings From
Activities Identified as Concurrent and the Input Dependency
Graph
Input: dependency graph G = (AG,DG),

and the optimal values of ha,b : ∀a, b ∈ AG
Output: I (a),O(a) : ∀a ∈ AG
For each a ∈ AG do:

For dir ∈ {InBindings,OutBindings} do:
B (a)← {}
If dir = InBindings then:
X ← {b ∈ AG|(b, a) ∈ DG}

If dir = OutBindings then:
X ← {b ∈ AG|(a, b) ∈ DG}

For index ∈ {1, 2} do:
For xi ∈ X do:

flag1← 0
For Bj(a) ∈ B(a) do:

flag2← 1
For ak ∈ Bj(a) do:

If hxi,ak = 0 then:
flag2← 0

If flag2 = 1 then:
Bj(a)← Bj(a) ∪ {xi}
flag1← 1

If flag1 = 0 then:
B(a)← B(a) ∪ {{xi}}

If dir = InBindings then:
I (a)← B(b)

If dir = OutBindings then:
O(a)← B(a)

Tomake the assessments, 27 event logswere utilizedwhich
their specifications are presented in Table 3. Rows 1 to 12 of
the table correspond to all publicly available event logs used
in the experiments performed by the review and benchmark
paper [22]. This set of event logs consists of 10 BPI Chal-
lenge (BPIC) event logs (called BPICYX, where Y is the
year that the related challenge of the event log took place),
as well as ‘‘real events in a hospital for patients with sepsis’’
(called SepsisCases) [23] and ‘‘road traffic fine management
process)’’ (called RTFMP) [24] event logs.

Moreover, the event log of ‘‘BPI Challenge 2011’’ [25] was
also used in the experiments of this section. This event log
consists of the actual events that occurred for the patients in
a Dutch hospital. However, the event log is very heteroge-
neous; hence, according to the suggestion of the challenge

1124 VOLUME 10, 2022

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

winner [26], the event log was decomposed into some smaller
logs by filtering the original log according to the ‘‘diagnosis
code’’ attribute of instances. There were some infrequent
activities in the obtained event logs, and even some activities
appeared only once. Thus, using a ProM6.6 plugin, namely
‘‘Filter LogUsing SimpleHeuristics’’, 2%of the less frequent
activities were removed for each obtained event log. The
achieved event logs are called BPIC11X(rows 13 to 20 of
Table 3), where BPIC11X is derived from the event log
obtained by considering only the events that took place for the
patients with ‘‘diagnosis code=X’’. For instance, BPIC11M16
is the event log achieved after removing 2% of the less
frequent activities of the events that occurred for the patients
with ‘‘diagnosis code=M13’’.

Four other real event logs were also utilized, including:
‘‘event log obtained from the financial modules of the ERP
system of a regional hospital’’ (called HospBill) [27], ‘‘Pro-
duction’’ (called production) [28], ‘‘Receipt phase of an envi-
ronmental permit application process’’ (called Receipt) [29],
and ‘‘edited_hh104_labour (from Activities of daily living
of several individuals dataset)’’ (called DailyActs) [30] (row
21 to 24 of Table 3). In addition, to further test the perfor-
mance of the proposed method in dealing with highly noisy
event logs, three synthetic event logs that have been used
by [8] were also utilized (rows 25 to 27 of Table 3). The
event logs are called ‘‘randsAlBmCaD’’, where, B and C
are respectively, average length and standard deviation of the
event log traces. The traces are created by random selection
of activities out of a set of activities with size D.

Hence, the event logs are in different sizes and cover a wide
area of applications such as finance, production, IT manage-
ment, healthcare, daily activities of people, and government
services. All real-world event logs are publicly available at
4TU Centre for Research Data.1

In order to make fair comparisons for each event log, it is
required that the same dependency graphs be used as the input
of all methods. Hence, in the first step, after adding artificial
initial/final activity to all traces of the event logs without
unique initial/final activity, the method used by Heuristics
Miner for dependency graph construction was applied to
achieve dependency graphs for each event log. This was done
using the ‘‘Mine for a Heuristic Net Using Heuristic Miner’’
plugin for ProM 6.4 software. To perform evaluations with
more input data for each event log, two dependency graphs
were constructed. For this purpose, two different configura-
tions of the HM algorithm were employed.

