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ABSTRACT Various applications, such as electronic business, satellite remote sensing, intrusion discovery,
and network traffic monitoring, generate large unbounded data stream sequences at a rapid pace. The
clustering of data streams has attracted considerable interest due to the increasing usage of evolving data
streams. In particular, evolving data streams affect clustering because they introduce numerous challenges,
such as time and memory limits and one-pass clustering. Furthermore, researchers need to be able to
determine arbitrarily shaped clusters present in evolving data streams from applications. Due to these
characteristics, conventional density grid-based clustering techniques cannot be used. Moreover, the existing
density grid-based clustering algorithms have low cluster quality for clustering evolving data streams.
This study conducted a systematic literature review (SLR) and noted numerous research-related issues
encountered in solving the aforementioned problems. We summarized numerous grid-based clustering
algorithms that have been used and determined their distinctive and limited features. We also observed
how these algorithms address the challenges affecting the clustering of evolving data streams and studied
their advantages and disadvantages. SLR was based on 104 articles published between 2010 and 2021.
Numerous challenges remain for grid-based clustering algorithms, particularly in terms of time-limited and
high-dimensional data handling. Last, our findings indicated a variety of active studies on density grid-based
clustering.

INDEX TERMS Clustering, data stream, grid-based clustering, data stream clustering, density-based
clustering.

I. INTRODUCTION

In recent years, rapid growth in the fields of computer intel-
ligence and quarrying data streams has occurred, as mining
instruments and specialized extraction devices have increased
in popularity among users [1]-[5]. A total of 2.5 quintillion
bytes of data are created daily, and over 90% of existing
data worldwide have been generated in the past two years
alone. In 2007, the amount of information created and col-
lected globally exceeded the available storage capacity for
the first time [6]-[9]. An increasing number of data streams
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demanding excessive storage capacity, real-time monitoring,
and high-frequency sampling have been produced, thereby
deviating from traditional static data collection [10]-[13].
At present, data streams are expected to be handled as they
arrive. Consequently, the mining and real-time analysis of
data streams have triggered renewed research focus on iden-
tifying and developing improved processes [12], [14]-[16].
Moreover, clustering algorithms are receiving increased con-
sideration with regard to data mining optimization. Typical
features of data streams are as follows [17]-[19].
o Data streams are rapidly evolving, collected in real
time, and reliant on rapid processing, interpretation, and
response.
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o They are restricted in terms of storage. Therefore, only
synopsis data can be saved, and obtaining fundamental
data is a relatively challenging task.

« Data streams comprise an unceasing flow of huge data.

« Directly accessing the data stream is virtually impossi-
ble. Therefore, sophisticated algorithms must be used for
processing streams to generate usable information over
time.

o They are multidimensional and require specialized algo-
rithms to enable data streaming.

The data stream mining process involves the challeng-
ing process of real-time extraction of valuable trends
and patterns from dynamic streaming data using a sin-
gle scan [12], [20]-[24]. Numerous scientists have investi-
gated data stream clustering because it is a highly effective
technique for data mining [6], [15], [21], [25], [26].
Clustering includes steps such as processing data and par-
titioning objects and information into a few subsets called
clusters. This technique groups objects into individual
clusters, thereby generating differentiation between the clus-
ters [10], [27]-[31]. Clustering assists in data restructuring
by (a) replacing the cluster using one or numerous novel
representatives, (b) categorizing similar objects, and (c) find-
ing new patterns. Clustering algorithms, which are used for
processing large amounts of data, have previously included
advanced filtering processes that could be used in machine
learning and data mining processes for recognizing data pat-
terns [1], [32]. For handling a large volume of data contained
in hard disks or data streams, streaming access methods
achieve better performance than random access methods.
Therefore, streaming algorithms are preferable when con-
fronted with a large data volume [33]-[36]. However, the
application of conventional density clustering algorithms is
inappropriate for evolving data streams because these data
streams are inherently constantly evolving. Hence, new and
improved density clustering processes should be developed
to address this issue.

Density-based approaches create a data density profile for
clustering purposes. Density-based clustering can filter noise
or outliers, detect arbitrarily shaped clusters, and require only
one scan of the raw data [18], [37]. Thus, clusters are regarded
as dense areas of data points that are separated in the data
space by sparse regions of low density [38]-[40]. One of
the most common forms of density clustering methods is
the set of density grid-based clustering, which forms another
relevant clustering category that has long been considered.
The recent advent of using grids in clustering algorithms has
been a huge leap forward in the field of data stream mining
(11, [27], [29], [36], [41].

Compared with other clustering methods, density grid-
based clustering varies in terms of the adoption of a multi-
purpose grid data structure, in which data objects are mapped
into grids and clusters are shaped based on their densi-
ties [27], [42], [43]. Thereafter, the data space is partitioned
into a certain number of cells to produce a grid, in which the
mapping of data records is done to create micro clusters that
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can eventually be used for the final clustering step [41]-[46].
In this manner, grid cells include synopsis information on the
data stream [47]-[50]. However, we should consider several
issues associated with density grid-based clustering, such as
the majority cannot handle evolving data streams, suffer from
the need for high memory, have low processing rates, or are
not completely online methods [28], [51]-[54]. Furthermore,
low cluster quality related to clustering evolving data streams
is associated with the current density grid-based clustering
algorithms. The current research provides an SLR of new
approaches and techniques developed to address the problem
of density grid-based clustering. Several objectives pertaining
to density grid-based studies have been identified, and the
different mechanisms and approaches involved have been
segmented. Moreover, grid algorithms used in clustering data
streams have been summarized while discussing limitations
and distinctive characteristics, and how such algorithms can
solve problems related to clustering data streams has been
described, along with their advantages and disadvantages.
We also proposed possible challenges and likely directions
toward a future solution to deal with evolving data stream
clustering that could help guide future research toward new
solution mechanisms and undiscussed areas. Last, we provide
overviews on density grid-based clustering paradigms and
data streams to ensure that this survey is self-contained and
enhances reader convenience. The following are the survey’s
contributions:

1. A comprehensive survey was conducted on the cur-
rent density grid-based clustering algorithms published
from 2010 to 2021.

2. We summarized numerous grid-based clustering

3. algorithms that have been used and determined their
distinctive and limited features. We also observed how
these algorithms address the challenges that affect the
clustering of evolving data streams and studied the
benefits and drawbacks of these clustering algorithms.

4. Current open challenges are identified and described to
help guide future research directions on evolving data
stream clustering.

