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ABSTRACT Convolutional Neural Networks (CNNs) based approaches are popular for various image/video
related tasks due to their state-of-the-art performance. However, for problems like object detection and
segmentation, CNNs still suffer from objects with arbitrary shapes, sizes, occlusions, and varying viewpoints.
This problem makes it mostly unsuitable for fire detection and segmentation since flames can have an
unpredictable scale and shape. In this paper, we propose a method that detects and segments fire-regions
with special considerations of their arbitrary sizes and shapes. Specifically, our approach uses a self-attention
mechanism to augment spatial characteristics with temporal features, allowing the network to reduce its
reliance on spatial factors like shape or size and take advantage of robust spatial-temporal dependencies. As a
whole, our pipeline has two stages: In the first stage, we take out region proposals using Spatial-Temporal
features, and in the second stage, we classify whether each region proposal is flame or not. Due to the scarcity
of generous fire datasets, we adopt a transfer learning strategy to pre-train our classifier with the ImageNet
dataset. Additionally, our Spatial-Temporal Network only requires semi-supervision, where it only needs
one ground-truth segmentation mask per frame-sequence input. The experimental results of our proposed
method significantly outperform the state-of-the-art fire detection with a 2 ∼ 4% relative enhancement in
F1-score for large scale fires and a nearly ∼ 60% relative improvement for small fires at a very early stage.

INDEX TERMS Fire detection, early detection, disaster management, small-sized fire, video fire segmen-
tation, semi-supervised.

I. INTRODUCTION
According to a National Fire Protection Association
report [1], in 2018, approximately 1, 318, 500 fire disas-
ters occurred in the United States, causing 3655 deaths,
15200 injuries, and damages worth $25.6 billion. This prob-
lem motivated several works towards fire detection systems,
categorized into two classes: sensor-based technologies and
image-based approaches. Popular sensor-based fire detec-
tion technologies include smoke detectors, thermometers,
or ultraviolet light sensors. At the same time, these cheap

The associate editor coordinating the review of this manuscript and
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and widely available technologies rely on particle sampling
that makes their performance hypersensitive to its location
and proximity to the fire. Typically, this limitation makes it
only suitable in indoor environments [2]. On the flip side,
image-based fire discovery systems aremore flexible in terms
of location and can be used in outdoor settings. In terms of
early detection, image-based approaches also have the upper
hand. Unlike sensor-based, it does not have to wait for enough
samples and can immediately detect small combustion. Addi-
tionally, image-based methods also offer more information
than sensor-based technologies. For instance, it can localize
the fire, measure its intensity, and track its growth. These
insights are critically helpful in combating fire disasters.
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Early image-based fire detection approaches often rely
on handcrafted pixel features and heuristics involving dif-
ferent thresholds [3]–[7]. While it may work well in a con-
trolled setting, these rule-based approaches require constant
threshold tuning and may not work well in a real-world
environment.

In the past few years, the advent of deep learning allowed
automatic feature extraction. Advancements like Convolu-
tional Neural Networks (CNNs) are now state-of-the-art in
many video/image related tasks [8]–[10]. The shift away
from handcrafted features allowed fire detection approaches
to be more robust and adaptive to real-world settings. Some
CNN-based examples include, [11]–[13]. While these meth-
ods have good results in fire classification, one limitation
is that they suffer when the fire is still small–which should
be detected to prevent more damage. Additionally, they only
assume a single input image and do not take advantage of dis-
criminative fire temporal features like flickering, luminosity,
color and warmth changes.

We consider a distinct method to understand this enigma
and perceive the fundamental differences of fire to common
objects of interest in object detection/segmentation problems.
Fire is incredibly unique because of its unpredictable spatial
characteristics. It can be big or small, and it can have arbitrary
shapes. This propertymakes it harder to learn by conventional
CNNs and adds a level of complexity to our fire detection
and segmentation problem. Additionally, there is a scarcity of
generous video fire datasets with ground-truth segmentation
masks, making supervised learning difficult.

In this paper, we propose a fire detection method that
identifies fire regions which will enable the first responders
to understand the intensity and growth of the fire over time.
Additionally, our network is explicitly designed to handle
small-sized fires, making it suitable as an early detection
system. To be more conspicuous, our pipeline comprises
of two-stage. In the first stage, we parallelized the data
propagation through two streams, termed Spatio-Temporal
Network, which treats the spatial and temporal information
separately. We design a semi-supervised network for the
temporal streams that segregates fire region features from the
background in a video based on a given keyframe. We com-
bine spatial and temporal features using self-attention, learn
robust fire-distinctive dependencies, and extract quality seg-
mentation masks used as region proposals. The second stage
is an error-correcting mechanism to refine predictions. Addi-
tionally, it is designed to learn scale-invariant features to be
more robust against arbitrary-sized fires. As one of our contri-
butions, we constructed a fire video dataset with ground-truth
segmentation masks that are manually created. Moreover, for
evaluation, we also created a dataset containing videos of
small-sized fires, some of which are synthetically generated.
We performed several experiments to prove our method’s
effectiveness, and we show that it compares auspiciously
in opposition to the state-of-the-art-including on small-sized
fire scenarios.

To summarize, our main contributions are:

• We propose a novel two-stage fire-detection approach.
In the first stage, we implement two streams, termed the
spatial-temporal network. We design a semi-supervised
network for the temporal stream that segregates fire
region features from the background in a video based on
a given keyframe. The spatio stream uses static features
from a single frame, such as color and texture.

• Our proposed approach uses self-attention on Spatio-
Temporal features that are discriminative of fire,
enabling our network to produce superior segmentation
masks to use as region proposals. CNN-based binary
classifiers classify these region proposals in the second
stage, which is essential because some objects are also
similar to fire.

• We constructed a video dataset containing manually
generated ground-truth segmentation masks. Addition-
ally, since one of our goals is early fire detection, we cre-
ated synthetic videos with small-sized fires for evalua-
tion purposes.

The paper is organized as follows. Section II discusses
some related works and the progression towards the state-of-
the-art. In Section III, we explain the challenges related to this
work and motivate our approach to justify the design choices
we made to solve the problem. We explain our approach in
Section IV and discuss evaluations in Section V before finally
arriving at a conclusion in Section VI.