The first and second dependency graphs are achieved by
setting the ‘‘dependency threshold’’ parameter to respec-
tively 80 and 100. These values were used because the
dependency threshold levels lower than 80 generally had not
enough efficiency in dealing with noises; while, the depen-
dency graphs constructed by using the dependency thresh-
old levels between 80 and 100 were usually identical with
the dependency graphs achieved by setting the dependency

1https://data.4tu.nl/

TABLE 3. Characteristics of the event logs utilized in the experiments.

threshold to 80 or 100. For event log E, the dependency
graphs achieved by setting the dependency threshold parame-
ter to 80 and 100 are called E(dt80) and E(dt100) respectively.

For each of the dependency graphs, the different methods
were applied to determine split/join patterns and convert the
dependency graph to a process model (For the proposed
method, the th threshold was set to 0.3). Then, the obtained
processmodels were compared through different experiments
considering three different dimensions in assessing the qual-
ity of process models consisting of replay fitness, precision,
and simplicity.

The replay fitness and precision have been described in
Section 3.3. To evaluate the replay fitness of process mod-
els, the ‘‘ContinuosParsingMeasure (CPM)’’ measure was
utilized and implemented as it is described in [4]. This mea-
sure is among the most well-known methods in assessing
the replay fitness of Causal/Heuristic nets. However, since
there is no prominent method for evaluating the precision of
Causal/Heuristic nets to the best of our knowledge, we con-
verted the obtained process models to their equivalent Petri
nets prior to assessing their precision. Then, the precision
measure proposed by [31] was utilized to evaluate the pre-
cision of obtained Petri nets. This method is popular in the
literature and has been cited by many studies.

In the experiments, at first, all attained process models
were saved in ‘‘.flex’’ format. Next, by means of the ‘‘Con-
vert Flexible Models to Petri Nets’’ plugin for ProM6.6, the
equivalent Petri nets for the process models were achieved,
and their extra invisible transitions were removed by using
the ‘‘Reduce Silent Transitions’’ plugin for ProM 6.6. Finally,

VOLUME 10, 2022 1125

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

TABLE 4. The quality measures obtained by the methods for each input dependency graph and its corresponding event log.

to apply the mentioned precision measure, the ‘‘Check Con-
formance Using ETC Conformance’’ plugin for ProM6.6
was employed. The mentioned replay fitness and precision
measures are calledCPMF and ETCP in the rest of this paper.
However, as mentioned before, replay fitness and precision
are complementary measures and a process model with high
replay fitness and low precision is not a suitable descriptor for
the event log; this is also true of a process model with high
precision but low replay fitness. Hence, as is prevalent in the
literature, instead of using both replay fitness and precision,
the process models were compared according to the F-score
measure, which is the harmonic mean of CPMF and ETCP.
The F-score of a process model takes a very low value if
only one of the CPMF or ETCP measures of the process

model is very low, even when the other measure is very high.
Using the F-score measure allows simultaneous comparison
of the replay fitness and the precision of outputs by only one
measure.

The other quality dimension that was assessed in the exper-
iments was simplicity. According to the simplicity dimension,
the process models should be as simple as possible. In other
words, the simplest process model that can properly describe
the behaviors in the event log is desired [1]. Since the same
dependency graphs were used as the input of all methods, the
Control Flow Complexity (CFC) [32] measure was utilized to
compare the simplicity of the process models. This measure
assesses the complexity of process models based on their split
patterns; hence, it is suitable for our experiments. Obviously,

1126 VOLUME 10, 2022

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

TABLE 4. (Continued.) The quality measures obtained by the methods for each input dependency graph and its corresponding event log.

the lower the CFC, the higher the simplicity of process mod-
els, and vice versa.