The remainder of this paper is organized as follows.
Section II presents a methodology review on research method
objective determinations. Section IV describes data stream
clustering. Section V provides the concept of density grid-
based clustering. Section VI presents a description of grid-
based clustering methods. Section VII discusses the findings.
Section VIII provides the conclusions.

Il. REVIEW METHOD

A systematic review is described as a process of interpreting
and assessing available studies related to a specific research
topic and area of interest [55]. Kitchenham described the
various reasons why such a study is necessary. The most
important reasons are to identify the topics that should be
investigated further, synthesize all available studies related
to a particular treatment and technology, and formulate a
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FIGURE 1. Overview of the research methodology.

specific background for describing the newest studies. This
section presents our review protocol, which includes several
steps described by Kitchenham [55]. Figure 1 shows a sum-
mary of the methodological steps for SLR. The following
section explains the details of these steps:

A. NEED FOR A SYSTEMATIC REVIEW

Although numerous techniques have been suggested for data
stream clustering, there is still a need for a comprehensive
data stream clustering strategy. This study investigates the
density grid-based clustering methods developed for data
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stream clustering in the literature review, apart from those that
have attempted to provide an overview of the vast literature
on techniques. Numerous techniques for data stream clus-
tering using density grid-based clustering techniques have
been developed for a single study area or specific application.
This survey significantly expands the discussion in several
directions according to the CRs.

B. SURVEY GOALS AND RESEARCH CRITERIA
The current study aims to collect and investigate all effec-
tive, available, and credible studies on density grid-based
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TABLE 1. List of electronic databases.

Databases URLSs
IEEE Explore “www.ieeexplore.ieee.org”
SpringerLink “‘www.link.springer.com”
ScienceDirect “www.sciencedirect.com”
Web of Science “www.webofknowledge.com”
ACM Digital Library “www.dl.acm.org”

Google Scholar “www.scholar.google.com”

clustering algorithms. Particular focus is given to the iden-
tification of methods from papers, their key features, and
descriptions of their respective characteristics. To achieve
these goals and identify the selected research methodologies,
the case studies considered are only those for which new
methodologies are proposed, actual datasets are used, and
benchmarks are applied. The following criteria (CRs) are
investigated:

CR1. What were the techniques applied by previous stud-
ies for grid-based clustering from 2010 to 2021?

CR2. Which benchmarks or datasets were used, and which
case studies were considered?

CR3. What were the challenges or limitations identified at
the time for data stream clustering?

C. DEVELOPING A REVIEW PROTOCOL

A key step in carrying out SLR is the review protocol, which
aids in determining the methods beneficial for systematic
review. The review protocol primarily aims to minimize study
bias and differentiate SLR versus the traditional methods of
the literature review [56]. This review protocol helps clas-
sify the “‘search strategy, review background, extraction of
data, development of CRs, data synthesis and study selec-
tion criteria.” An explanation pertaining to review back-
ground and relevant CRs has been previously provided.
The next section offers details for describing the other
elements.

D. AUTOMATIC SEARCH

This section outlines how each paper in our review was iden-
tified. High-level, prestigious international conferences and
reference journals were selected from electronic databases
using the standard manual search method. Table 1 provides
a list of the electronic databases.

Our search string was structured to retrieve as many papers
as possible related to density grid-based clustering, which
is our subject of concern in this SLR study. We used a
mix of keywords containing (grid-based clustering OR data
stream clustering OR clustering algorithm OR evolving data
stream OR density grid OR data clustering OR density-based
clustering) and other variations, combined by the “OR”
operator.
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E. INCLUSION AND EXCLUSION CRS

The inclusion and exclusion CRs were applied to ensure that
basic studies on SLR were appropriate and to help answer
the research questions presented in SLR. We only selected
research papers (from conferences and journals), written in
English, and published between 2010 and 2020 on online
digital databases. Only papers related to the institutional
repository were selected in the study. Papers that were unre-
lated to the institutional repository domain were not selected
in this study. Furthermore, only papers that fulfil any of
the research objectives are included in the current research.
Given that we could not clearly understand papers written
in languages other than English, these articles were excluded
from the current study. Table 2 presents the various inclusion
and exclusion CRs used in this SLR study.

F. MANUAL SEARCH
By referring to [57], we used a forward and backward search
for identifying citations pertaining to primary studies. Google
Scholar was used to identify all studies cited in the chosen
primary study. A manual search was performed to ensure the
relative completeness and comprehensiveness of a systematic
review pertaining to the research and guarantee that nothing
was missed.

Mendeley (https://www.mendeley.com) was used to man-
age and sort all studies and eliminate duplicate research.

G. DATA COLLECTION
We obtained articles from ScienceDirect, Springer Link,
IEEE-Xplore, ACM Digital Library, and Web of Science.
The combined results from all databases were 344 articles.
After removing duplicates and papers not written in English,
298 articles remained. Following a review of the titles and
keywords of the 298 articles, we obtained 165 articles related
to our study. Thereafter, we reviewed the abstracts of these
articles and selected 104 articles, which were read thoroughly.
We used the search strategy as a basis in utilizing the
PRISMA guidelines shown in Fig. 2. In particular, Fig. 2
highlights the total number of papers identified, screened,
and that were eligible and included in this SLR study.
The PRISMA flowchart indicates the number of studies
extracted from the published databases and statistics on
the number of papers included/excluded in this study. All
reasons for inclusion/exclusion were defined in the current
research. Finally, the PRISMA flow diagram presents the
numbers of papers included in the quantitative and qualitative
analyses.

IIl. DATA STREAM CLUSTERING

Data streams are noted in various real-world fields, such as
accounting, agriculture, and health care, and they generate
large amounts of data daily [58], [59]. Moreover, data streams
constantly evolve, and the amount of data becomes unlim-
ited after a certain period. Researchers face numerous chal-
lenges when dealing with this issue because of the physical
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TABLE 2. Inclusion and exclusion CRs.

