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ABSTRACT With more sensors being installed by utilities for accurate control of power grids, there is
a growing risk of vulnerability to sophisticated data integrity attacks such as false data injection (FDI),
circumventing current bad data detection schemes resulting in inaccurate state estimation solutions. While
diverse automated detectors to battle FDI have been grown, such methodologies underestimate the strong
analytical abilities of humans. This is while most proposed automated methods need observant human
control. Although automated methods provide opportunities to improve scalability, humans can cope with
exceptions and new attack trends. In this paper, to address the ever-increasing cyber-attack challenge in
power systems, a visualization based attack detection framework using deep learning techniques is developed
to provide human security researchers with improved techniques to uncover trends, identify outliers,
recognize correlations, and communicate their results. Specifically, we first encode multivariate systems
state time-series data into 2D colored images and then utilize a carefully designed deep convolutional neural
network (CNN) classifier. The proposed method is developed to allow network operators to immediately
capture and visually understand the statistical features of a network attack at a glance. The proposed method
has been evaluated on the IEEE 14-bus and IEEE 118-bus systems. Our experiments show that the proposed
framework accomplishes high classification accuracy.

INDEX TERMS Cyber-attacks, deep learning, image processing, smart grid, false data injection attacks,
visualization.

I. INTRODUCTION
The future intelligent grid is extremely dependent on com-
puting, communication, and control technologies to ease the
control and operation of the power grid. However, this heavy
dependence leaves the modern power grid susceptible to a
broad range of cyber-attacks that can decrease the stabil-
ity of smart grids and ultimately undermine vital national
infrastructural sectors, causing significant market failures,
civil disruption and considerable financial damage [1]–[4].
Therefore, the demand for safeguarding critical smart grid
infrastructures from assorted cyber-attacks is a place of grow-
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ing anxiety. The cyber-attacks on the intelligent grid can
typically be divided into two classes: 1) Physical attacks: In
this type of attacks, energy grid parts such as generators and
circuit breakers are targeted to change electric power topol-
ogy that could directly result in power outages and cascade
failures [5]–[7]. But, they can still be quickly identified even
if the associated protective instruments that record physical
elements condition are also jeopardized [8]. 2) Cyber-attacks:
This type of attacks, which generally are hard to detect if
attack vectors are well-organized, try to delude power sys-
tem operation by targeting the supervisory control and data
acquisition (SCADA) program, which can trigger implicit
financial damage and endanger the security of the power
system [9]–[12].
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A means of organizing such an attack is regarded as false
data injection attacks (FDIAs), which presents a significant
danger to the credible operation of the smart grids by under-
mining the integrity of the state estimation results andmust be
identified and discarded immediately in order to deter severe
financial impacts. Various data-driven detectors have been
suggested [13] to safeguard the state estimation solutions
against FDIA. Generally speaking, the developed automated
detectors first approximate the data distribution of past obser-
vations and use the calculated distribution to catch potential
attacks that result in intense deviation from the reference
distribution. For example, in [14], authors have proposed a
deep belief network combined with the Gaussian-Bernoulli
deep Boltzmann machine to identify FDIA. Margin Setting
algorithms were used in [15] to identify FDIA. An ensemble-
based classifier using Deep Neural Network (DNN) and
Decision Tree (DT) is proposed in [16] to detect FDIA.
The work in [17] has discussed the binary classifica-
tion problem of identifying FDIA utilizing supervised
learning algorithms such Support Vector Machine (SVM).
Recurrent Neural Networks (RNNs) are used in [18] for
binary classification of falsified measurements and normal
ones.

While most of the developed automated detectors need
meticulous human intervention, no emphasis has been given
to the analytical capabilities of the power grid operators. This
paper aims to bridge this gap by providing the power grid
security analysts with a carefully designed attack detection
tool exploiting deep learning techniques to discover patterns
and find cyber-anomalies. The proposed method takes advan-
tage of the inherent strengths of a deep learning-based detec-
tor and power system operators perceptual to identify legiti-
mate data patterns and rapidly catch and visually apprehend
the attacked measurement at a glance. While over the last few
years, the problem of detecting cyber threats by visualization
has been extensively explored in the traditional information
technology systems [19], [20], it has not been widely studied
in the context of the power systems yet. Moreover, we tackle
the multi-class classification issue where the designed frame-
work can discriminate between different attack classes (attack
to different systems states), which makes our solution robust
than binary classification solutions that have only two class
labels: attack and normal.