In addition to the measures mentioned above, for each
obtained process model, the number of cases each pair of
concurrent divergent/joined activities have no matching pairs
of concurrent joined/divergent activities was also calculated
(calledNMAND). To further assessments, in our experiments,
the NMAND measures attained for each method were also
compared. The quality measures obtained by each method for
each input dependency graph and its corresponding event log
are presented in Table 4. For each input, the best-obtained
measure is boldfaced. According to the table, generally, the
proposed method outperformed the other methods in terms
of F-score, CFC, and NMAND measures. For each input,
considering the outputs with the best result in all terms of
F-score, CFC, and NMAND measures as the overall best
output, the cases in which the proposed method attained the

overall best output are highlighted in gray. Accordingly, the
proposed method obtained the overall best output for 42 out
of 54 cases (i.e., 78%). This is an impressive performance,
especially when it is considered that HM, FHM, and Fodina
methods attained the overall best output in respectively 0, 2,
and 4 cases (i.e., 0%, 4%, and 7%). Therefore, in this regard,
there is a huge gap in the performance of the proposedmethod
with the performance of the other methods.

The number of cases that each method attained the
best/second-best result for a quality measure is presented in
Table 5. In addition, for each input and quality measure, the
distance between the measure attained by each method and
the best-attained measure was calculated. For each method,
the averages of the distances are presented in Table 6. In both
Tables 5 and 6, the best result for each measure is boldfaced.

Accordingly, the FHM method showed the best perfor-
mance in attaining the outputs with high CPMF, since it

VOLUME 10, 2022 1127

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

FIGURE 6. The process models attained by applying (a) Heuristics Miner, (b) Flexible Heuristics Miner, (c) Fodina, (d) the proposed method to
BPIC14f (dt80) dependency graph.

1128 VOLUME 10, 2022

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

TABLE 5. The frequency of the cases each method achieved the best/second-best quality measure.

TABLE 6. The average distance of the quality measures obtained by each method from the best-obtained measures.

obtained the best CPMF measure for all cases. However,
the FHM method achieved this performance at the cost of
attaining the ETCP, F-score, CFC, and NMAND measures
far lower than the other methods. Especially, the F-score
measures achieved by the FHMmethod were generally lower
than the result of the other methods and had the largest
average distance to the best result. It means that at the cost
of obtaining precision measures significantly lower than the
other methods, the FHM method achieved fitness measures
slightly higher than the other methods. Hence, despite attain-
ing high fitness, the outputs achieved by the FHM method
were not a good descriptor for their corresponding event logs.

On the other hand, the proposed method showed the worst
performance for theCPMFmeasure. Nevertheless, according
to Table 6, on average, the proposed method attained CPMF
measures 0.06 lower than the best value, whereas it showed
the best performance for ETCP, F-score, CFC, and NMAND
measures in both terms of frequency of attaining the best
result and average distance from the best result. In both
terms, there was a large gap between the performance of
the proposed method and the other methods. Thus, at the
cost of a slight reduction in CPMF measure, the proposed
method successfully attained far higher ETCP, F-score,CFC,
NMANDmeasures. Especially, the F-score measures attained
by the proposed method had the lowest average distance
from the best result, and they were generally higher than
the other method. Therefore, compared to the other methods,
the slightly lower CPMF measures achieved by the proposed
method are justifiable because this led to achieving far higher
ETCP measures. Hence, considering all measures of replay
fitness, precision, simplicity, and matching of AND-splits
and AND-joins, the proposed method showed a significantly
better performance than the other methods. To enable a visual
comparison of the results of each method, as an instance,
the process model obtained by applying each method to

TABLE 7. Some statistics about the problem-solving times.

BPIC14f(dt80) dependency graph is presented in Fig. 6. The
results were converted to BPMN notation to make the results
more visually understandable. Accordingly, it can be seen that
the result of the proposed method enjoys far less complexity
than the results of the other methods and, in consequence,
is more understandable; At the same time, according to
Table 4, it has the highest F-score.

Finally, since the application of ILP may raise a con-
cern about the problem-solving time, Table 7 presents some
statistics about the time spent on solving the proposed ILP
model for the above-mentioned real-world inputs. All exper-
iments were performed on a PC with Intel(R) Core(TM) i5
CPU @2.40GHz and 8GB RAM.

According to Table 7, in the worst case, the problem was
solved in 202.92 seconds which can be considered as an
acceptable time, especially considering the fact that some
of the utilized event logs are of large size (in terms of the
number of unique activities, events, and traces). The median
and minimum of problem-solving times were far lower. The
real-world event logs used in the experiments of this paper
cover a wide range of application areas and event log sizes;
thus, it is anticipated that the ILP model can be solved
in a short or at least acceptable time for most real-world
applications.