Inclusion CRs

Exclusion CRs

Articles are written in English and polished
Published within 20102021
Addresses a specific technique, such as the density grid method

Directly or indirectly addresses CRs

Written in a language other than English
Falls outside the selected period
Focuses on other techniques

Does not match the inclusion CRs

Query

“grid-based clustering* OR “data stream clustering* OR “clustering algorithm“ OR
“density-based clustering* OR “evolving data stream* OR “density grid” OR “data

clustering ”
. . . . ACM Digital Web of
ScienceDirect IEEE Xplore Springer Link by Science

Screening out duplicates
344 —46 =298

Title and abstract scan
298 — 133 =165

Full text reading
165-61 =104

Final set includes 104 articles

FIGURE 2. PRISMA flowchart.

limitations of existing computational resources [60], [61].
In the past 10 years, researchers have shown higher interest
than ever in managing these unbounded and massive data
sequences, which are created at rapid rates [22], [62]-[64].
A data stream § is defined as a massive sequence of data
objects, x! x2, ... XV, where S = {X"}f.vzl is potentially
unbounded (N — o0). Every data object 1 can be described

. qn
using the n-dimensional attribute vector X' = [xj’] r which

belongs to the attribute space 2. Moreover, 2 can be cat-
egorical, continuous, or mixed [22]. However, major issues
with data streams are their management, analysis, storage,
and recovery [10], [22], [59], [65].
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Clustering is a data mining task used for clustering
large datasets to make data objects in a group similar to
each other and differentiate them from the points of other
clusters [66]-[68]. Clustering of data streams raises new
challenges, such as noisy data, restricted memory, evolv-
ing data, limited time, single-pass clustering, and multi-
dimensionality [6], [11], [22], [69]-[72]. Data streaming
requires real-time processing to manage the large arrival rates
of data, and interpreted results are expected within a short
timeframe. Moreover, maintaining an entire data stream in
dynamic memory is often impossible due to the unlimited
quantity of data being transmitted. The data stream also
passes only once, making multiple active scans impossible
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to perform [14], [33], [73]-[76]. Two significant issues in all
real-time data collection methods are the processing of con-
tinuously evolving data and the storage of raw data objects for
later analysis. Several methods exist for accomplishing these
tasks, such as online-offline processing, single-pass process-
ing, online processing, and evolving; and various techniques
for summarizing data streams. A brief explanation of these
methods is provided as follows.

A. PROCESSING

1) EVOLVING

Clusters are measured in a single-pass approach through
the entire data stream. Data streams are continuous and
evolve continuously over time. Therefore, clustering out-
comes change significantly over time [10], [73], [77], [78].
In the “evolving” approach, the behavior of a stream is con-
sidered a process that evolves and is processed in the form of
several window models. Various approaches have been devel-
oped based on this method [14], [20], [29], [52], [73], [75],
[78]-[81].

2) ONLINE-OFFLINE

Clustering algorithms for data streams occasionally need to
validate clusters in different portions of the stream. To track
the evolving behaviors of data streams, a variable time
window model is required, but the dynamic clustering of
data streams across all time horizons cannot be achieved.
Therefore, the “online-offline”” method was created [73],
in which the online phase keeps summaries of data streams,
whereas the offline phase provides comprehension of clus-
ters [10], [27], [73], [77]. The majority of clustering meth-
ods use a two-phase approach designed to evolve data
streams [10], [27], [43], [52], [73], [79], [81]-[84].

3) ONLINE

The “online” technique provides a clustered data stream that
is continuously updated with every data point added [85].
Fully online unsupervised learning can detect anomalies as
they occur in real time, regardless of how the ‘“‘normal”
stream behavior or nature of the anomalies changes. As such,
the online technique uses an evolving data stream clustering
algorithm [29], [30], [85]-[87].

4) SINGLE-PASS

For the ““single-pass” technique, data streams are clustered
by scanning only once. The assumption is that the data arrive
in k-cluster chunks, are generated through a K-means clus-
tering method and are used as a data stream. STREAM is
another well-known algorithm that uses a local search algo-
rithm to partition the input stream into chunks and generate a
cluster [14], [75].

B. SUMMARIZATION
Large data volumes impose some time and space constraints
on the computational phase of algorithms. Furthermore, the
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algorithms cannot retain the complete data record because of
the large size of the data stream. Hence, a synopsis was con-
structed using data items in the data stream [10]. The design
and selection of a specific synopsis approach is dependent on
the issue that must be solved [10], [27]. Hence, the following
techniques are used for summarization.

1) SAMPLING METHODS

Instead of obtaining a full stream of data, which is not fea-
sible, a data sample can be collected from a data stream.
Reservoir sampling refers to a sampling technique that can be
used to select random data points. This technique is helpful
for data streams [88].

2) WAVELETS

Wavelets are a common summarization technique used for
data streams. They can be utilized to summarize and represent
data for processing different types of signals and images [89].
The wavelet technique can be used for processing different
types of signals and images. They can be used with an
input signal for multi-resolution hierarchical systems. Fur-
thermore, wavelet-based histograms are interpreted dynam-
ically over a long period [62], [90]-[94].

3) HISTOGRAMS

A histogram refers to a synopsis, which helps in the accurate
approximation of a primary data distribution and offers a
graphical representation of data. Histograms are commonly
used to compute the aggregate statistics, approximate query
answers, query optimization, and selectivity estimation [95].
Numerous studies have proposed using histograms for
data summarization. The current study discusses develop-
ments in the synopsis structure. In particular, researchers
have proposed the adaptive cumulative windows model
(ACWM) algorithm, which summarizes data streams using
histograms [96].

4) SKETCHES

Sketches are a data summarization technique that helps in
analyzing data streams. The sketch-based approach is derived
from the wavelet process. A sketch refers to a randomized
linear projection of the primary data vector, which is regarded
as a randomized version of the wavelet process. Other tech-
niques highlight a small section of data, although sketches
summarize the complete dataset at numerous detailed lev-
els [65]. The current researchers introduce a count-min sketch
for data stream summarization [97].

5) GRID

Grids are considered a popular technique for summarizing
data from data streams. In this technique, the data space is par-
titioned into small sections known as grids [36]. Thereafter,
objects in the data stream are plotted into these grids. Every
grid includes a vector of characteristics that summarizes data
points mapped to it. Clusters are formed based on a grid
density [10], [27], [83].
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6) MICRO CLUSTER
This important technique is used in data stream clustering
to effectively compress data streams. This technique can

perform adjustments effectively after the evolution of primary
data streams [27], [29], [98].

IV. THE CONCEPT OF DENSITY GRID-BASED CLUSTERING
Clustering is an imperative undertaking in collecting a data
stream to ensure that the most representative dataset possi-
ble is preserved according to the capabilities of the system
used [1], [14]. Numerous clustering approaches have been
suggested for use with data streams [3], [14], [18], [75].
Previous data stream clustering approaches have been applied
in a “single-stage model” that handles data stream clustering
through a continuous type of fixed and stagnant data cluster-
ing [41], [50], [99]-[102].