Data visualization approaches and image processing tech-
niques play an important role when it comes to data analysis
projects. Physically capturing the internal representations of
data brings significant advances in pattern discovery and
anomaly detection. There are few research efforts to imple-
ment data visualization technologies in power systems [21],
[22]; however, more attention should be paid to this important
goal.

Following this trend, the authors recently presented a
novel visualization approach for fault localization in power
transformer windings [23]. The presented results confirmed
the efficiency of data visualization and the accuracy of this
approach.

In this paper, an attack detection framework based on
mapping the system states data to 2D images is proposed.
The framework utilizes a deep convolutional neural net-
work (CNN), which has obtained significant success in
the image processing area. While a significant portion of
the currently developed detectors relies on one-dimensional
signals, this paper transforms the system state time-series
data into 2-dimensional representations and uses the deep
CNN classification. Image representation of system states
brings up various types of features that are not accessible
for one-dimensional state vectors leading to boosting the
recognition rate of the detector. Therefore, we treat the attack
detection task as a texture image recognition problem.

The rest of the paper is organized as follows: Section II
illustrates the problem settings for our work. Section III
details the proposed deep learning-based framework and
computer vision. Section IV explains the visualization in
power systems. The proposed approach and results are pre-
sented in Section V. Finally, the paper is concluded in
Section VI.

II. POWER SYSTEM STATE ESTIMATION AND FDIA
A. POWER SYSTEM NONLINEAR STATE ESTIMATION
The relation between the measurement vector z =

[z1, z2, · · · , zm]T ∈ Rm×1 and the state vector x =

[v1, · · · , vn; θ1, · · · , θn]T ∈ R2n×1 in AC power flow model
which contains the voltage magnitudes and phase angles,
is given by [24]:

z = h(x)+ e, (1)

where h(·) is a nonlinear function relating z to x. e =
[e1.e2, · · · , em]T ∈ Rm×1 is the measurement error vector
which follows Gaussian distribution with zero mean. The
estimated system state x̂ is calculated by minimizing the
weighted least squares criterion, yielding:

x̂ = argmin
x
[z− h(x)]TR−1[z− h(x)], (2)

where R is the measurement error covariance matrix. After
the state estimation step, `2-norm detector is used to identify
existence of bad measurement by checking if the following
condition holds [24]:

‖r‖ = ‖z− h(̂x)‖ ≥ τ, (3)

where τ is a predetermined detection threshold.

B. FDIA MODEL OF NONLINEAR STATE ESTIMATOR
In FDIA [9], an intruder, who has a priori knowledge of
the network topology and also can simultaneously access
and manipulate limited amounts of real-time measurements,
can pass the bad data detection (BDD) considered in (3).
Let a ∈ Rm×1 be the attack vector. After FDIA, the state
estimation will get an erroneous system state x̂a = x̂ + c
from the manipulated measurement data where c ∈ Rn×1

is the injected arbitrary errors into the true estimates of the
system x̂. More precisely, if the real measurement z, could
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circumvent the BDD, the attacked measurement za = z + a
could also bypass BDD if the following holds:

a = h(̂x+ c)− h(̂x). (4)

This because under (4), the measurement residual za is the
same as that of original measurement z since:

‖ra‖ = ‖za − h(̂xa)‖ = ‖z+ a− h(̂x+ c)‖

= ‖z+ a− h(̂x+ c)+ h(̂x)− h(̂x)‖

= ‖r+ a− h(̂x+ c)+ h(̂x)‖ = ‖r‖ ≤ τ. (5)

Therefore, from the above, one can conclude that the BDD
alone is not suitable to prevents such attacks. In this paper,
we provide a method that allow network operators to imme-
diately capture and visually understand the statistical features
of a network attack at a glance.

III. DEEP COMPUTER VISION
In recent years, Artificial Intelligence (AI) has been highly
proposed to enhance the relationship between humans and
machine capabilities, andmany aspects of this field are exam-
ined. One of many such areas is the domain of Computer
Vision. Scholars are utilizing from Deep Learning to advance
Computer Vision such algorithm as Convolutional Neural
Network (CNN), primarily, which is introduced as a class of
deep learning neural networks.

CNNs are inspired by brain’s visual cortex and provide
spatial data and use an ad-hoc architecture. Many different
neurons have a small field of local receptive and are only
sensitive to visual stimuli set in a limited area of the visual
field in the visual system. CNNs only react to images of
horizontal lines and other ones can react to lines with dis-
trict orientations. In addition, different neurons possess larger
receptive fields that react to more complex roles consisted of
the lower-level patterns. It was determined that higher-level
neurons are based on the outputs of neighboring lower-level
neurons. Hence, for any area of the visual field, thementioned
powerful architecture is very impressive in order to detect the
whole series of complex patterns.