VII. CONCLUSION AND FUTURE WORKS
The Heuristic mining methods are among the most widely
used methods of process discovery due to several advantages,

VOLUME 10, 2022 1129

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

such as their ability to deal with noises and unstructured
processes. This category of methods is mainly composed of
two main steps 1) constructing dependency graph, 2) deter-
mining the split/join patterns of the dependency graph. There
are some methods in the literature to mine the split/join
patterns of dependency graphs; nevertheless, all of them use
only the event log succession information about the activities
involved in the splits/joins. Whereas the types of splits/joins
determine whether the activities on the paths between splits
and joins can occur concurrently or not. In addition, existing
methods determine the split/join patterns in a local manner,
and when detecting the pattern of a split/join, the effect it
has on the overall quality of the process model is neglected.
Therefore, the result of the existing methods is prone to
be non-optimal.

On the other hand, the existing methods cannot guarantee
that there is at least a matching AND-join for each AND-split,
and vice versa. Consequently, some of the split/join patterns
can be unable to be activated. To address the mentioned
issues, in this paper, for the first time, an ILP model for
determining the split/join patterns of dependency graphs is
introduced, which optimizes the split/join patterns regarding
all successions that exist in the event log. The proposed
objective function is inspired by two of the process model
quality dimensions named replay fitness and precision. At the
same time, the constraints of the ILP model ensure that the
dependency graph AND-splits match the AND-joins. Fur-
thermore, by means of introducing appropriate constraints,
the proposed ILP model can be made more flexible, and it
can also be capable of using domain knowledge. The input
of the proposed ILP model is a dependency graph and its
corresponding event log, whereas its output is the activities
identified as concurrent. To convert the outputs of the ILP
model to the split/join patterns, a modified version of the
method has been used by the Heuristics Miner algorithm is
employed.

The proposed method is evaluated against the most
prominent methods of determining split/join patterns of
dependency graphs. Accordingly, it outperformed the other
methods in terms of fitness, precision, simplicity, and the
matching of AND-splits and AND-joins.

Some constraints can be introduced in future works to
make the method more flexible. In addition, some con-
straints for utilizing domain knowledge can also be intro-
duced. Another potential research topic can be improving the
technique employed for converting the ILP model outputs to
split/join patterns.

SUPPLEMENTARY MATERIAL
In this paper, GAMS and MATLAB were employed to
implement the proposed method and perform experiments.
The codes utilized in this study are available in the
following repository: https://github.com/MaTavakoli/ ILP_
DetermineSplitJoinPatterns.git, to allow other researchers to
utilize and make comparisons in future studies.

Algorithm 2 The Proposed Procedure to Remove Loop Clo-
sure Arcs From the Original Input Dependency Graph DG
Input: dependency graph DG = (AG,DG),

the parameters Pa,b : ∀a, b ∈ AG which
represents paths inDG, and as as the initial activity
of DG

Output: LoopFreeDG
DistFromInitial ← DetecDistFromInitial(AG,DG, as)
LoopFreeDG← DG
For (a, b) ∈ AG × AG do:
If Pa,b = 1 and Pb,a = 1 then:
If DistFromInitial(a) > DistFromInitial(b) then:
LoopFreeDG(a, b)← 0

Function DetectDistFromInitial (AG,DG, as)
DistFromInitial (as)← 0
DeterminedDistSet ← {as}
CurrentDistSet ← {as}
CurrentDist ← 0
While DeterminedDistSet 6= AG do:
CurrentDist ← CurrentDist + 1
NewCurrentDistSet ← {}
For a ∈ CurrentDistSet do:
X ← {b ∈ AG| (a, b) ∈ DG} − DeterminedDistSet
For xi ∈ X do:
DistFromInitial(xi)← CurrentDist
NewCurrentDistSet←NewCurrentDistSet∪{xi}
DeterminedDistSet ← DeterminedDistSet∪{xi}

CurrentDistSet ← NewCurrentDistSet
Return DistFromInitial

APPENDIX: APPLIED PROCEDURE TO DERIVE THE
LOOP-FREE GRAPH FROM THE ORIGINAL
DEPENDENCY GRAPH
This appendix describes the procedure applied for deriving
the loop-free graph from the original dependency graph. For
this purpose, an assumption is made that all activities are
reachable from the initial activity of the dependency graph.
This assumption is also included in the definitions of Causal
nets and dependency graphs (Definitions 2 and 3). If there is
no unique initial activity in the event log, it can be added arti-
ficially to all traces in the event log, and then the dependency
graph can be constructed.