By merging ‘“‘grid-based clustering” with ‘“‘density-
based clustering algorithms,” researchers have devel-
oped different algorithms, such as [10], [27], [41]-[43],
[46], [47], [50], [80], [102]-[106]. In density grid-based
clustering, data points are plotted on a grid, and clusters are
formed thereafter based on grid densities, as shown in Fig. 3.

The first step of the grid-based algorithm involves divid-
ing the area such that all data points are mapped on the
grid structure. Grid size refers to the parameter at runtime,
in which each dimension has a similar grid spacing, thereby
resulting in a uniform grid. Thereafter, the algorithm analyzes
every data point (a highly parallelizable step) and determines
which grid the point belongs to [42], [50], [107]. The density
measure in each grid square is increased by 1, and the point is
located in the same grid square [27], [42], [50], [102], [107].
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As described in Egs. (1, 2, and 3), every grid cell is defined by
an n-dimensional value vector. Each value denotes the offset
of the grid cell from the original cell in the same dimension
(G; represents the offset in the iy dimension). In each dimen-
sion, the offset value can be derived by extracting the value
of the dimension from its data point and dividing it thereafter
using the grid size and noting the result [50], [107]-[109].
This algorithm groups several data points and counts there-
after the number belonging to each group; it is intended
to work with high-dimensionality data [50], [66], [103],
[107], [108], [110].

GridCell = [Gy, G2, ...,G,—1,G,]  Eq.(1)
DataPoint = [D1, D>, ...,D,_1,Dy] Eq. (2)
G; = D;/GridSize Eq. (3)

V. DENSITY GRID-BASED CLUSTERING ALGORITHMS
This section reviews the use of “density grid-based clus-
tering” techniques on data streams. Most of the revised
algorithms’ features show that the majority of these
algorithms are based on a “CluStream” structure [73]. The
algorithms possess online-offline stages. The online stage
encapsulates the algorithm’s data records, whereas the offline
stage performs the clustering process according to the sum-
mary information. Data stream clustering algorithms are
applied using two approaches: the “‘one-pass approach” and
the “‘evolving approach.” The one-pass approach groups
data streams according to one-time skimming, whereas the
evolving approach may be modified or adjusted for different
data streams. Fig. 4 illustrates the various options used when
creating grid-based clustering.

A. IGDCL

A novel irregular grid-based clustering (IGDCL) algo-
rithm [41] has been developed for high-dimensional data
streams. The IGDCL algorithm showed better performance
than previous algorithms because it splits the d-dimensional
space into grids. Thereafter, every data object is mapped
on the adaptive grid, decreasing the effects of the sizes of
grid cells and borders to overcome the sparsity of a high-
dimensional data stream. When a data stream enters the
algorithm, the irregular grid structure can be incrementally
updated, and a final cluster is generated that groups the
dense grids into subspaces. The IGDCL algorithm uses a
density fading function for every data point, reflecting the
data stream’s evolution. However, it does not present a sim-
ple plan for eliminating intermittent grids. A novel partition
method based on the data’s distribution information has also
been used to generate an irregular grid structure. In this
method, subspaces composed of dimensions related to the
subsequent clusters are developed. This algorithm is similar
to CluStream [73] because it includes the average value of the
sum of squares distance (SSQ).
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B. PKS-STREAM

Many current ‘“‘density-grid clustering” algorithms are
unable to control high-dimensional data streams. For this
reason, [111] favored the ‘“PKS-Stream” algorithm, which is
founded on the “Pks-tree’” and “‘density grid,” in which the
storage facility and indexing effectiveness are enhanced. The
grid-based clustering approach leaves several cells vacant,
particularly for high-dimensional data; when all grids are pre-
served, the algorithm’s time complexity increases. However,
in instances where only occupied grids are saved, the algo-
rithm overlooks the connections between grids. Therefore,
the Pks-tree algorithm is preferred when recording dense cells
and connections between grids because it possesses online
and offline stages.

In the PKS-Stream algorithm’s online stage, data streams
are continuously read and captured onto connected Pks-tree
grid cells. In the offline stage, clustering begins with the
new-level dense cells of the Pks-tree leaf. The algorithm
checks the grid’s density and produces a different cluster
when the cell density is above the threshold. To improve the
algorithm’s effectiveness, vacant grid cells are detached using
the “K-cover” concept, which displays the number of dense
grids adjacent to the leaf node grids. PKS-Stream is a ““den-
sity grid-based clustering” that handles high-dimensional
data. Nevertheless, after mapping a new point to any of
the tree cells, no pruning is performed on the tree [10].
PKS-Stream is influenced by K in terms of the clustering
result and by “K-cover,” which drives the cluster determi-
nation process.

C. DCUSTREAM
“DCUStream” [112] is a novel dynamic algorithm to address
uncertainty in data streams and was proposed by Yang et al. in
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2012. They indicated that for every data point in the stream,
the probability of its occurrence and its appearance time is
measured. Every data point is drawn onto the grid. The algo-
rithm reflects the uncertainty weighting of every measured
data point derived from advanced data stream characteristics
and its probability of occurrence. DCUStream considers the
main grid to be a dense grid with neighbors, where sparse
and dense grids are described by considering the uncertainty
threshold of data density. For clustering, DCUStream scruti-
nizes all grids to identify the main dense grid and applies the
“depth-first search algorithm” to identify neighboring dense
grids; the progression continues for all unmarked dense grids.
All sparse grids are known as noise. This algorithm enhances
the effectiveness of “‘density-based” clustering in undefined
data stream environments. The weakness of DCUStream
is that mining for density grids and their neighbors is an
extremely time-consuming process [59].

D. DENGRIS-STREAM

The “‘density grid-based wusing a sliding window”
(DENGRIS-Stream) algorithm has been proposed for clus-
tering data streams [47]. This process uses the “density grid-
based clustering” technique for a data stream by using a
“sliding window.” This algorithm distributes data points on a
grid, calculates each grid’s density value, and groups density
grids into time window units. Dissemination of the latest
records using the sliding window is also noted and is required
in various data stream applications. The DENGRIS-Stream
algorithm generates a final grid model and identifies and
eliminates grids with no timestamps in the sliding window.
Moreover, this algorithm eliminates terminated grids before
data points are migrated to the grid, where timestamps and
memory are preserved. However, current researchers did not
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compare the performance of this algorithm to those of other
algorithms.