Deep learning and CNNs had the primary role in obsolet-
ing traditional computer vision techniques, which had been
undergoing progressive development. These two methods
will be detailed in the following sections, and related attempts
in literature will be introduced.

A. DEEP LEARNING
Deep learning algorithms have been introduced as a subset
of machine learning algorithms that can be used for finding
multiple states of distributed representations. It is commonly
used in traditional artificial intelligence domains like com-
puter vision [25], semantic parsing [26], natural language
processing [27], etc. For more use of deep learning in current
applications, there are three considerable reasons: the dramat-
ically lowered cost of computing hardware and the signifi-
cant progress and the dramatically enhanced chip processing

FIGURE 1. The pipeline of the general CNN architecture.

FIGURE 2. The operation of the convolutional layer.

abilities such as CPU or GPU units in the machine learning
algorithms [28].

Deep learning advances have been widely reviewed and
addressed in recent years. In [29], the challenges in the case
of deep learning research investigated and suggested a few
forward-looking research directions, whereas [30] focused
the dramatic inspirations as well as technical contributions in
a historical timeline format. Deep networks can extract proper
parameters, whereas jointly accomplishing discrimination so
are useful for computer vision [31]. Recently, deep learning
approaches, among ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) competitions, are very regarded by
scientists and provided highly accurate scores [32].

B. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
The Convolutional Neural Networks (CNN) is known as one
of the most considerable deep learning methods in which
one can train multiple layers in an end-to-end manner [33].
CNN is determined to be very impressive and is considerably
used in diverse computer vision usages. Figure 1 shows the
pipeline of the whole CNN architecture.

Commonly, as can be seen in Fig. 1, a CNN consisted of
a hierarchical neural network in which convolutional layers
alternate with pooling layers after many fully connected lay-
ers. The function of the three mentioned layers and recent
developments applied to those layers are provided in the
following.

Convolutional layers; Figure 2 shows that CNN can use
many kernels in order to convolve the images along with the
intermediate feature maps, which can make different feature
maps.

The operation of convolution has basic advantages. In the
case of same feature map, a weight sharing mechanism can
decrease the number of elements and, among neighboring
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FIGURE 3. The operation of the max pooling layer.

pixels, correlations can be learned by local connectivity as
well as invariance to the location of the object.

Pooling layers Particular, a convolutional layer is neces-
sary for a pooling layer. A convolutional layer is utilized
for decreasing the dimensions of feature maps along with
network elements. Due to the fact that the computations of
pooling layers consider neighboring pixels, pooling layers are
additionally translation-invariant like convolutional layers.
From many different strategies, average pooling and max
pooling have been highly utilized. A max pooling process is
shown in Fig. 3.
Fully− connected layers; These layers converting the 2D

feature maps in a one-dimension feature vector, in the case of
more feature representation.

Classification layer; The last layer of the CNN structure
is the classification layer, which categorizes the trained data
in fully-connected layers based on the labeled targets. Clas-
sification in this layer is done by the Softmax function.

In a CNN, fully-connected layers provide feed-forward the
neural network in a vector by a pre-defined length. In this
regard, one can take fully-connected layers as a feature vec-
tor in the case of follow-up processing or feed-forward the
vector in specified number categories in the case of image
classification.

IV. POWER SYSTEMS VISUALIZATION
For describing a phenomenon, a picture is better than a
thousand words because it conveys a lot of detail through a
visual representation of information while providing instant
access and a meaningful approach. The human brain is more
sensitive to visual processing compared with any other sense.
In the case of understanding, visual processing is ‘‘broad-
band’’ access. Our mind’s ability to process visual input
rapidly causes data visualization, an appropriate and com-
monly effective tool that enables us to change data into
knowledge and information.

For producing much data, there are many computational
devices in power systems that use many complex algorithms
consist of significant information in the case of control to
operation. The data that is automatically arrived from the
tools used for power system operation in control centers.
After that, operators can analyze these outcomes and, accord-
ing to their interpretation, applied appropriate actions that are
commonly under time pressure.

The power system of computational tools make data that
consist of many obstacles to the comprehension of human.
Operators need mental representations of the data to be cre-
ated and, after that, analyze them in order to extract more
efficient information. A visualization way (i.e., the physical
understanding of these internal representations) can make
a considerable advancement in the facility of comprehen-
sion [10], [22].

