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ABSTRACT Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with
hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple
users at the same time. Accurate channel estimation is crucial formulti-user communications, but its accuracy
is limited as the number of antennas and users increases. In the matrix high-dimensional operation for multi-
user channel estimation, not only is it computationally intensive, but also the estimation accuracy is low.
It makes our work turn to channel estimation of the user group within a certain region to improve the accuracy
of estimation. In this paper, we propose a tensor dictionary manifold learning method for channel estimation
and interference elimination of the multi-user mmWave massive MIMO system. A multi-user digital-analog
mixed received signal model is presented. The tensor dictionary manifold learning scheme is proposed to
model the received signal as a third-order low-rank tensor to handle the high-dimensional user, antenna, and
channel. After segmentation, clustering and manifold learning, multiple tensor dictionary manifold models
containing a group of user signals are fitted. Tensor dictionary manifold learning can take advantage of the
inherent multi-domain properties of signals in the frequency, time, code and spatial domains to maintain
inter-user correlation within a user group while reducing the high-dimensional channels of the user group.
Using the convex relaxation property of the tensor alternating direction method, we propose a strategy to
eliminate interference from other groups. And with the help of the multi-signal classification method, the
channel parameters of user groups are obtained to improve the accuracy of multi-user channel estimation.
This method can perform channel estimation for multiple users with only a few pilots, and improve the
performance of the system. Numerical results confirm the good performance of this method.

INDEX TERMS MIMO, channel estimation, tensor, dictionary learning, manifold, ADMM, MUSIC.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) is the key
technology of the future 5G wireless communication sys-
tem [1]. It configures a large number of antenna elements
in a small space to obtain large multiplexing gain [2] and
improve the capacity of wireless communication [3]. There-
fore, the massive MIMO system supports communication
with multiple users. However, the communication between
multiple users needs to ensure strict service quality and
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requires advanced signal processing techniques [4], [5], such
as channel estimation, channel equalization and channel cod-
ing. Channel estimation is particularly important for massive
MIMO systems. With the increase of antennas, accurate and
effective channel estimation is a research hot and challenging
problem [6], [7].

Channel estimation is one of the most critical issues in
wireless communication, and its ultimate goal is to estimate
the wireless channel as accurately as possible under a limited
number of pilot signals. Under different channel models and
wireless systems, such as multi-user massive MIMO [8],
millimeter-wave (mmWave) massive MIMO [9] and the
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Internet of Things (IoT) [10], the challenges are significantly
different. Therefore, people use different channel estimation
methods to apply in different scenarios. By exploiting the
hidden joint sparsity in the multi-user channel matrix, [11]
proposed a joint orthogonal matching tracking recovery algo-
rithm, in which the channel matrix shares some common scat-
terers and common sparsity among geographically adjacent
users. Multiple signal classification (MUSIC) [12] and rota-
tion invariance technology (ESPRIT) [13] are used to process
array signals to improve the performance of channel estima-
tion [14]–[16]. These search signal methods are based on
the location information of the user source. [17] proposes an
Interior Point (IP) aided orthogonal matching pursuit (OMP)
algorithm. It significantly improves the channel estimation
accuracy by reducing the estimation error of angle of depar-
ture (AoD) and angle of arrival (AoA). A performance mea-
sure called the squared position error bound is proposed to
characterize localization accuracy [18]. The authors consider
the multicarrier signals for source localization in [19]. The
time angle of departure (TAoD) estimates is obtained from
the cyclic prefixes inserted before each orthogonal frequency
division multiplexing (OFDM) data block. These estimates
are then used for localization. Indoor radio positioning based
on AoD has also been studied in [20] which applies the
MUSIC algorithm on the signals from noncoherent antenna
arrays, and in [19] the authors consider AoD estimation
from channel state information in MIMO-OFDM systems.
However, previous studies on massive MIMO communica-
tion [21]–[24] mainly focused on single-user channel esti-
mation. The scenario where the base station (BS) estimates
multiple user channels at the same time is not considered.

The signal processing technology based on tensor can
make use of the inherent multi-domain characteristics of
the signal in the frequency, time, code and space domains.
It obtains the optimal solution through tensor fitting on the
basis of decomposition uniqueness [25]–[27]. At the same
time, tensor decomposition will not destroy the internal rela-
tionship of each element, and can make full use of the
spatial structure information of the signal, thereby improv-
ing the estimation accuracy. In addition, tensor modeling
[28]–[30] benefits from multiple diversity. This feature is
helpful to achieve multi-user signal separation, equalization
and channel estimation under more relaxed identifiability
conditions than the traditional matrix method. It is interesting
to note that, low-rank tensor decomposition-aided channel
estimation for mmWaveMIMO-OFDM systems is developed
in [31]. However, for each dimension, one dimensional search
is required and the complexity of the spectral search may still
be unacceptably high for real-time problems. In [32], a multi-
linear singular value decomposition (MSVD) method is used
for channel parameter estimation. The Tucker form of the
MSVD enables paths to be extracted based on signal energy.
But this method cannot be used in a multi-user scenario. [33]
derive a spatial-frequency channel model that incorporates
the multipath parameters. And spatial smoothing method and
structured CP decomposition are used for channel estimation.