E. ExCC

The ‘“‘exclusive and complete clustering” (ExCC) algo-
rithm [43] possesses online and offline phases [52],
[80], [83], [113]. The online stage retains a summary of a
grid’s data, whereas the offline stage produces macro clusters.
ExCC is a widely used algorithm because it trims according to
the data streaming speed instead of using window dispersion.
This fashionable algorithm uses a grid approach for data
dissemination and handles noise in the offline stage through
a “watch and wait for policy.”” ExCC utilizes a density factor
to isolate sparse and dense grids and uses group density and
cell density thresholds to remove noise. This algorithm also
calculates thresholds depending on data measurements, the
typical number of objects in each grid, and grid granularity.
To produce clusters, EXCC considers recent and dense grids
before selecting a dense grid, as well as considering its eight
closest neighbors, while ensuring that measurements of grid
qualities are introduced. The algorithm’s constraint is that
it requires more processing time than other algorithms to
increase its memory capacity [20], [59].

F. HDC-STREAM

Amini er al. (2014) suggested a density-based clustering
algorithm for the Internet of Things (IoT). The ‘“hybrid
density-based clustering for data streams” (HDC-Stream)
algorithm [10] requires low processing time, making it
appropriate for real-time applications with IoT devices.
HDC-Stream applies a hybrid method and carries out cluster-
ing in three different stages while capitalizing on the benefits
of the density grid-based and micro clustering methods. This
algorithm can identify randomly shaped groups and treat
them as outliers in the online and offline stages. The online
stage of “HDC-Stream’ continuously reads new incoming
data records and either supplements them to the present mini
cluster or draws them onto the grid. HDC-Stream occasion-
ally removes outliers during the trimming process. Thereafter,
final clusters are produced by request in the offline stage. The
current authors have shown that this algorithm rapidly gener-
ates high-quality results for clustering data streams but cannot
efficiently store and cluster multi density data [20], [27].

G. MuDi-STREAM

Other researchers have recommended the “multi density data
stream” (MuDi-Stream) algorithm for cases in which the
variety of data leads to unreliable clustering results [27]. This
situation is viewed as an ““online-offline’” algorithm with four
parts [43], [52], [80], [83], [113]. In the online step, this
algorithm retains the data synopsis depending on the devel-
opment of multi density data streams as major mini-clusters.
In the offline step, MuDi-Stream produces final groups using
the “modified density-based” algorithm. Researchers have
used a hybrid technique that utilizes micro clustering and
grid-based algorithms to derive the synopsis information of a
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given data point. A grid technique is utilized to develop mini-
clusters and determine outliers with diverse ranges, which
helps improve the efficiency of density data, thereby signifi-
cantly decreasing merging time. The MuDi-Stream algorithm
consists of four major factors: mapping data components,
generating mini-cluster components, pruning grids and mini-
cluster components, and generating macro cluster compo-
nents. The first three components are utilized in the online
step, while the offline step uses the fourth component. Each
component carries out a vital function during the overall pro-
cess, including assimilation, drawing and generating mini-
clusters, trimming mini-clusters or grids, and generating the
final clusters. Another ‘“‘density-based” clustering approach
(i.e., M-DBSCAN) was recommended for offline phases.
The MuDi-Stream algorithm does not present the obtained
data synopsis because it cannot handle high-dimensional data
streams owing to an increase in the number of vacant grids,
thereby decreasing the processing time.

H. DGB

Wu and Wilamowski (2016) proposed the ““density and grid-
based” (DGB) [42] technique for classifying data using arbi-
trary shapes or noise. They calculated the distance between a
few grid nodes instead of estimating the Euclidean distance
of mutual patterns. Three steps are included in this algorithm.
Step 1 involves scaling and normalization of the primary
dataset into the standard grid, in which the original dataset is
normalized to [0, 1] in every dimension and scaled thereafter
onto the [/, Ngsiq] range grid (i.e., Ngriq denotes the range
of a grid in every dimension). This approach simplifies the
calculation of the local density of a grid. Step 2 involves
computing the local density of nodes with the help of a fuzzy
type approximation and substituting it for the local density of
the patterns. In this technique, nodes are determined in grids
with their integer coordinates. Finally, Step 3 includes finding
mountain ridges, in which the outlook of the nodes’ local
density represents mountains with different heights. This pro-
cess helps redefine the clustering task as the determination of
mountain ridges.

The DGB technique determines clusters instead of set-
ting the desired number of nodes and can detect nonwhite
and white noise by defining the density threshold as noise.
These aspects significantly decrease computational complex-
ity because the algorithm does not calculate the Euclidean
mutual distance between patterns. Given that this algorithm
does not count the number of patterns in a cell or com-
pute density contribution patterns, the authors applied the
fuzzy approximation technique for computing the nodal den-
sity. Experimental results obtained using real datasets have
confirmed that the DGB technique decreases processing
time because it eliminates the estimation of Euclidean dis-
tances between all mutual patterns. However, the DGB can-
not accommodate high-dimensional data streams owing to
increases in the number of vacant grids, thereby decreasing
the processing time.
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I. GDSTREAM

Wang and Li (2017) proposed a new ‘“grid and density for
a data stream” (GDStream) approach [50]. This approach
processes marginal points by dividing the data space and
applying the data object to address the impact coefficients
of neighboring grid components and enhance the algorithm’s
effectiveness and correctness. Under GDStream, some con-
nected relationships are well defined, and elementary models
are called ‘““density threshold MinPts” and ‘“‘domain radius.”
GDStream draws each streamed data point onto the matching
grid cell and applies the effective number of data points
to the neighboring cells’ center of mass to obtain the grid
cell density, thereby effectively managing the occurrences of
peripheral points in the grid cells. This process enables rapid,
accurate, and predictable identification of clusters but comes
at the expense of processing speed when real-time data are
used.

J. GRIDEN

In 2018, a new density-based and grid-based clustering
algorithm called GRIDEN was proposed by Chao and Jin-
wei [114]. This algorithm was designed by considering a
newly proposed concept pertaining to neighboring cells to
develop the aforementioned properties. GRIDEN can be
described based on five serial steps that support parallel
computing: (1) calculate the neighbor, (2) construct the grid,
(3) merge the core cells, (4) find the core cells, and (5) find
the border cells. GRIDEN’s basic concept pertains to learning
from the grid-based clustering mechanism’s effectiveness and
density-based clustering mechanism’s precision, incorporat-
ing their merits, and dealing with their deficiencies.