II. RELATED WORK
In the last few years, video surveillance has become nearly a
defacto standard in various fields, including anomaly detec-
tion [14], pedestrian detection [15] and fire detection [11].
Moreover, multiple attempts have been made to find more
effective and efficient methods for coding surveillance videos
[11], [16], [17].

A. FIRE DETECTION
Early works on image-based fire detection rely on
handcrafted features descriptive of fire. For instance,
Töreyin et al. [3] propose a wavelet transform to extract tem-
poral features and rule-based decisions, which rely on thresh-
olds to identify fire regions. Chen et al. [6] used RGB and
HSI color spaces to analyze fire behavior in multiple frames
and proposed heuristics to detect fire-regions. Vipin [18] used
YBbCr color space to separate luminance from chrominance
and classify if pixels are fire regions or not. Recent works
are CNN-based and stray away from handcrafted features
and heuristics [11]–[13]. For instance, Sharma et al. [19]
investigated fire detection by finetuning popular VGG16
and Resnet50. Muhammad et al. [20] applied a model sim-
ilar to GoogleNet to extract features from the image for
early-stage fire detection. They also explored in [11] light-
weight SqueezeNet [21] for fire detection and localization.
Dunnings and Breckon [12] use super-pixels with CNN archi-
tectures based on Inceptionv1, AlexNet, and VGG16 for fire
detection. As part of their effort, CNN models are simplified
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by keeping only some convolution, pooling, and dense layers
to decrease model complexity while preserving accuracy.
UsingMultiple Instance Learning, Aktas et al. [22] extend the
current CNN-based fire detection method in video sequences.
Xie et al. [23] used both deep static and motion flicker-based
dynamic features for detecting fire. The researchers [24]
used a multi-scale feature extraction mechanism based on
AlexNet to gain spatial detail information of fire in an image.
They apply channel attention to emphasize the contribution of
different feature maps. Oh et al. [25] presented a method for
detecting wildfires using a light-weight EfficientNet frame-
work. As a means of resolving the classes imbalance prob-
lem, they utilized the focal loss. Wang et al. [26] proposed
a suspicious region localization using the Cauchy-mixture
model in a five-dimensional feature space. Moreover, they
designed a light-weight Squeeze-and-Excitation shuffleNet
for the classification of the suspicious region. Li et al. [27]
designed a dilated convolutional network for fire localization
and classification, even performing better than fine-tuned
CNNs. Shen et al. [28] used a one-stage detector to detect
flames, such as YOLO. Based on the spatial features, Kim
and Lee [29] applied Faster R-CNN to detect suspected fire
regions, which LSTM then used to interpret the dynamic fire
behavior. Apart from detection, some CNNs also allowed for
segmenting the fire in an image [30], [31]. One limitation
of CNN-based approaches is that they suffer if fire regions
are small, which is an inherent limitation of conventional
CNNs due to their fixed-size receptive fields [32]. Tomitigate
this problem, we incorporate design decisions [33], [34]
that better preserve localization information. Additionally,
we also incorporate temporal features and show that it can
further improve segmentation performance.

B. OBJECT DETECTION AND SEGMENTATION
There is a wide variety of possible applications for
object detection [35]–[37] and segmentation [38]–[40], [40],
[41], including remote sensing [42]–[44], object counting
[45]–[47], and image editing [48]–[52]. In this work,
we focus on fire detection and segmentation, which comes
with unique challenges. For instance, objects found in popular
datasets [53], [54], like cats, dogs, or cars, usually have a
defined shape. On the other hand, fires have an unpredictable
nature. It can have an arbitrary shape, size, and even location
on the image,making it harder to learn. Additionally, there are
no large datasets containing fire and ground-truth segmenta-
tion masks, adding another layer of complexity. To address
these limitations, our method is trained in a semi-supervised
manner and only requires the ground-truth mask of one
frame. Additionally, we adopt a transfer learning strategy and
pre-train our network on ImageNet [54] to learn background
information.

C. TEMPORAL FEATURES
Early approaches on fire detection using handcrafted features
harnessed the power of temporal features through wavelet
transforms or frame differences [3], [6], [18]. One advan-

FIGURE 1. The overview of our approach containing two stages. The first
stage takes in a sequence of frames fi - fi+T to extract fire region
proposals in frame fi+T /2. The second stage classifies each proposal as
either fire or normal.

tage of using temporal features for this problem is that fire
behaves very distinctively across video frames. The pres-
ence of fire results in flickering luminosity, changes in color
warmth, and rapid optical flowmovements. Instead of relying
on handcrafted features, we use convolution layers to learn
temporal features. We augment spatial with temporal fea-
tures using a self-attention mechanism, popular in NLP [55],
to learn Spatio-temporal dependencies useful for segmenting
fire regions.

D. SPATIO-TEMPORAL ATTENTION
Visual attention has been broadly applied in video-related
tasks [56]–[59]. Liu et al. [56] enhanced the vanilla LSTM
network’s ability by appending Spatio-temporal attention
for 3D action recognition, which selectively focuses on
the action sequence’s discriminative joints with the help of
global contextual features from skeleton data. In a further
study, Liu et al. [57] introduced a dynamic attention mech-
anism to progressively enhance recognition capability and
improve network performance. Du et al. [58] presented a
recurrent Spatio-temporal attention model that adaptively
learns essential information from video context to intensify
the ability of action representations. Wang et al. [60] intro-
duced a non-local module to compute the spatial-temporal
dependencies. In work for video captioning, Yan et al. [59]
proposed an encoder-decoder architecture by embedding
Spatio-temporal attention; thus, the decoder chooses essential
regions from the most appropriate temporal segments for
word prediction dynamically.