In the proposed procedure at the first step, the minimum
distance of each activity a ∈ AG from the initial activity of
DG (as) is calculated. Next, the existence of paths between
activities in the original dependency graph is detected by
Warshall’s Algorithm. For activities a, b ∈ AG, Pa,b is equal
to one if in DG there is a path from a to b; otherwise, it is
equal to zero. If for activities a, b ∈ AG, both Pa,b and
Pb,a are equal to one, it means that in DG, a and b are
involved in a loop. We assume that the origin activity of each
loop closure arc is more distant from the initial activity than
the destination activity of the arc. Hence, in the final step,
whenever two activities are identified as being involved in a
loop, and there is/are arcs/arcs between them, the proposed
procedure removes the arc that its origin activity is more

1130 VOLUME 10, 2022

M. Tavakoli-Zaniani, M. R. Gholamian: Improving Heuristic Process Discovery Methods

distant from the initial activity than its destination activity (if
there exist such an arc in DG). Supposing the new set of arcs
as D′G,the loop-free graph is DG′ =

(
AG,D′G

)
. The pseudo-

code of the proposed procedure is presented in
Algorithm 2. Here again, the existence of paths between

activities in DG′ =
(
AG,D′G

)
can be detected by Warshall’s

method.

REFERENCES
[1] W. M. P. Aalst, Process Mining: Discovery, Conformance and Enhance-

ment of Business Processes. Berlin, Germany: Springer-Verlag, 2011.
[2] C. D. S. Garcia, A. Meincheim, E. R. Faria Junior, M. R. Dallagassa,

D. M. V. Sato, D. R. Carvalho, E. A. P. Santos, and E. E. Scalabrin,
‘‘Process mining techniques and applications—A systematic mapping
study,’’ Expert Syst. Appl., vol. 133, pp. 260–295, Nov. 2019, doi:
10.1016/j.eswa.2019.05.003.

[3] E. Rojas, J. Munoz-Gama, M. Sepúlveda, and D. Capurro, ‘‘Process
mining in healthcare: A literature review,’’ J. Biomed. Inform., vol. 61,
pp. 224–236, Jun. 2016, doi: 10.1016/j.jbi.2016.04.007.

[4] A. Weijters, W. M. P. Aalst, and A. Medeiros, ‘‘Process mining
with the Heuristics Miner-algorithm,’’ Eindhoven Univ. Technol.,
Eindhoven, The Netherland. Tech. Rep. BETA publicatie:
Working Papers, Jan. 2006, vol. 166. [Online]. Available:
https://research.tue.nl/en/publications/process-mining-with-the-
heuristicsminer-algorithm

[5] A. J. M. M. Weijters and J. T. S. Ribeiro, ‘‘Flexible Heuristics Miner
(FHM),’’ in Proc. IEEE Symp. Comput. Intell. Data Mining (CIDM), Paris,
France, Apr. 2011, pp. 310–317, doi: 10.1109/CIDM.2011.5949453.

[6] A. Burattin, A. Sperduti, and W. M. P. van der Aalst, ‘‘Heuristics miners
for streaming event data,’’ 2012, arXiv:1212.6383.

[7] A. Burattin, ‘‘Heuristics Miner for time interval,’’ in Process Mining
Techniques in Business Environments: Theoretical Aspects, Algorithms,
Techniques and Open Challenges in Process Mining, A. Burattin, Ed.
Cham, Switzerland: Springer, 2015, pp. 85–95.

[8] S. K. L. M. vanden Broucke and J. DeWeerdt, ‘‘Fodina: A robust and flex-
ible heuristic process discovery technique,’’ Decis. Support Syst., vol. 100,
pp. 109–118, Aug. 2017, doi: 10.1016/j.dss.2017.04.005.

[9] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno,
‘‘Automated discovery of structured process models: Discover struc-
tured vs. discover and structure,’’ in Conceptual Modeling, I. Comyn-
Wattiau, K. Tanaka, I.-Y. Song, S. Yamamoto, and M. Saeki, Eds. Cham,
Switzerland: Springer, 2016, pp. 313–329.