The GRIDEN algorithm enables the transfer of the basic
concept with regard to the neighbor from points to cells
and uses neighbor cells to execute the entire clustering pro-
cess. The grid can be defined simply as a logical account
book possessing a multi dimensional index, which enables
rapid queries on the information of each cell. Thus, map-
ping of all data points should be done just once in the
book instead of partitioning the memory. Compared with
the grid-based DBSCAN algorithm, GRIDEN uses a new
clustering mechanism that allows segmenting each grid cell
to a set of symmetric hypersquare cells. This process results
in the formation of a minimum hypersquare spatial zone
in a manner that a cell’s neighbor could exist to minimize
query. Thereafter, the set is used to identify spatially sepa-
rated dense cells, which are merged to improve the density
reachable and density connected clustering functions. The
GRIDEN results indicate that clustering quality is reliable.
In terms of runtime, GRIDEN is executed as a grid-based
algorithm and needs computational time to be exclusively
linear to N. Additional computing cores could be used to con-
tinuously accelerate clustering speed. However, an increase
in parameter K and dimensionality D results in a rapid
increase in the grid cell magnitude. Moreover, querying
nonempty cells could result in running out of memory and low
efficiency.
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K. FAST DENSITY-GRID

Brown et al. (2019) developed a clustering algorithm called
the ““fast density-grid” [103], which achieves good perfor-
mance on large datasets and decreases the running time
required for clustering. This algorithm is also scalable for
parallel versions and executed in three steps. Step 1 involves
dividing an area into spaces in which data exist in the
grid structure. Step 2 involves examining these spaces and
investigating all neighboring spaces to determine the densest
neighbor in each space. In existing techniques, neighbors for
every space are initially determined. Last, Step 3 searches
each neighbor to determine if it displays higher densities
than space; if so, then it becomes the densest space. Every
space is assigned a densest neighbor or represented as its own
densest neighbor after every stage. After the densest neighbor
in every grid space is assigned, the algorithm starts the cluster
generation step. The algorithm’s limitation is that it leaves
sparse grids and merges them as an outlier cluster for further
consideration.

L. DGSTREAM

The DGStream algorithm, which consists of an offline and
online processing framework [115], is a novel density grid-
based clustering technique. In this algorithm, the online phase
uses feature vectors represented with a micro-cluster for
every grid, thereby helping dynamically maintain all nec-
essary information on the constantly arriving data stream.
In the offline phase, DGStream implements the DBSCAN
algorithm to benefit from its speed and improve its run time.
Moreover, DGStream depends on grids to decrease the time
complexity and further accelerate the speed. The DGStream
algorithm uses a decay function to accurately describe the
stream evolution procedure. Moreover, it uses a process for
deleting sparse grids and continues the processing using a few
dense grids.

Furthermore, where the grid densities are below the spec-
ified threshold, they can be detected due to the input data’s
small size. These grids can be removed after. In the algo-
rithm, only dense grids are considered during the storage
and processing stages, thereby saving the system memory
and time. The DGStream algorithm uses a mechanism to
eliminate noise and handle outliers. The implementation of
the DGStream technique was evaluated using various sim-
ulated databases and different parameter settings. For this
purpose, the researchers considered various concept drifts,
cluster numbers, evolving data, and outlier detection.

M. ESA-STREAM

A previous study proposed a completely online and
lightweight stream clustering algorithm called the “efficient
self-adaptive stream” (ESA-Stream) [116]. ESA-Stream is
used to address the issue pertaining to real-time processing
and manually fixed parameters. In a self-adaptive manner,
the main parameters are learned/generated online. The grid
density centroid-based method accelerates dimensionality
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reduction and makes the clustering process considerably
accurate and efficient. To build this technique, the authors
provided three main contributions. First, they utilized
fully online techniques that did not require the tradi-
tional time-consuming offline stage, as characterized in the
DCDGA [61], CEDAS [29], CEC [117], CODAS [30], and
CEDGM [36] algorithms. Second, an efficient self-adaptive
technique was proposed to dynamically learn parameter set-
tings during clustering to match evolving or drifting data
streams. Third, a grid feature vector and grid density centroid
were introduced to accelerate dimensionality reduction and
enable the clustering of data streams efficiently and in a fully
online mode. ESA-Stream is characterized by good clustering
quality and rapid processing time. Even though ESA-Stream
has proven its effectiveness in clustering real-time and high-
dimensional evolving data streams, certain gaps continue to
exist for this algorithm. For example, several Chebyshev
distance function calls are needed to compute the distance
between two adjacent grids when using high-dimensional
data. Moreover, due to the large number of vacant squares,
excellent memory efficiency is required when working with
high-dimensional data.

N. CEDGM

A previous study proposed a novel online method called
clustering evolving data streams via a density grid-based
method (CEDGM) [118]. CEDGM’s primary objectives are
to decrease the number of calls to a distance function,
improve cluster quality, discover noise, and understand all
data points’ properties in the developing data stream. More-
over, CEDGM uses information on data points to formulate
core micro-clusters (CMCs). This technique is also used
online and includes two major phases. Phase 1 generates
CMCs, while Phase 2 combines all CMCs into macro-
clusters. The grid-based technique is utilized as an outlier
buffer to address multi-density and noise data. This study
on CEDGM is considered the first to propose a new clus-
tering process for determining the evolving nature of clusters
after including grid granularity for reducing data, simplifying
calculations, and eliminating the effects of fine data that
lack a vital role in clustering. This mechanism forms grids
after dividing the data space into small portions. Thereafter,
an illustrative neighbor search is conducted on all grids to
group them into cluster grids. After comparing this technique
with other clustering algorithms, CEDGM was noted to offer
the best computational time because it does not depend on
the size of data points but the number of cells. This technique
is beneficial for multi-density data and resilient against noise
and specific, arbitrarily shaped clusters.

In the CEDGM case, a new data point from a data stream
was observed to fall into one of three regions. First, when
the data point lies in empty spaces of the grid granularity,
it generated a novel outlier. Second, when the data point lies
in CMC'’s shell area, it is assigned to a cluster. Thus, the
CMC center and cluster counts were recursively updated.
Third, the data point was allotted to CMC, and the cluster
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count was updated if the data point fell into the kernel area.
Thereafter, the modified or generated CMC was examined
to determine if the cluster density was above the minimum
threshold. Researchers can examine this CMC to determine
whether it newly overlaps with some other CMCs. If new
overlapping is noted, then CMCs are linked to one macro-
cluster. The connected CMCs possess one final cluster and
create an arbitrarily shaped cluster. Different times and sam-
ple speeds were used to analyze the efficiency of the CEDGM
algorithm. These results indicated that CEDGM could sub-
stantially improve the clustering results compared with other
clustering algorithms.