Now, for making this possible, there is proper hardware
for modern graphical user interfaces, but enough representa-
tions of these approaches are not currently implemented. This
paper applied them to mapping the system states data to 2D
images and implementing it to detect FDIAs.

V. PROPOSED APPROACH AND RESULTS
This section includes: a) how the mapping of system states
to 2D images and present a novel technique to detect cyber
anomalies, b) the multi-class classification between various
attacks to different systems states, and detailed all accuracy
results based on CNN approach.

The simulations are implemented on various systems.
We use 14-bus and 118-bus test systems mainly to demon-
strate the performance. The historical data have been prepro-
cessed by MATPOWER. Real-world load data were obtained
from the New York Independent System Operator (NYISO)
to improve the accuracy of subsequent simulations and gen-
erate time-series data. It is presumed that the intruder can
compromise a portion of the sensor readings through the
communication device, modifying the voltage state. It is then
assumed that the hacker would eventually insert false data
into each system state. Note that for 118-bus system, false
data are injected into 19 randomly selected buses. For every
attacked state, two injection amounts 90% and 110% of the
real value are conducted. For example, 90% indicates that the
manipulated state variable by the adversary is 10% less than
the actual value.

A. VISUALIZATION METHODOLOGY
The 2D images of system states were formed by using
Matplotlib, which is a modern library in Python [34]. This
library is a 2D graphics environment that could be applied
for different application development to generate 2D images
across user interfaces and operating systems. The detailed
description of the visualisation method used is as follows.

The visualization technique applied can be composed in
three main steps as follows: 1- According to the order of
number data, all data are mapped to a square block including
mini-squares. 2- By applying Matplotlib, a cross-platform
data visualization library in Python, each number is assigned
a specific color based on the amount of that value in the mini-
squares. 3- The output 2D color image is used as input to the
CNN network for the image processing approach. Figure 4
represents this process of converting data into an image for
a simple case of a vector between 1 and 4. As shown, the
values of this vector are mapped to mini squares, and then
each number is assigned a specific color. The lowest value
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FIGURE 4. Process of visualizing data into 2D images.

has a lighter color, while 1 is mapped to white, and the highest
value of 4 is assigned the darkest color, black.

B. MODEL ARCHITECTURE
The network architecture was based on the CNN, as shown
in Fig. 1. The network was designed to input the 2D image
from the Matplotlib library and output the multi-label image
classifications. The network consists of 10 layers including
5 convolutional layers (Conv). Conv1 and Conv2 are used
to tune the convolutional features, so the number of feature
maps of both layers is the same, with a kernel size of 32 and
equippedwith activation functions of Tanh. Conv3 andConv4
play the role of tuning the convolutional features according
to the feature module, therefore the parameter settings are
the same and the kernel size is set to 64 and equipped with
the activation function of Tanh. Finally, Conv5 plays the
important role of reconstructing feature maps into channel
output. Thereby, the kernel size of Conv5 is set to 128.
Moreover, in order to overcome the overfitting problem, the
last convolutional layer (Conv5) were equipped with a ReLU
activation layer and a dropout (0,25) layer. The CNN were
designed using the Tensorflow deep learning framework and
trained by the Adam optimization algorithm.

C. CLASSIFICATION METRICS
The performance of the Deep CNN technique is evaluated
using F1-score and accuracy indicators [35]. The F1-score is
one of the statistical evaluation indicators which is utilized
for performance evaluation in classification applications of
machine learning techniques and is calculated as follows:

F1− Score =
2× p× r
p+ r

, (6)

where p and r represents the precision and recall, respec-
tively, and are obtained as following equations:

p =
tp

tp+ fp
, (7)

r =
tp

tp+ fn
, (8)

where tp is the true positive and tn demonstrate the true
negative. fp and fn depicts the false positive and false nega-
tive, respectively. The accuracy indicator can be utilized with
different calculations to evaluate the performance of both
regression and classification algorithms. In this paper, this

FIGURE 5. Mapping of IEEE 14-bus system states data to 2D images.
Voltage magnitude and phase angle map to a square 2D according to an
assigned distinct location.