III. MOTIVATION
To reduce losses in fire disasters, we propose a method that
can detect and segment fire regions in videos. Unlike tradi-
tional sensor-based technology, our approach can recognize
small fires, enable early detection, and track its intensity
progression through segmentation masks.We argue that since
fires cause unexpected changes in size or shape, special
design considerations should be made. In order to tackle the
arbitrary characteristics of the fire’s size and shape, we take
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inspiration from popular network architectures like [34]
and [33] and incorporate skip structure between the encoder
and the decoder path. Additionally, to reduce our network’s
reliance on spatial features like size or shape, we incorporate
temporal features learned by 3D convolution layers. We use
an attention mechanism to augment spatial with temporal
features. As shown in our experiments, this strategy allows us
to know Spatio-temporal dependencies that improve our net-
work’s segmentation quality. Moreover, we apply a two-stage
pipeline similar to existing object detection networks [35],
[61]. The first stage extracts fire regions from the background
based on a keyframe, and the second stage classifies the
region. However, unlike object detection networks, our region
proposals are segmentation masks, providing information
about the fire’s size and intensity. This feature makes it
especially useful as a fire detection system.

IV. PROPOSED APPROACH
We propose a fire detection approach sensitive to fires of
varying sizes–from small to big. As shown in Fig. 1, our
method has two stages: (1) region proposal and (2) classifica-
tion. In the region proposal stage, we use a Spatio-temporal
network that adopts self-attention to augment spatial with
temporal features to extract high-quality segmentation maps.
In the second stage, we utilize a classier network to detect
and verify fire regions accurately. This section is arranged as
follows: in IV-A, we elaborate more about the first stage and
discuss the Spatio-temporal network, followed by the extrac-
tion of region proposals in IV-B. Lastly, in IV-C, we discuss
the fire classifier found in the second stage.

A. SPATIO-TEMPORAL NETWORK
Network Overview: As its name suggests, the Spatio-
Temporal Network takes advantage of spatial and tempo-
ral features to extract fire segmentation masks. In Fig. 2,
we show an overview of the network. It has 3 major parts: (1)
TemporalNet, (2) SpatioNet, and (3) FuseNet. TemporalNet
learns features related to the time component and takes in
a sequence of frames fi to fi+T , where fi is the initial frame
and fi+T is the final frame. On the other hand, SpatioNet
only takes in a single frame fi+T/2 as input. TemporalNet
and SpatioNet would provide each output with a 64-channel
feature map. In our implementation, TemporalNet takes in
frames fi to fi+14, and SpatioNet takes in frame fi+14/2.
Inspired by [62], we concatenate the feature maps and pass
them through a 1 × 1 convolution layer, which effectively
learns how to shrink their size. Finally, FuseNet takes in the
1×1 conv layer output and learns spatial-temporal dependen-
cies using a self-attention mechanism. Self-attention between
spatial and temporal features extracts important relationships
like how certain texture regions behave across time. These
relationships are beneficial for fire detection and segmenta-
tion, as revealed in our experiments, which is discussed in
Section V-D.

FIGURE 2. The architecture of our Spatio-Temporal Network. We use
frames fi+T /2 and fi to fi+T as inputs of SpatioNet and TemporalNet,
respectively, then fuse their outputs using FuseNet to get the fire
segmentation mask.

Training Overview: The network is trained in a multi-stage
manner where we first train the SpatioNet and TemporalNet,
then finally the FuseNet. SpatioNet and TemporalNet are
trained independently to extract the fire segmentationmask of
frame fi+T/2. As shown in Fig. 2, these networks each output
a 64-channel feature map. However, during the training stage,
we augment these networks with another layer to output
an H × W tensor corresponding to a segmentation mask.
We phrase the segmentation problem as pixel classification
and optimize the networks to reduce a binary cross-entropy
also called as Log loss.

1) SpatioNet
Inspired by UNet++ [34], we use skip pathways structure
to reduce the semantic gap between encoder and decoder
feature maps. As shown in Fig. 3, our SpatioNet utilizes
2D VGG blocks, as depicted in Fig. 4, which concatenate
the output of the previous block and the corresponding
up-sampled output of the lower block. The dense skip con-
nection enables the shallow layers to share information with
deep layers easily. We use this design because localization
information can be found in the shallow layers. By connect-
ing it to deeper layers, we improve the network’s ability to
detect small-size fires, which is critical in early fire detection
systems.

In Eq. 1, we formally formulate the output of each block
as Bi,j. The blocks are denoted as L i,j, where i is the level
of down-sampling, and j denotes the level of skip pathway.
The function V (·) is a VGG convolutional operation, C(·) is
a concatenation, and U (·) is an up-sampling layer. At level
j = 0, nodes only receive one input from the previous layer.
At level j > 0, nodes receive j + 1 inputs which j inputs
are the outputs of previous nodes in the same skip pathway,
and one input is the up-sampled output from the lower skip
pathway. In our work, we use four layers of up-sampling and
down-sampling.

Bi,j =

{
V (Bi−1,j), j = 0

V (C(C(Bi,k )j−1k=0, U (Bi+1,j−1))), j > 0
(1)
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FIGURE 3. The architecture of the SpatioNet inspired by [34].

FIGURE 4. The architecture of VGG Block in 2D and 3D.

2) TemporalNet
This sub-network learns features from a series of frames fi
to fi+T . These features are especially useful for our purpose
because fire has specific temporal behavior. For instance,
fire causes the luminosity of frames to flicker, or its color
temperature to change. It may also exhibit rapid movements
across frames.

As discussed previously (Section IV-A), we train the
TemporalNet to output a segmentation mask. Because
ground-truth labeling is expensive, we propose an architec-
ture that takes in frames fi to fi+T but only requires the
ground-truth segmentation mask of fi+T/2. TemporalNet’s
architecture is shown in Fig. 5. We use VGG blocks (shown
in Fig. 4) with 3D for temporal behavior and max-pooling
in the encoder to reduce the feature map’s dimension. In the
decoder, 2D up-sampling recovers resolution’s spatial (height
and width) dimension and ultimately outputs a segmentation
mask of the middle frame fi+T/2. This strategy allows for
a semi-supervised learning approach that only needs one
frame’s ground truth per input sequence. Nevertheless, this
is not straightforward since the encoder primarily deals with
4-dimensional temporal information, and the decoder deals
with 3-dimensional spatial information. To solve this prob-
lem, we utilize 1D max-pooling to reduce the feature map’s

FIGURE 5. The architecture of TemporalNet.