The method does not benefit much from the phase rarefaction
effect due to its frequency-independent property. In [34],
the multi-user channel estimation problem was investigated
through the lens of Bayesian tensor methods. [35] use a
generalization of beamspace-ESPRIT method from matrix to
tensor framework. The channel parameters are automatically
associated. But the effect of the association is not satisfactory.

In this paper, we consider the tensor dictionary manifold
learning for channel estimation and interference elimination
of the multi-user mmWave massive MIMO system. With the
multi-user mmWave massive MIMO system with a mixed
digital-analog structure greatly increasing the system capac-
ity, problems such as inaccurate channel estimation and low
resolution for multi-users have emerged. Accurate channel
estimation is crucial in multi-user communication, which
drives our research and makes us turn to channel estimation
of the user group to improve resolution. For multi-user sce-
narios, we developed a tensor manifold dictionary learning
model. The received signals of all users are divided as a
third-order low-rank tensor and clustered to form a dictio-
nary learning (DL) model of the received signals of multi-
ple user groups. Through manifold learning, the relationship
between adjacent users in the group is analyzed, and the high-
dimensional channels in the group are embedded in the low-
dimensional space. Using the convex relaxation properties of
tensor Alternating direction method of multiplier (ADMM),
the interference of other user groups after clustering can be
eliminated. And with the help of the MUSIC method, the
channel parameters of the user group are obtained. A high-
precision channel estimation of the user group is realized.
This method can perform channel estimation for multiple
users with only a few pilots, and improve the performance of
the system. Numerical results confirm the good performance
of this method.

The remainder of this paper is organized as follows.
Section II introduces the notions utilized and preliminary
work in the paper. In Section III, the multi-user massive
MIMO system and channel model are presented. Section IV
describes segmentation and clustering of received signals for
dictionary learning. Section V presents the manifold learning
method for analyzing the relationship. Section VI gives the
tensor ADMM method and the MUSIC method to get the
channel estimation of the user groups. Some numerical results
are provided in Section VII. Finally, we conclude this paper
in Section VIII.

II. NOTIONS AND PRELIMINARY WORK
In this section, we introduce the notions utilized and the pre-
liminary work related to tensors in the paper. More detailed
instructions are in [36]–[38].

A. NOTIONS
Bold lower-case and upper-case letters are used for vec-
tors and matrices, respectively, while regular letters denote
scalars. Tensor is represented by curlicue letters (A,B, . . .).
(·)−1 , (·)T, (·)H and (·)∗ represent inverse, transpose,
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conjugate transpose and complex conjugate, respectively.
◦, ∗,⊗ and � mean out product, Hadamard product,
Kronecker product and Khatri-Rao product, respectively.
‖·‖F ,E [·] represent Frobenius norm and expectation.

B. PRELIMINARY WORK
A tensor of order N , corresponding to an N -dimensional data
matrix, is denoted as A ∈ RI1×···In×···IN . Elements of A are
denoted as ai1...in...iN , where 1 ≤ in ≤ In. The mode-n vectors
of anN order tensorA are the In dimensional vectors obtained
from A by varying index in while keeping the other indices
fixed. ThematrixA(n) ∈ RIn×(I1...In−1In+1...IN ) is composed by
taking the mode-n vectors of A as its columns. This matrix
can also be naturally seen as the mode-n flattening of the
tensor A. The n-rank of A, denoted as rn, is the dimension
of the vector space spanned by the mode-n vectors of A.
The product of two matrices can be generalized to the

pro-duct of a tensor and a matrix. The mode-n product of
a tensor A ∈ RI1×···In×···IN by a matrix B ∈ RJn×In ,
denoted by A ×n B, is also an N order tensor C ∈

RI1×···Jn×···IN . The mode-n product C = A ×n B can also
be calculated by the matrix multiplication C(n) = BA(n),
followed by a re-tensorization of undoing the mode-n flat-
tening. The Frobenius norm of a tensor A is defined as:

‖A‖F =
(∑

i1,...,iN

∣∣ai1...iN ∣∣2)1/2.
III. SYSTEM AND CHANNEL MODEL
In this section, we introduce the multi-user massive mmWave
MIMO system and channel model.