[10] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, and G. Bruno,
‘‘Automated discovery of structured process models from event logs:
The discover-and-structure approach,’’ Data Knowl. Eng., vol. 117,
pp. 373–392, Sep. 2018, doi: 10.1016/j.datak.2018.04.007.

[11] M. Prodel, V. Augusto, X. Xie, B. Jouaneton, and L. Lamarsalle, ‘‘Dis-
covery of patient pathways from a national hospital database using process
mining and integer linear programming,’’ in Proc. IEEE Int. Conf. Autom.
Sci. Eng. (CASE), Gothenburg, Sweden, Aug. 2015, pp. 1409–1414.

[12] V. S. J. Zelst, V. B. F. Dongen, and W. M. P. Aalst, ‘‘ILP-based
process discovery using hybrid regions,’’ presented at the Int.
Workshop Algorithms Theories Anal. Event Data (ATAED), Brussels,
Belgium, Jun. 2015. [Online]. Available: https://research.tue.nl/
nl/publications/ilpbased-process-discovery-using-hybrid-
regions(dab52c29-3467-463c-a62e-74c73c092221).html

[13] M. Prodel, ‘‘Process discovery, analysis and simulation of clinical path-
ways using health-care data,’’ Ph.D. dissertation, École desMines de Saint-
Étienne, Université de Lyon, Lyon, France, 2017.

[14] M. Prodel, V. Augusto, B. Jouaneton, L. Lamarsalle, and X. Xie,
‘‘Optimal process mining for large and complex event logs,’’ IEEE
Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1309–1325, Jul. 2018, doi:
10.1109/TASE.2017.2784436.

[15] S. J. van Zelst, B. F. van Dongen, W. M. P. van der Aalst, and
H. M. W. Verbeek, ‘‘Discovering workflow nets using integer linear pro-
gramming,’’ Computing, vol. 100, no. 5, pp. 529–556, May 2018, doi:
10.1007/s00607-017-0582-5.

[16] R. Conforti, M. L. Rosa, and A. H. T. Hofstede, ‘‘Filtering out
infrequent behavior from business process event logs,’’ IEEE Trans.
Knowl. Data Eng., vol. 29, no. 2, pp. 300–314, Sep. 2017, doi:
10.1109/TKDE.2016.2614680.

[17] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and
A. Serebrenik, ‘‘Process discovery using integer linear programming,’’ in
Applications and Theory of Petri Nets, K. M. van Hee and R. Valk, Eds.
Berlin, Germany: Springer, 2008, pp. 368–387.

[18] B. N. Yahya, M. Song, H. Bae, S.-O. Sul, and J.-Z. Wu, ‘‘Domain-driven
actionable process model discovery,’’ Comput. Ind. Eng., vol. 99, no. 1,
pp. 382–400, Sep. 2016, doi: 10.1016/j.cie.2016.05.010.

[19] M. Authman, H. Q. Mohammad, and N. H. Shuker, ‘‘Vertex and region
colorings of planar idempotent divisor graphs of commutative rings,’’
Iraqi J. Comput. Sci. Math., pp. 71–82, Jan. 2022. [Online]. Available:
https://journal.esj.edu.iq/index.php/IJCM/article/view/72

[20] S. Warshall, ‘‘A theorem on Boolean matrices,’’ J. ACM, vol. 9, no. 1,
pp. 11–12, Jan. 1962, doi: 10.1145/321105.321107.

[21] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques.
Waltham, MA, USA: Morgan Kaufmann, 2011.

[22] A. Augusto, R. Conforti, M. Dumas,M. L. Rosa, F.M.Maggi, A. Marrella,
M. Mecella, and A. Soo, ‘‘Automated discovery of process models from
event logs: Review and benchmark,’’ IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 4, pp. 686–705, Apr. 2019, doi: 10.1109/TKDE.2018.2841877.

[23] F. F. Mannhardt, ‘‘Sepsis cases—Event log,’’ distributed by
4TU.ResearchData, Dataset, Dec. 2016, doi: 10.4121/uuid:915d2bfb-
7e84-49ad-a286-dc35f063a460.