Table 3 summarizes various grid-based clustering algo-
rithms. Table 4 presents a comparison of the advantages and
disadvantages of all grid-based algorithms.

VI. DISCUSSION OF FINDING

A. APPLIED APPROACHES

Section VIII discusses the methods used to provide solutions
to the challenges and fulfil CR1 (approach and methodology)
in detail. Each of the papers reviewed and its treatment of
the researchers’ challenges are tabulated and summarized in
Tables 3 and 4. Note that substantial focus has been given
to handling evolving data and limited time (50%) and noisy
data (93%) compared with any other challenges, as described
in Table 5 and Fig. 5(a) and 5(b).

B. INVESTIGATED DATASETS

Addressing CR2 (i.e., number of datasets used and case
studies considered) has been proven difficult. The use
of various datasets, each of which supports a variety
of parameters and a predefined composition problem,
is beneficial and essential for evaluating the proposed
approaches and analyzing their performances. Unfortu-
nately, the number of datasets available in the research
domain is extremely low and limited to five key datasets:
KDD CUP’99 [27]-[29], [41], [49], [52], [73], [80],
[83], [86], [106], [111], [113], [36] and Forest Cover-
type [102], [112], Iris [103], [119], Airlines [2], [29], Traf-
fic [116], and Electricity [2]. In rare cases, some researchers
have relied on synthetically generated datasets to solve this
problem.

C. CHALLENGES AND LIMITATIONS OF DATA STREAM
CLUSTERING

This section aims to address CR3 (i.e., challenges and
limitations of data stream clustering) and discuss numer-
ous vital algorithms using density grid-based methods
for data stream clustering. The reviewed methods parti-
tion a data space into small grid segments, map data
streams onto the grids, and cluster data streams there-
after by applying the density-based method. The main
challenges of data stream clustering are time limitations,
handling noisy data, memory space limitations, handling
high-dimensional data, and handling evolving data. To solve
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TABLE 3. Comparison of various grid-based clustering algorithms.
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References Names Year Input Parameters Objectives Results
[41] IGDCL 2010 d-dimensional data, dense Clustering high-dimensional ~ Reduced the influence of
grid threshold, minimum data the sizes and borders of grid
density thresh value, decay cells and overcome the
factor, radius sparsity of high-
dimensional data streams
[111] PKS-Stream 2011 PKS-tree, density threshold  Clustering high-dimensional ~ Arbitrarily shaped clusters
data
[112] DCUStream 2012 Data stream, density Clustering uncertain data Arbitrarily shaped clusters
threshold
[47] DENGRIS- 2012 Data stream, sliding Clustering over a sliding Arbitrarily shaped clusters
Stream window size window
[43] EXCC 2013 Grid granularity Clustering heterogeneous Arbitrarily shaped clusters
data streams
[10] HDC-Stream 2014 MinPts, data stream, radius ~ Improvement of Arbitrarily shaped clusters
computational time and
quality
[27] MubDi- 2016 Sample speed, decay, Improvement of Arbitrarily shaped clusters
Stream MinPts, grid granularity, computational time and
radius quality
[42] DGB 2016 Eps (radius), MinPts, grid Decreasing the number of Arbitrarily shaped clusters
granularity computations of Euclidean
distances between mutual
patterns and using the
standard grid and sparse
matrix technique to reduce
processing time
[50] GDStream 2017 MinPts, data stream, Identifying clusters rapidly Arbitrarily shaped clusters
radius, decay and accurately
[114] GRIDEN 2018 Data stream, MinPts, ¢, k, Achieving effectiveness for Reliable clustering quality
Gridl and Grid2 massive spatial data, credible  and fast runtime
quality, good robustness,
ability to discover multi-
density clusters, good
flexibility, and supports
parallel computing
[103] Fast Density- 2019 MinPts, grid granularity, Improving the quality of Arbitrarily shaped clusters
Grid radius clusters and reducing runtime
[115] DGStream 2020 Undefined Handling outliers and noisy Arbitrarily shaped clusters
data
[36] CEDGM 2020 Radius, MinThreshold, Reducing computational time ~ Low computational time
decay, grid granularity, and improving cluster quality  and arbitrarily shaped
sample speed clusters
[116] ESA-Stream 2020 Data stream X, decay factor  Solving the problem of real-  Fast processing time and

A, grid’s length len

time processing and
manually fixed parameters

good clustering quality
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TABLE 4. Advantages and disadvantages of various grid-based clustering.

References Names Year Advantages Disadvantages
[41] IGDCL 2010 - Improves cluster quality for uncertain - No straightforward solution for removing sporadic
data streams grids
- Handles high-dimensional data - Cannot handle limits to memory space and
computational time
[111] PKS- 2011 - Handles high-dimensional data - Does not perform pruning on the tree after adding a
Stream - Handles noisy and evolving data new data point to any of the cells of the tree
- Cannot handle limits to memory space and
computational time
[112] DCUStream 2012 _ Improves the efficiency of clustersin - Tim@-c0n§uming when searching for a core dense grid
unpredictable data streams and its neighbors
[47] DENGRIS- 2012 - Handles evolving data streams - No analysis proving its effectiveness compared with
Stream alternative progressive algorithms
[43] EXCC 2013 - Handles noisy and evolving data - Cannot handle high-dimensional data
- Covers data streams with categorical Use of | for keeping d d .
and numerical attributes - Use of a pool for keeping dense grids requires more
time than other methods for processing and more
memory to keep the grids
[10] HDC- 2014 - Low time complexity with high - Unable to cluster multi-density data
Stream cluster quality
[27] MubDi- 2016 - Useful in multi-density environments - Cannot handle high-dimensional data streams and
Stream long computational times
[42] DGB 2016 - Outperforms other methods in terms - Unable to handle high-dimensional data
of processing time required for 2D
datasets
[50] GDStream 2017 - Detecting clusters rapidly and - Slow capturing of massive real-time data
accurately - Cannot handle limits to memory and computational
time
[114] GRIDEN 2018 - Reliable cluster quality and fast - Magnitude of grid cells increasing rapidly, possibly
runtime leading to out of memory and low efficiency when
querying nonempty cells
[103] Fast 2019 - Detecting clusters rapidly and - Retains and merges sparse grids for use as an outlier
Density- accurately cluster
Grid
[115] DGStream 2020 - Removing noise data and handling - Low cluster quality when dealing with high-
outliers dimensional datasets
[36] CEDGM 2020 - Low computational complexity and
time with high efficiency for the - Fails to merge when dealing with evolving datasets
clustering of high-dimensional data
[116] ESA- 2020 - Fast processing time and reliable - Requires a number of Chebyshev distance function
Stream clustering quality calls