A. SYSTEM MODEL
We consider a multi-user mmWave massive MIMO system
consisting of a base station (BS) and K multiple mobile
stations (MSs), i.e., users. It is depicted in Fig. 1. To facili-
tate the hardware implementation, hybrid analog and digital
beamforming structures (Fig. 1) are employed by both the BS
and the MS. The antenna array adopts uniform linear array
(ULA). We assume that the BS is equipped with Nt antennas

FIGURE 1. The multi-user massive MIMO system.

and N t
RF RF chains, and the MS is equipped with Nr antennas

and N r
RF RF chains. Nt and Nr antennas are divided into

Nδ groups. Therefore, each MS supports N t
RF data streams.

Without loss of generality, we assume that each MS supports
Ns
(
Ns ≤ N r

RF

)
data streams.

Then the total data stream sent by the base station is
KNs

(
KNs ≤ N t

RF

)
. Subject to the constraints of BS and MS,

the number of RF chains are KNs ≤ N t
RF � Nt and Ns ≤

N r
RF � Nr respectively. Note that to support Ns data streams

transmission for each user, the least number of RF chains at
each MS and the BS are N r

RF = Ns and N r
RF = KNs = KN r

RF
respectively. In consideration of hardware cost and power
consumption of RF chains, we assume the least number of
RF chains in this paper. The number of RF chains at each MS
and the BS are N r

RF = Ns and N r
RF = KNs = KN r

RF .
Let x =

[
xT1 , x

T
2 , . . . , x

T
K

]
∈ CKNs×1 be the transmission

symbol. xk ∈ CNs×1 represents the transmitted pilot symbol
of the kth (k ∈ [1,K ]) MS, which satisfies E

[
xkxHk

]
=

INsP/Ns, P is the average transmit power, INs is an identity
matrix with dimensionNs×Ns. In the BS, xk is first precoded
by the digital precoder FBB =

[
FBB,1,FBB,2, . . . ,FBB,K

]
∈

CN t
RF×KNs and then precoded by an analog precoder FRF ∈

CN r
RF×Nt , which is implemented by an analog phase shifter

array. Since the phase shifters in the analog precoder in
Fig. 1 can only change the phase of the transmitted signal,
each entry of FRF is of constant modulus. We normalize
its entries to satisfy |FRF | = 1

/√
Nt . In addition, in order

to meet the transmit power constraint, FBB is normalized to
satisfy ‖FRFFBB‖2 = KNs. After the hybrid precoding, the
transmitted signal becomes

Sk = FRFFBB,kxk . (1)

Therefore, the received signal of the kth user is given by

Ȳ k = HkSk + nk , (2)

where Hk ∈ CNr×Nt represents multipath fading wideband
mmWave channels which are explained in section III-B, nk ∈
CNr×1 is the additive complex Gaussian noise at the kth MS
and each entry of nk follows the independent and identically
distributed (i.i.d.) complex Gaussian distribution with zero
mean and variance σ 2.
At the kth MS, firstly the received signals are processed

by a RF combiner QRF,k ∈ CNr×N r
RF which is implemented

by analog phase shifters similar to the BS. We also normalize
its entries to satisfy

∣∣QRF,k ∣∣ = 1/
√
Nr . Then followed by a

baseband combiner QBB,k ∈ CN r
RF×Ns to detect its symbol.

Then, the detection signal of the kth MS is given by

Y k = QH
BB,kQ

H
RF,kHkFRFFBB,kxk

+

K∑
j=1,j 6=k

QH
BB,jQ

H
RF,jH jFRFFBB,jxj

+QH
BB,kQ

H
RF,knk (3)

where the three consecutive terms respectively represent the
kth user’s desired signal, interference signals from other
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users, and additive Gaussian noise. By stacking all {Y k}Kk=1
into a long vector, the multi-user signal becomes

Y =
Nr∑
nr=1

Nt∑
nt=1

K∑
i=1

QH
i H iFixi + QH

i ni, (4)

where Y ∈ CNt×Nr , Qi = QH
RF,iQ

H
BB,i, Fi = FRFFBB,i.

B. CHANNEL MODEL
Measurement campaigns in dense-urban Non line of sight
(NLOS) environments reveal that mmWave channels typi-
cally exhibit limited scattering characteristics [39]. Also, con-
sidering the wideband nature of mmWave channels, we adopt
a geometric wideband mmWave channel model with L scat-
terers between the MS and the BS. The lth (l ∈ [1,L]) scat-
terer has a time delay τl . θl ∈ [0, 2π ] and φl ∈ [0, 2π ]
represent azimuth and elevation angles of departure (AoDs)
and arrival (AoAs) at the transceiver. Under this model, the
kth MS channel matrix in the delay domain can be written as

Hk =

L∑
l=1

αk,lar
(
θr,k,l, φr,k,l

)
aHt
(
θt,k,l, φt,k,l

)
e−j2πτk,l fs ,

(5)

where αk,l is the complex path gain associated with the lth
path. ar

(
θr,k,l, φr,k,l

)
∈ CNr and at

(
θt,k,l, φt,k,l

)
∈ CNt

are the antenna array response vectors of the MS and BS,
respectively. θr,k,l and φr,k,l are azimuth and elevation AOAs
of the lth path, respectively. θt,k,l and φt,k,l are the azimuth
and elevation AODs of the lth path, respectively. fs denotes
the sampling rate.