[24] M. de Leoni and F. Mannhardt, ‘‘Road traffic fine management
process,’’ distributed by 4TU.ResearchData, Dataset, Feb. 2015, doi:
10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[25] B. van Dongen, ‘‘Real-life event logs—Hospital log,’’ distributed by
4TU.ResearchData, Dataset, 2011, doi: 10.4121/uuid:d9769f3d-0ab0-
4fb8-803b-0d1120ffcf54.

[26] R. P. J. C. Bose and W. Aalst, ‘‘Analysis of patient treatment procedures:
The BPI challenge case study,’’ BPM Center, Eindhoven Univ. Technol.,
Eindhoven, The Netherlands, BPM Rep., 2011, vol. 1118. [Online]. Avail-
able: https://research.tue.nl/en/publications/analysis-of-patient-treatment-
procedures-the-bpi-challenge-case-s, doi: 10.4121/uuid:d9769f3d-0ab0-
4fb8-803b-0d1120ffcf54.

[27] F. Mannhard, ‘‘Hospital billing—Event log,’’ distributed by
4TU.ResearchData, Dataset, Aug. 2017, doi: 10.4121/uuid:76c46b83-
c930-4798-a1c9-4be94dfeb741.

[28] D. Levy, ‘‘Production analysis with process mining technology,’’
distributed by 4TU.ResearchData, Dataset, Jan. 2014. [Online]. Available:
https://data.4tu.nl/articles/dataset/Production_Analysis_with_Process_Mi
ning_Technology/12697997/1, doi: 10.4121/uuid:68726926-5ac5-4fab-
b873-ee76ea412399.

[29] B. Joos, ‘‘Receipt phase of an environmental permit appli-
cation process (‘WABO’), CoSeLoG project,’’ distributed by
4TU.ResearchData, Dataset, Aug. 2014. [Online]. Available:
https://data.4tu.nl/articles/dataset/Receipt_phase_of_an_environmental_
permit_application_process_WABO_CoSeLoG_project/12709127/1, doi:
10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6.

[30] T. Sztyler and J. Carmona, ‘‘Activities of daily living of several indi-
viduals,’’ distributed by 4TU.ResearchData, Dataset, Nov. 2015, doi:
10.4121/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176.

[31] J. Muñoz-Gama and J. Carmona, ‘‘A fresh look at precision in process
conformance,’’ in Proc. 8th Int. Conf. Bus. Process Manage. (BPM).
Berlin, Germany: Springer-Verlag, 2010, pp. 211–226.

[32] J. Cardoso, ‘‘How to measure the control-flow complexity of web pro-
cesses and workflows,’’ in Workflow Handbook 2005. Lighthouse Point,
FL, USA: Future Strategies, 2005, pp. 199–212.

MARYAM TAVAKOLI-ZANIANI is currently pur-
suing the Ph.D. degree with the School of Indus-
trial Engineering, Iran University of Science and
Technology, Tehran, Iran. Her main research
interests include process mining, data mining,
optimization, operations research, and medical
informatics.

MOHAMMAD REZA GHOLAMIAN received
the Ph.D. degree in industrial engineering from the
Amirkabir University of Technology, Tehran, Iran,
in 1996. He is currently an Associate Professor
and a Faculty Member of industrial engineering at
the Iran University of Science and Technology. His
research interests include optimization, operations
research, inventory models in supply chain, supply
chain networks design, and multiple criteria deci-
sions making.

VOLUME 10, 2022 1131

http://dx.doi.org/10.1016/j.eswa.2019.05.003
http://dx.doi.org/10.1016/j.jbi.2016.04.007
http://dx.doi.org/10.1109/CIDM.2011.5949453
http://dx.doi.org/10.1016/j.dss.2017.04.005
http://dx.doi.org/10.1016/j.datak.2018.04.007
http://dx.doi.org/10.1109/TASE.2017.2784436
http://dx.doi.org/10.1007/s00607-017-0582-5
http://dx.doi.org/10.1109/TKDE.2016.2614680
http://dx.doi.org/10.1016/j.cie.2016.05.010
http://dx.doi.org/10.1145/321105.321107
http://dx.doi.org/10.1109/TKDE.2018.2841877
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
http://dx.doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
http://dx.doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
http://dx.doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.4121/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176