Requires high memory efficiency

these problems, several algorithms have been proposed, but
they are unable to solve these problems. The following
solutions in some of the algorithms address the identified

challenges.
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1) TIME LIMITATIONS

The data stream is constantly inward bound, and data require
a real-time response [83], [100], [120]. Hence, a clustering
algorithm is required to treat the data speed. HDC-Stream
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TABLE 5. Density-based clustering algorithms and desired objectives in the investigated studies.

References Approaches Litrinnilteed Hzllllcl)(iisl;’ng dimlzilgslil(-mal Limitigalzl:mory Processglagt:volving
data data

[41] IGDCL v v v

[111] PKS-Stream N4 N

[112] DCUStream v NG v

1 7 Sream / ! ‘

[43] EXCC v v

[10] HDC-Stream v v v v

[27] MuDi-Stream V4 N4 v v

[42] DGB v N

[50] GDStream v

[114] GRIDEN v v

[103] Fast Density-Grid v v

[115] DGStream V4 NG NG v

[36] CEDGM v v v v

[116] ESA-Stream v N4 N

is one such algorithm and is characterized by low time
complexity and high data stream clustering quality. As an
alternative to the use of a searching list to find suitable
outliers, this algorithm records new data objects into grid
cells and saves a considerable amount of computational
time [20], [59], [121], [94].

2) HANDLING NOISY DATA

Managing noisy data is another challenge. Clustering algo-
rithms should be capable of processing random noise within
data streams to minimize outliers’ impact on cluster for-
mation. The majority of the reviewed clustering methods
can discover and delete interrupted grids plotted by outliers.
Algorithms periodically verify grid density to ensure that
thresholds are met; otherwise, the current grid is deleted from
the list [10], [59], [121], [94].

3) HANDLING HIGH-DIMENSIONAL DATA
The main problem in the clustering data stream is the han-
dling of high dimensionality to improve the scalability of
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the algorithms investigated; only the PKS-Stream algorithm
is capable of dealing with high-dimensional data. Although
several empty grids are present during high-dimensional
data grid-based clustering, PKS-Stream improves storage
efficiency by merely storing nonempty grid cells. The
other reviewed approaches presume that the majority of the
grids contain minimal data or are empty and do not pro-
pose any particular method for handling high-dimensional
data [20], [59], [121], [94].

4) MEMORY SPACE LIMITATIONS

Given that vast amounts of data streams are produced in real
time, substantial amounts of memory are required [83], [112].
Hence, clustering algorithms must operate efficiently and use
limited memory. The reviewed methods divide the data area
into small segments called grids and plot data records into
the equivalent grid. They record the summary information for
data records in each grid. For recording synopsis data, the
reviewed grid-based clustering uses different summarization
methods [59], [94], [121], [122].
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(b) importance of objective categories (in percentages).

5) HANDLING EVOLVING DATA STREAMS

A clustering algorithm must consider that data streams
continuously evolve. The reviewed algorithms view a data
stream’s behavior as an evolving process over time using the
“fading window” model. Each data record’s density, which
is determined by the ““‘fading window” model, is assigned a
decay factor. This decay factor places more weight on recent
data than on older data while continuously keeping historical
information [20], [59], [94], [122].

6) HANDLING COMPUTATIONAL TIME

The main issue in high-dimensional data stream clustering
is the length of computational time. Only the CEDGM algo-
rithm [119] is capable of dealing with this issue. The other
proposed algorithms have high computational times resulting
from numerous distance function calls between data points
and the center of clusters.

VIl. CONCLUSION

This study reviewed some remarkable density grid-based
clustering algorithms developed for use with data streams.
The reviewed clustering algorithms partition a data space into
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a limited number of cells, which form a grid. An infinite
number of data records are plotted on the grid to create
micro-clusters, which are used for final clustering based
on their densities. The advantages and disadvantages of
the reviewed grid-based clustering methods are presented
in Table 1. The fundamental challenges in clustering data
streams are memory limitations, time limitations, handling
high-dimensional data, noisy data, and evolving data. No sin-
gle reviewed algorithm can simultaneously address all chal-
lenging issues. Numerous challenges remain for grid-based
clustering algorithms, particularly in terms of time-limited
and high-dimensional data handling. Evidently, the preceding
discussion on various types of density grid-based clustering
algorithms can claim that the field of data stream clustering
is open for researchers. Some possible research focus areas
suggested for the future are listed as follows.

o Grid-based clustering and micro-clustering have their
respective advantages. Hence, the development of
algorithms using a hybrid method combining grid-
based clustering and micro-clustering warrants further
investigation.

« We observed that the majority of the algorithms in their
offline phases use DBSCAN, which requires the setting
of various parameters. Investigations into the use of
other types of approaches focused on density for data
stream clustering should be conducted.

o The majority of clustering algorithms are unable to
handle high-dimensional data streams. The number of
grids increases as the dimensionality of space increases.
They achieve poor performances on extremely high-
dimensional data. Accordingly, further research should
be conducted to improve the performance of such
algorithms.

« These algorithms have been developed to handle data
streams containing clusters of different sizes, shapes,
and densities. Nevertheless, only a few of them can
handle challenging clustering tasks.

o The evaluation of density-based clustering algorithms
that use actual datasets, such as Synapse and clinical
trials, is another possible research topic.

o No existing algorithm can simultaneously address all
issues. Hence, an effective algorithm with the ability to
solve all the identified problems should be developed.

o Most of the approaches are nonautonomous, which
means they need manual tuning of their internal param-
eters. Unfortunately, the tuning process requires consid-
erable effort, and the parameter results might become
invalid after a particular time due to statistical changes
in data or concept drift characteristics.

o The dynamical metrics used by the existing clustering
algorithms ignore handling the problem of false merging
of clusters thatoccurs when two or more clusters overlap
on top of each other. This leads to false prediction in the
clustering analysis caused by the evolving natures of the
clusters and therefore reduces thecluster quality.
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