FIGURE 6. The architecture of FuseNet. To reduce the calculation,
we down-sample the feature maps before sending them into the
self-attention module.

temporal dimension from the contracting path of the encoder.
The decoder uses 2D VGG blocks. We also incorporate
skip-connections from the encoder to the decoder path, which
is used to extract multi-scale features and retain detailed tem-
poral information using 1D max-pooling. There are five con-
volutional layers and four max-pooling layers in the encoding
path. In the decoding path, there are four upsampling layers
and four convolutional layers.

3) FuseNet
As shown in Fig. 2, we concatenate features extracted
from SpatioNet and TemporalNet using concatenation and
a 1 × 1 convolution layer. Within the FuseNet, we use a
self-attention mechanism inspired by [63] to extract depen-
dencies of spatial and temporal features. The overview of
our FuseNet is shown in Fig. 6. It has a Self-attention mod-
ule between a down-sampling encoder and an up-sampling
decoder. Before sending the feature maps into the Self-
attentionmodule, we down-sample the featuremaps to reduce
the calculation in the Self-attention module.

Fig. 7 shows an overview of the Self-attention module. Its
goal is to get matrix S ∈ RN×N , where each point of Sij
denotes ith position’s impact on jth position. This impact is
regarded as self-attention, and it can learn pair-wise corre-
lations of features. Since FuseNet takes in Spatial-Temporal
features, it can effectively learn how each image region
behaves in time with respect to the other areas. These features
are especially critical for fire detection because a fire in
one part of the image would always affect the surrounding
areas. For instance, the surrounding area’s luminosity, color
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FIGURE 7. The architecture of the Self-Attention module.

temperature, and shadow movements are correlated with the
fire’s intensity and behavior.

Specifically, to compute for the Self-attention matrix S ∈
RN×N , we first use three 1×1Convolution layers to transform
the encoder output into three different feature spaces, XA, XB
and XC . We reshape the feature maps XB and XC to B′ and C ′,
where B′, C ′ ∈ RC×N and N = H × W and transpose it to
A′, where A′ ∈ RN×C .
Using Softmax on A′ and B′, we can get S, which is

formally defined in the following equation:

Si,j =
exp(A′i · B

′
j)∑N

i=1 exp(A
′
i · B

′
j)

(2)

Next, we perform another matrix multiplication between
C ′ and S, and then reshape the result to RC×H×W . Finally,
we perform element-wise sum with the input feature maps X
to get the final output Y , formally defined as follows:

Yj = α
N∑
i=1

(Si,j · C ′i )+ Xj (3)

Herein, C ′ denotes the reshaped output of XC and dot
(·) denotes matrix multiplication. Inspired by [63], α is a
learnable parameter.

Lastly, in the decoder shown in Fig. 6, we up-sample the
feature maps back to the size of the input image and use a
1×1 convolution layer to get the final fire segmentationmask.
In our experiments, we show that the Self-Attention module
improves the performance of the network.

B. FINDING REGION PROPOSAL
After using the Spatio-Temporal Network, we want to extract
the region proposals from the segmentation mask. To obtain
this, as shown in Fig. 8, we convert the segmentation mask
into binary and compute the bounding boxes for each con-
nected component using component labelling of OpenCV,
which is an algorithmic application of graph theory employed
to determine the connectivity of ‘‘blob’’-like areas in a binary
image. Also, we extended each connected component’s
region to find a single region of interest. Accordingly, dimen-
sions of each region are enlarged from [x, y,width, height] to
[x, y, x+width, y+height], then overlapping bounding boxes
are merged into, and this process repeated iteratively. Finally,
overlapping bounding boxes are consolidated into one region

FIGURE 8. Flow diagram for the region proposal.

FIGURE 9. Computing the region proposal. Overlapping bounding boxes
are merged as one region proposal.

proposal, as shown in Fig. 9. These region proposals will be
classified in the next stage.

C. FIRE BINARY CLASSIFIER
The Fire Binary Classifier takes in region proposals from
the first stage and identifies if it contains fire. Inspired by
DenseNet [64], our classifier connects each layer to the other
in a feed-forward way. For each layer, the feature maps of
every previous layer are used as input, and its output feature
maps are used as input for every layer behind. This strategy
reduces gradient vanishing and enhances feature propagation.
In this work, we call our classifier DenseFire, derived from
the original DenseNet [64]. In our experiments, we also
compare with different classifiers used in state-of-the-art
fire detection approaches including, InceptionV1 [12] and
SqueezeNet [11].
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Because the fire dataset is small, we adopt a transfer learn-
ing strategy and train our classifier network for other tasks,
indirectly enhancing fire classification performance. Specif-
ically, we pre-train our classifier on ImageNet [54] so that
it can learn useful features that can discriminate background
objects from fire.

V. EXPERIMENTS
We will describe the experimental setting in detail in this
section. First, we compare each sub-networks of our Spatio-
Temporal Network and evaluate its segmentation quality.
We replace our FuseNet with UNet to prove that the
Self-attention module increases our network’s segmentation
performance. Then we perform several groups of experi-
ments to prove the viability of our method. We compare our
two-stage architecture with other state-of-the-art methods on
publicly available and self-concreted fire datasets, including
small-sized fires. We compare the computational cost of dif-
ferent state-of-the-art classifiers on the NTUST fire dataset.
Finally, we test the robustness of the proposed framework.

A. IMPLEMENTATION DETAILS
All experiments are conducted on the machine (Intel(R)
Core(TM) i7-7700K) with a RAM of sixty-four GIGabytes
memory capacity and NVidia GTX 1080Ti graphics process-
ing unit (GPU) of eleven GIGabytes. As for the software,
all codes are implemented using the Pytorch deep learn-
ing framework on the Ubuntu system. We independently
train SpatioNet and TemporalNet to optimize a binary cross-
entropy loss. After these networks are trained, we freeze
their weights, then train FuseNet. This multistage strategy
allows us to train our model, despite memory constraints.
Each network is trained using an Adam Optimizer with a
learning rate of 3e-4. We set the batch size to 4 and trained
for 10000 epochs on the NTUST fire dataset.