FIGURE 6. IEEE 118-bus system state variables representation within 2D
images. Each state variable is visualised in a specific area of the image.

indicator is employed for classification applications accord-
ing to the following equation:

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
. (9)

D. VISUALISATION RESULTS
For mapping the state variables and generating a 2D image,
the system states were separated into voltage magnitude and
phase angle and project to a square 2D image. As depicted
in Fig. 5 for the IEEE 14- bus, each 2D image depicts the
colormap assigned to each state variable. The same approach
was applied to display the states variables of IEEE 118-bus
system, as shown in Fig. 6. The voltage magnitude and phase
angle are mapped to separate images and assigned to a color
corresponding to their value.

When FDIA occurs, an attacker compromises measure-
ments from the grid sensors in such a way that undetected
errors are introduced into estimates of state variables such
as voltage magnitude and phase angles. For each attack, one
system state variable is decreased or increased by a certain
percentage of its original value.

As a consequence of FDIA, the anomaly caused in system
states would change the colormap images formed by assigned
state variables. Identifying such pixels with anomalous colors
can aid in both detection of the FDIA and even important
knowledge that may lead to the target of this detection mis-
sion.

Identifying anomalies would be difficult for the human eye
system. The proposed method relies on detecting anomalies
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FIGURE 7. Visualization of the IEEE 14-bus system’s voltage magnitude,
when decreasing and increasing FDIA happen to bus 6 and 11.

concerning the residual of corresponding images. Therefore,
from the input image, a residual image containing everything
that does not repeat would be extracted.

Figure 7 shows the obtained images of the IEEE 14-bus
system’s voltage magnitude in the presence of FDIA in buses
6 and 11, respectively, for a decreased and an increased value
of the real one, respectively. By comparing these images with
the normal system images shown in Fig. 5, it is possible to
check the anomalies that appear in new images. In particular,
it can be seen that there exist regions in the image that are
not conforming with primary images, and this irregularity is
different for FDIA to a particular bus and even the kind of
attack as decreasing or increasing.

On larger systems, quickly finding these anomalies in
images would be more difficult. Figure 8 represents images
for the IEEE 118-bus system’s phase angle when decreas-
ing and increasing FDIA happen to bus 50 and 86. An
in-depth focus, and comparing these images with normal
system images, confirm the difference in color arrangement
when FDIAs happens.

Anomaly detection of the images would lead to extract use-
ful knowledge about the FDIA. The detection methodology
that has been proposed was depicting the residual images
(extracted from normal system image) in which anomalies
prevail.

Figure 9 shows the outcomes of the anomaly detection
approach applied to the images in Fig. 7. Looking into resid-
ual images gives an accurate perspective about the FDIA.
Firstly, the presence of an abnormality in the colormap is
a worth symptom of FDIA. Secondly, the position of this
irregularity could determine the exact area of the system,
which is under attack. Last but not least, the dominant color

FIGURE 8. Visualization of the IEEE 118-bus system’s phase angle, when
decreasing and increasing FDIA happen to bus 50 and 86.

of the residual image can identify the decreasing or increasing
of the attack.

As shown in Fig. 9, in IEEE 14-bus system, the anomaly
detection approach leads to the detection of FDIA, address the
accurate position of the system under attack (bus 6 and bus
11) and even demonstrate the decreasing and increasing of
the attack. On a larger case, IEEE 118-bus system, detection
of abnormalities method applied to the images in Fig. 8.
As depicted in Fig. 10, the residual images give essential
knowledge about the FDIA, including detecting the position
of attack and identifying which kind of attack was occurred.

The visualisation approach was also compared with Prin-
cipal component analysis (PCA). Dimensionality reduction
and visualization using PCA is a well-known method that
has been applied to many tasks. The performance of the
proposed method based on CNN was compared with PCA
in two different scenarios, FDIA to Bus 15 (Increasing) and
FDIA to Bus 50 (Decreasing). As shown in Fig. 11, the
generated images appear from the CNN model’s output can
clearly demonstrate the area under attack. However, the visu-
alization of the system state data with the same attacks is
also shown in Fig. 11. The axes of these graphs are principal
components (PCs) calculated after applying PCA on the state
vectors. As one can see, the standard operation data and the
manipulated data are interwoven.

E. CLASSIFICATION RESULTS
The use of deep learning techniques for classification and
regression applications requires an input dataset. In this
paper, voltage and phase angle data obtained from the 14-bus
IEEE and 118-bus IEEE test systems related to the healthy
state and FDIA are available and examined. To use the
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FIGURE 9. Detection of FDIA in IEEE 14-bus system. The residual of
normal system’s with the system under FDIA leads to discover the attack,
the area under attack, and even distinguish decreasing or increasing FDIA.