B. DATASETS
Our approach aims to obtain the fire regions from a sequence
of frames; therefore, we collected two datasets1: NTUST
fire dataset and small-sized fire dataset. We create one
ground-truth mask per fire video to maximize our dataset’s
scenery variety because manually creating segmentation
masks is a tedious task. To ensure fair evaluation and quan-
titatively appraise the achievement of our proposed method,
we also used a publicly available dataset [7] and compared the
results with other state-of-the-art techniques. Table 1 includes
details about the datasets.

NTUST fire dataset We collected a total of 1033 videos,
with 559 containing fires and 434 containing normal scenes.
These videos contain diverse samples like scenes of burning
wood, car, and trash. It also contains objects similar to fire,
like sunsets and flashing lights. Fig. 10 shows some examples
of our NTUST fire dataset. We used our NTUST dataset
containing videos for training and testing.

1Will be made available upon acceptance of manuscript.

TABLE 1. Details of datasets for the training and testing.

Small-sized fire datasetWe define small-sized as occupy-
ing only 5% of the total pixels in the whole image. We gath-
ered small-sized fires from the internet as the test set too.
Additionally, we also generate synthetic videos by blending
fire videos and normal videos frame by frame, as shown in
Fig. 11, and use these images to augment our small-sized fire
dataset. In total, we used 100 small-sized fire videos, with
200 normal videos sampled from the NTUST dataset. Fig. 12
shows some examples of small-sized fires from our dataset.

Foggia dataset [7] Provides 31 video clips with
62690 frames, which contains different situations; only
14 video clips hold the fire scene. Sample video clips from
the Foggia dataset are shown in Fig. 13; the fire region of each
video has a relatively substantial proportion of the images.

C. EVALUATION CRITERIA
The following metrics are used to examine the quantitative
performance of the proposed approach.

The recall and precision are defined as:

recall =
TP

TP + FN
, precision =

TP
TP + FP

(4)

The F1-score is defined as:

F1− score = 2×
(precision× recall)
(precision+ recall)

(5)

The accuracy is defined as:

accuracy =
TP + TN

TP + TN + FP + FN
(6)

TP represents True-Positives, where the number of fires
detected that ground truth are fires. FP represents False-
Positives, where the number of fires detected that ground truth
are not fires. FN represents False-Negative, those fires that
have not yet been detected. TN represents True-Negatives,
where ground truth is not fire and predicted as False.

D. ABLATION STUDY
Segmentation Mask In the first stage, our pipeline outputs
a segmentation mask using the proposed Spatio-Temporal
Network (STNet), a fusion of sub-networks, SpatioNet, and
TemporalNet. To analyze the individual contributions of Spa-
tioNet and TemporalNet, we show the performance of each
sub-network in terms of segmentation quality. As an evalu-
ation metric, we use the dice coefficient (also known as F1-
score) shown in Eq. (7), where H and W denote the height
and width of the input image, X denotes the semantic ground-
truth, and Y denotes the predicted segmentation mask. Dice
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FIGURE 10. Some examples from our NTUST fire dataset. The two
columns on the left are fire examples, and the two columns on the right
are normal examples.

FIGURE 11. Generating synthetic small-sized fire videos through frame by
frame blending.

FIGURE 12. Some examples from our small-sized fire dataset. The two
rows on the top are real-world small fires, and the images in the last row
are the synthesis small fire examples.

coefficient is a commonly used metric to evaluate segmenta-
tion quality [33], [34].

Dice =

2×
H∑
i=1

W∑
j=1

XijYij

H∑
i=1

W∑
j=1

(X2
ij + Y

2
ij )

(7)

In Table 2, we show the dice coefficient of SpatioNet,
TemporalNet, and Spatio-Temporal Network (STNet) on the

FIGURE 13. Some experimental images from the Foggia dataset [7]. Row
a) video clips hold fire scenes, row b) video clips hold objects which look
similar to fire.

TABLE 2. Dice coefficients of Spatio-Temporal Network (STNet) and its
sub-networks.

FIGURE 14. Output segmentation mask of Spatio-Temporal Network and
its sub-networks, SpatioNet and TemporalNet.

test set of the NTUST dataset. Observe that the score of
our TemporalNet is higher than the SpatioNet, highlighting
the importance of temporal features in fire segmentation.
Additionally, the result of our full network, Spatio-Temporal
Network, proves that fusing the spatial and temporal features
achieves the best results.

We also show the output segmentation masks of each net-
work configuration in Fig. 14. In the first row, we show an
example of a small-sized fire. It can be observed that only the
SpatioNet failed to detect the fire, confirming our hypothesis
that spatial features are not robust enough against arbitrarily-
sized objects. In the second row, we show an input sample
containing many objects that are brightly colored, similar
to fire. The output of SpatioNet shows that it is sensitive
to these objects that are not fire. On the other hand, it is
harder to fool the TemporalNet because not many objects
exhibit temporal features similar to fire. However, it could
be observed that small patches on the right side of the image
are still incorrectly labelled as fire. By combining spatial and
temporal features, the Spatio-Temporal network shows the
best segmentation masks.

Fusion Our FuseNet, as shown in Fig. 6, consists of a
Self-attention module that learns global fire dependencies
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TABLE 3. Comparing dice coefficients of Self-attention and UNet with
FuseNet.

TABLE 4. Dice coefficients of Spatio-Temporal Network (STNet) and its
sub-network with various self-attention (SA) mechanisms.

from temporal and spatial features. In this experiment,
we analyze the contribution of the Self-attention module
in terms of improvements in segmentation quality. First,
we obtain the dice coefficient of FuseNet alone and then com-
pare the dice coefficient of FuseNet with the Self-Attention
module and FuseNet with a UNet [33] structure. The resulting
dice coefficient scores are shown in Table 3, and it can be
observed that the Self-attention module achieves a better
score than UNet, which justifies its use. Self-attention’s suc-
cess is attributed to its ability to learn how each patch relates
to the entire image. For fire segmentation, these relationships
are critical because the presence of fire affects its surrounding
regions.

Self Attention Each stream of the Spatio-Temporal Net-
work provides specific information. And to further verify
the significance of self-attention in the spatial and temporal
streams in producing the output mask directly. We also exam-
ine the model by adding attention to the individual streams
feature. We compare the dice coefficients for SpatioNet
with self-attention, TemporalNet with self-attention, and the
Spatio-Temporal Network (STNet) with self-attention on the
NTUST dataset. The outcomes of the segmentation model are
summarized in Table 4. It is noticed that the dice score of our
SpatioNet is lesser than the TemporalNet (Table 2). It verifies
that adding self-attention to individual streams does not make
much significance (Table 4). SpatioNet with self-attention
achieves a dice score of 0.775, whereas, without attention,
it attains a dice score of 0.771. Similarly, TemporalNet with
self-attention and without self-attention reach a dice score of
0.840, 0.839 respectively, which are almost similar. Addition-
ally, the Spatio-Temporal Network result proves that fusing
the spatial and temporal features with self-attention achieves
the best results.

Two stage classifier Formore comprehensive validation of
two-stage classification, the ROC curve is added to estimate
the fire detection of our network. The average values of area
under the ROC curves for the NTUST Dataset is shown in
Fig. 15.a. True positive rate is plotted against False positive
rate in the ROC curve. It can be observed that the ROC
curve of our two-stage classifier is quite close to the upper
left corner, AUROC values of our STNet is 0.860, while for

FIGURE 15. The ROC and PRC curves.

TABLE 5. Quantitative results fire segmentation on the NTUST dataset.

the two-stage (STNet+DenseFire) value is reached 0.991.
Fig. 15.b shows the precision-recall curves. It can also be seen
that the AUPRC values for two-stage (STNet+DenseFire) are
relatively higher than STNet.

E. RESULTS ON THE NTUST DATASET
Segmentation Results on the NTUST Dataset: In this work,
we utilize UNet [33] as a baseline. Moreover, to vali-
date the proposed framework’s segmentation performance,
we compare it against different deep learning-based mod-
els such as UNet++ [34], AttUNet [65] and R2UNet [66].
The qualitative results of our STNet with other deep CNN
methods are shown in Fig. 16, which is based on the
testing set of the NTUST Dataset. The binary mask out-
comes indicate that our model is competent in captur-
ing fire information. UNet++ shows good performance
as compared to R2UNet and attention UNet. It can be
noticed that the segmented fire areas using the conventional
UNet model are worst among all. Furthermore, the quan-
titative evaluation score is listed in Table 5. We can see
our model achieve higher recall and F1-scores (1, 0.848),
respectively.
Comparing the Results of the Fire Binary Classifiers on the

NTUST Dataset: We compare our fire binary classifier with
other state-of-the-art fire detection methods. In the second
stage of our pipeline, we use DenseFire to identify if the input
contains fire or not. Usually, our DenseFire takes in region
proposals from the first stage of our pipeline as shown in
Fig. 17. However, in this experiment, first, we test the indi-
vidual performance of our DenseFire without the first stage
and see how it compares to other methods. We compare with
InceptionOnFire [12] based on the Inception Network [67]
and CNNFire [11] based on Squeeze Net [12]. We extracted a
total of 13256 images from our NTUST dataset and used 80%
for training and 20% for testing. We train each network as a
binary classifier of fire or normal, and in Table 6, we show
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FIGURE 16. Qualitative comparison of fire segmentation. From left:
a) Center frame from a sequence, b) ground truth, c) UNet++, d) AttUNet,
e) R2UNet, f) UNet, and g) Ours STNet.

TABLE 6. Performance of single-stage approaches on the NTUST Dataset.

TABLE 7. Performance of two-stage approaches on the NTUST dataset.

each network’s performance in terms of recall, precision,
and F1-score. We observe that DenseFire achieves the best
F1-score.

Sometimes, it is difficult to distinguish between a real fire
and an object that looks like a fire from a long distance by
relying only on the above rules. Therefore, we considered a
two-stage classifier. From the first stage obtained, the pro-
posed region is re-classified by binary classifiers. Individual
classifier’s success with STNet is measured in a recall, preci-
sion, and F1-score and presented in Table 7. We can observe
that the performance is further enhanced. The classifiers dis-
carded some of the region proposals that are identified as fire
by STNet. It is apparent from the analysis that our method
STN+Densefire is improved in various ways and achieved a
recall of 100%, precision of 98.4% and F1-score of 99.2%,
which indicates a more appropriate fire detection system in
practice.

TABLE 8. Quantitative results fire segmentation on the small-sized fire
dataset.

F. RESULTS ON THE SMALL-SIZED FIRE DATASET
Segmentation Results on the Small-Sized Fire Dataset: To
test the versatility of our segmentation network, we com-
pare it against various deep learning-based models such
as UNet++ [34], AttUNet [65] and UNet [33] on the
small-sized fire dataset. Fig. 18 shows visual comparisons
with others. From row one, we can see that UNet can-
not segment small fires, while UNet++ and AttUNet are
partially able. Using the proposed approach, we can seg-
ment fire regions with excellent quality. From row two,
we can observe that the proposed method and UNet++
correctly recognize the fire region while AttUNet over esti-
mated fire region. UNet and AttUNet cannot accurately seg-
ment the fire in the third row while UNet++ exceeded the
fire area. In comparison to UNet++, AttUNet, and UNet,
STNet appears to be performing more salutary. Also, our
quantitative results, shown in Table 8, confirm that our
F1-score is the best among all methods, ensuring a high
degree of specificity and sensitivity in identifying small
fires.
Comparing the Results of the Fire Binary Classifiers on the

Small Size Fire Dataset: In this experiment, we evaluate our
model’s effectiveness in detecting small-sized fires, critical to
early detection systems. In Table 9 and Table 10, we compare
the performance of our Spatial-Temporal Network (STNet)
against other state-of-the-art fire detection methods, includ-
ing InceptionOnFire [12], CNNFire [11], and EMNFire [13].
Additionally, we also compare with ShuffleNet [68], a highly
efficient classifier network.