FIGURE 10. Detection of FDIA in IEEE 118-bus system. Displaying the
difference image between the normal system and the system under
attack demonstrates the desired knowledge about FDIA.

proposed method for classification and locate each FDIA, the
mapped graphs of the voltage values and phase angles formed
the input dataset. Each of these data was employed separately
to classify and identify the FDIA.

For detecting the attack in each of the IEEE test systems
using voltage-related values, the CNN was trained with 70%
of the data and tested with the rest of the data. In the iden-
tification of the FDIA by phase data, 80% of the data was

FIGURE 11. Comparing the output of CNN model and PCA in two different
cases, FDIA to Bus 15 (Increasing) and FDIA to Bus 50 (Decreasing).

FIGURE 12. Confusion Matrix of classifying the FDIA corresponding to the
bus 118 of IEEE 118-bus in voltage data.

selected for training and 20% of the data was considered for
test the network.

After training and test the networks, the results of attack
detection and classification are presented in the forms of
confusion matrices. The results of identifying and classifying
the FDIA corresponding to the 14-bus test system using the
voltage data done with 100% accuracy and F1-score of 100%.
This evaluation for phase data was 93.34% and 93.00% for
accuracy and F1-score, respectively.

On larger systems, IEEE 118-bus system, the results of the
FIDA diagnosing and classifying using the voltage and phase
angle data are presented in Figures 12 and 13, respectively.
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FIGURE 13. Confusion Matrix of classifying the FDIA corresponding to the
bus 118 of IEEE 118-bus in phase data.

According to the presented results in the above figures,
it can be seen that networks had a better performance in
detecting FDIA based on voltage data and were able to
classify attacks with 100% accuracy. In the case of phase
data, attacks were identified and classified with an accuracy
of 97.44% for the 118-bus test system. From the detection
results, it can be seen that considered attacks in power sys-
tems have more effects on system voltage and the proposed
method was able to extract a good pattern of behavior from
voltage data in both test systems. The results presented for the
phase angle data have also been performed with acceptable
performance, but the results confirm the existence of salient
features in the voltage data and the high ability of the pro-
posed method to extract them.

All training and testing procedures, including image gen-
eration, were performed on a laptop with a COREi7-Inetel
processor and 16.0 GB installed RAM. The algorithm was
run in PyCharm IDE, Edition 2020.1.2, a popular Python
development platform. The CPU runtime for the proposed
detection algorithm was reported to be 32 seconds, which
shows the superiority of the algorithm in terms of computa-
tional time in addition to its efficiency and robustness.

By using the proposed method, the generated images can
be analyzed by the system operator in the control center. The
anomalies that appear in the images could be easily detected
by eye and used as a tool that can be integrated into the
control center as an alarm system. Instead of comparing time
series and performing complex calculations, the attack could
be identified simply by looking at the 2D image using our
proposed method, as shown in Figures 9 and 10.

In this paper, a comparative approach for detecting and
classifying attacks is presented to express the high efficiency
and performance of the proposed procedure. It should be
noted that inmachine learning and deep learning applications,
comparisons should be made with caution and for similar

TABLE 1. Comparison of the Deep-CNN and SVM methods.

data. Accordingly, in this paper, one of the most widely used
machine learning techniques called SVM, which is specifi-
cally utilized to solve classification problems, is applied to
voltage and phase angle data related to test systems. As men-
tioned, the comparison of the Deep-CNN and SVM methods
is done by the same data to evaluate the results with high accu-
racy. Table 1 makes this comparison based on the accuracy
and F1-score indicators for both methods.

VI. CONCLUSION
While visualization for cyber-security is trying to fix the
critical challenges of information security by enabling peo-
ple through data visualization, it has not received enough
attention in the smart grid cyber-security context yet. This
paper proposed a deep learning-based visualization technique
to detect injected false data into power system measure-
ments, which lets the grid operator to uncover data trends
and obtain useful insights over legal data patterns to spot
suspicious patterns when FDIA occurs. In particular, the
system state signals are first converted into 2D images and
then processed by a carefully designed deep CNN framework.
The proposed method enables the grid operators to visual-
ize multi-dimensional power system measurements using 2D
images, and also can dynamically capture various aspects of
time-series characteristics and classification simultaneously.
Test results indicate that the proposed method can reliably
detect and localize most of the FDIA over different power
system networks. Experimental results also show the supe-
riority of the proposed method over current FDIA detectors
such SVM and also conventional visualization-based attack
detectors such as PCA.
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