These CNNs have some convolutional layers followed by
a few fully connected layers. CNN, the image is converted
into a vector which is primarily used in fire recognition.
They are effective for fire recognition problems when fires
are relatively large (Table 6). However, small fires are still
giving them some trouble (Table 9). CNN layers reduce the
images from high to low resolution, and a fully connected
layer causes loss of spatial information. Consequently, small
fire features they extract on the first layer (and a few of
them to start with) disappear between the layers and are
never actually used for classification. In Table 9, the very
low recall value for InceptionOnFire, CNNFire, EMNFire
and shuffleNet reveals that the classifier yields many results,
with maximum results mislabeled for small fires. In contrast,
the segmentation network does not have fully connected and
only contains a convolutional layer. The image is converted
into a vector and then converted back to an image using
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FIGURE 17. Set of sample frames in video clips. a) The fire was increasing in a successive frame, b) the fire was almost consistent, c) video clip
contained red color banner, and d) first, the fire was growing later shrinking.

TABLE 9. Performance of single-stage approaches on the small-sized fire
dataset.

the exact mapping by preserving the original structure, also
known as pixel-based classification. STNet provides us with
a far more granular understanding of the fire in the video.
It can be seen from Table 9, for STNet, the value of recall
is the best, and the precision is low, which implies a high
false positive. DenseFire, alone, achieves poor performance
for recall and best for precision. It shows that detecting small
fires is a nontrivial problem, and better performance can be
achieved by using a 2-stage approach.

In Table 10, we compare the results of our STNet using
different binary classifier architectures in its second stage.
It could be observed that 2-staged approaches achieve sig-
nificantly better results than the single staged approaches
(as presented in Table 9). The classifier in the second stage
discards region proposals, mistakenly identified as fire by
STNet, which can be attributed to the success of two-staged
approaches.

G. RESULTS ON THE FOGGIA DATASET
Segmentation Results on the Foggia Dataset: To validate
the proposed framework’s fire segmentation performance,

FIGURE 18. Qualitative comparison of fire segmentation on the small size
fire dataset. From left: a) Center frame from a sequence, b) ground truth,
c) UNet++, d) AttUNet, e) UNet, and f) Ours STNet.

TABLE 10. Performance of two-stage approaches on small-sized fire
dataset.

we compare it against different deep learning-based models
on the Foggia dataset such as UNet++ [34], AttUNet [65]
and UNet [33]. The qualitative results of our STNet with
other deep CNN methods are presented in Fig. 19. As we can
observe in the first row, the AttUNet and UNet are incorrect
in their segmentation based on the color of the fire. UNet++
overestimated the fire area. However, we can distinguish it
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FIGURE 19. Qualitative comparison of fire segmentation on the Foggia
Dataset. From left: a) Center frame from a sequence, b) ground truth,
c) UNet++, d) AttUNet, e) UNet, and f) Ours STNet.

TABLE 11. Quantitative results fire segmentation on the Foggia dataset.

TABLE 12. Performance comparison on the Foggia dataset [7].

from the proposed architecture. In the second row, UNet is
unable to segment the fire while AttUNet exceeded the fire
area. In the third row, the segmentation results, except the pro-
posed, all other comparison methods used have a drawback.
Table 11 shows the qualitative values of evaluation metrics
received from the Foggia dataset, which indicate that the
proposed method produces better results than other methods.
Comparing the Results of the Fire Binary Classifiers on

the Foggia Dataset: We analyzed our results with other fire
detection algorithms such as InceptionOnFire [12], CNNFire
[11], EMNFire [13], and ShuffleNet [68] by considering a
set of metrics such as recall, precision and F1- score. The
experimental outcomes are shown in Table 12.We can see that
ShuffleNet [68] reaches the recall of 0.845, which is worse
than others. CNNFire [11] and EMNFire [13] perform simi-
larly in terms of recall. However, the precision of EMNFire
[13] is better than CNNFire [11]. DenseFire showed satis-
factory performance in terms of precision. It is evident from
Table 12, and our STNet+DenseFire has surpassed precision,
recall, and F1-score values compared to others, indicating a
more reliable fire detection ability.

H. ANALYSIS OF COMPUTATIONAL COST
The following sectionwill see different deep learningmodel’s
performance in computational complexity, model complex-
ity, and inference rate for fire detection.

To estimate the computational complexity of each
deep learning model is based on floating-point operations

(FLOPs). For comparison, differences in computational com-
plexity associated with various deep learning models for
fire detection, CNNFire [11], EMNFire [13], GNetFire [20],
ShuffleNet [68], DenseFire and UNet [33]+DenseFire are
considered. As shown in Table 13, DenseFire requires
415 × 106 FLOPs counts. Densefire (96.9% accuracy for
the NTUST dataset and 80.3% for small-sized fire dataset),
with a 50% lower FLOPs count than CNNFire. Nevertheless,
on both datasets, CNNFire performance is less than Dense-
Fire. GNetFire requires 1500 × 106 FLOPs counts and per-
forms well on the NTUST dataset in F1-score and accuracy
(0.917, 90.2%) respectively, where its performance on the
small-sized fire dataset is only hitting F1-score of 0.251 and
accuracy of 32.5 %. EMNFire has the lowest FLOPs counts
and a 27.7% lower FLOPs count than DenseFire. Compared
to EMNFire, DenseFire has improved the accuracy by 1.1%
on the NTUST dataset and 31.5 % on the small-sized fire
dataset. ShuffelNet requires 542 × 106 FLOPs counts and a
27.7% Higher FLOPs count than DenseFire. The accuracy
of DenseFire is higher by 8.1% on the NTUST dataset and
15.2% on the small-sized fire dataset compared to Shuf-
felNet. Furthermore, EMNFire, GNetFire and ShuffleNet
gain F1-score (0.180, 0.251, 0.350) respectively, surpassing
Densefire in F1-score on a small-sized fire dataset. Due to
the poor robustness of the above classifier on challenging
scenes, we also explore a two-stage classifier. The two-stage
such as Unet+DenseFire classifier needs 1705×106 FLOPs,
which is the highest. The performance as measured by the
F1-score improved significantly on both datasets. The value
of the F1-score on the NTUST dataset reached 0.895, while
the accuracy reached 80.6%. On the small-sized fire dataset,
its performance reached an F1-score (0.742) and accuracy
(76.1%). Our two-stage STNet+DenseFire classifier requires
935× 106 FLOPs counts. STNet+DenseFire obtain an accu-
racy of 99.5% for the NTUST dataset and 96.5% for the
small-sized fire dataset. It implies that a two-stage classifier
increases computational cost but also affect performance. Our
STNet+DenseFire achieve F1-score of (0.992, 0.941) respec-
tively on both datasets, which outperforms other methods
given in Table 13.

Model complexity is also a standard metric for evaluat-
ing deep learning models. Counting the number of learn-
able parameters allows us to analyze the complexity of
models. This information is quite helpful in determin-
ing how much GPU memory is needed for each model.
We can also see in Table 13 the number of parameters for
existing CNNs and our proposed network. The two-stage
UNet+DenseFire classifier requires 36.7 × 106 parameters,
while our STNet+DenseFire require 8.5× 106 parameters.
ShuffleNet introduces 5.4 × 106 parameters and achieves
the F1-score (0.884) and accuracy (89.4%) for the NTUST
dataset. In contrast, the small-size fire dataset had the
F1-score (0.350) and accuracy (65.2%). Although CNNFire
has the lowest parameter and lower parameter count than
ours, it yields the worst performance on the small-sized fire
dataset.
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TABLE 13. Comparison between effectiveness and computational cost of fire detection models on different datasets.

TABLE 14. Comparison between accuracy and inference rate (I.R.) of the different models.

FIGURE 20. Robustness of the proposed fire detection under various conditions, top row: NTUST, middle row: small-sized fire, and bottom row:
Foggia dataset. a) No rotation, b) Clockwise 90, c) Clockwise 180 d) Clockwise 270, e) occlusion, and f) adding noise to video.

The frames per second (fps) unit is also a vital evalua-
tion metric for the fire detection method. The comparison
results are shown in Table 14 for fps, based on NVidia GTX
1080Ti graphics processing unit (GPU) of eleven GIGabytes.
We can observe that one-stage algorithms such as CNNFire
[11], EMNFire [13], ShuffleNet [68], GNetFire [20] and
DenseFire detect more quickly, which could detect more than

22 frames/s. CNNFire and EMNFire, operate faster than our
approach. EMNFire attained an inference rate of 65 fps while
maintaining an accuracy of 95.8% on the NTUST dataset.
For the small-sized fire dataset, only reach an accuracy of
38.8% (Table 13). Similarly, CNNfire achieved an inference
rate of 47 fps while maintaining an accuracy of 94.4% on
the NTUST dataset. However, the small fire dataset had the
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worst accuracy of 21.7% (Table 13). ShuffleNet has a similar
inference rate to ours but is not competent in performance.
As shown in Table 13, our two-stage approach ismore reliable
on both datasets than others. We reached an inference rate of
32 fps for our STNet+DenseFire model. Thus, our model is
considerable enough for real-time fire detection, maintaining
the F1-score of 0.992 on the NTUST dataset and 0.941 for the
small-sized fire datasets. Although our two-stage method has
a slower speed than EMNFire, both F1-score and accuracy are
considerably higher. Our method achieves 96.5% accuracy
on the small-sized dataset, which outperforms EMNFire by
57.7%. It is worth mentioning that the detection accuracy
of our approach on the small-sized fire datasets outperforms
that of the other methods by a large margin. In future work,
we will further minimize model complexity to improve the
inference rate for fire detection, providing a better balance
between accuracy and inference.

I. MODEL ROBUSTNESS
Surveillance videos are primarily normal in real-world sce-
narios. A robust fire detection algorithm should have a mini-
mum false-positive and false-negative on normal videos. Like
false-negative, false alarm call-outs create a considerable
drain on the fire and rescue service, also cause substantial
disruption with loss of productivity to businesses. Moreover,
firefighters diverted from real emergencies by answering
false alarms may delay emergency response times, placing
others at risk, such as children in schools, hospitals, and air-
ports. Thus, in addition to analyzing computation costs with
state-of-the-art methods, we also test the robustness of our
networks to confirm detecting the fire in the video sequence.
Fig. 20 shows three of the fire videos selected from the dif-
ferent datasets. Top row: NTUST dataset provides an indoor
scene, middle row: small-sized fire dataset is considering, the
camera may be far from the scene in some fire accidents,
or fire is at an initial stage, and bottom row: Foggia dataset
provides outdoor location. We examine various conditions
such as a) no rotation, rotated in b) clockwise 90, c) clockwise
180, d) clockwise 270 degrees around the horizontal axis, e)
fire entirely occluded by some object and f) adding noise to
video to evaluate under possible attacks. From Fig. 20, we can
see that the proposed method performs well in most cases.
It also indicates that it is more effective at detecting fires in
unknown conditions with varied atmospheres.

VI. CONCLUSION
In this paper, we proposed a two-stage architecture for early
fire detection in videos, incorporating design strategies that
can accurately detect small-sized fires. Precisely, we com-
bined spatial features with temporal features in the first stage
using a self-attention module to extract quality segmenta-
tion masks used as region proposals. Next, in the second
stage, we classified the region proposal using a state-of-the-
art classifier. Due to the lack of fire datasets, we employed
semi-supervised learning, where we only needed a single
ground-truth segmentation mask per frame-sequence input.

Additionally, we also adopted a transfer learning strategy and
a pre-trained classifier on the ImageNet dataset. To train and
evaluate our network, we constructed a fire video dataset
with ground-truth segmentationmasks. Since our goal is early
detection, we also created a dataset of small-sized fires for
evaluation. Using several evaluation metrics, we compared
with other methods and showed that our approach performs
best. Our proposed model’s state-of-the-art performance can
be attributed to the combination of learned temporal and spa-
tial features, which allowed our model to detect fire based on
its behaviour over time and its spatial features that can widely
vary. Future work will be devoted to making a light-weight
model to run on devices with computational or memory con-
straints.
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