For convenience, (5) can be given by

Hk = EkAr,kAH
t,k , (6)

where

Ek = diag
(
αk,1e−j2πτk,1fs , . . . , αk,Le−j2πτk,L fs

)
, (7a)

Ar,k =
[
ar
(
θr,k,1, φr,k,1

)
, . . . , ar

(
θr,k,L , φr,k,L

)]
, (7b)

At,k =
[
at
(
θt,k,1, φt,k,1

)
, . . . , at

(
θt,k,L , φt,k,L

)]
, (7c)

The antenna array response vectors of the BS and MS are
given by

at (θt , φt) =
1
√
Nt

[
1, ej(2π/λ)d sinφt cos θt , . . . ,

ej(Nt−1)(2π/λ)d sinφt cos θt
]T
, (8a)

ar (θr , φr ) =
1
√
Nr

[
1, ej(2π/λ)d sinφr cos θr , . . . ,

ej(Nr−1)(2π/λ)d sinφr cos θr
]T

(8b)

where λ is the carrier wavelength, d indicates the distance
between the antennas.

Our objective is to estimate the channel matrices {H i}
K
i=1

and from the received signals {Y i}Ki=1 of all users. In par-
ticular, we wish to provide a reliable channel estimate by

using as few measurements as possible because the number
of measurements is linearly proportional to the number of RF
chains at the MS, which is expected to be reduced in practice.
The mmWave channel measurement results show that the
mmWave has a diffuse scattering phenomenon on the surface
of the rough scatterer, and the scattering range will increase as
the wavelength decreases [39]. For scenarios where users are
dense, when there is not enough space between users, diffuse
scattering may cause adjacent users to receive signals of the
same path. In practice, this scheme is generally applicable
to the scenario where the positions of users are randomly
distributed. Users in co-channel deployment may experience
significant interference from other users. The channel matri-
ces {H i}

K
i=1, are characterized by a set of common parameters

{αi, θi, φi, τi}
K
i=1. It can be known from the above analysis

that the channel matrices contain the spatial characteristics of
each transmitter, and the azimuth {θi}Ki=1, elevation {φi}

K
i=1,

fading factors {αi}Ki=1 and correlation delay {τi}Ki=1. Thus it
can be expected that a joint estimation of {H i}

K
i=1 improves

the estimation accuracy.
Note that the problem of single-usermmWave channel esti-

mation has been studied in [40], [41]. Specifically, to estimate
the downlink channel, the BS employs M different beam-
forming vectors atM successive time frames, and at each time
frame, the MS uses Q combining vectors to detect the signal
transmitted over each beamforming vector. By exploiting the
sparse scattering nature of mmWave channels, the problem
of estimating the mmWave channel can be formulated as a
sparse signal recovery problem and the training overhead can
be considerably reduced. The above method can also be used
to solve our uplink channel estimation problem if channels
from users to the BS are estimated separately. Nevertheless,
we will show that a joint estimation (of multi-user chan-
nels) scheme may lead to an additional training overhead
reduction.

IV. SEGMENTATION AND CLUSTERING
In recent years, tensor has been proved to be an effective anal-
ysis tool in multi-user massive MIMO. To solve the problem
of high complexity of channel estimation calculation in mas-
sive MIMO systems, this paper exploits the tensor strategy
to analyze the received signal. We use the two-dimensional
spatial and user domain of the signal to analysis and cluster,
and then combine similar channel characteristics into sparse
and low-rank tensor decomposition models to effectively
detect and separate multi-user information of mixed signals.
Dictionary learning can express the multi-source localization
(MSL) problem as joint parameter dictionary learning (PDL)
and sparse signal recovery (SSR). It is also possible to build
a dictionary and sparse coding on the sub-band spectrum
to improve the signal recognition ability. The wrong chan-
nel model can also be embedded in dictionary learning to
improve accuracy [42]–[44]. After users are clustered into
groups, we build a dictionary of user channel information in
the user group. Then we can estimate the user group channel
more efficiently.
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Substituting the channel representation from (6) into (4),
the multi-user signal becomes

Y =
Nr∑
nr=1

Nt∑
nt=1

K∑
i=1

EEi EAr,i ◦ EAt,i ◦ xi +Ni, (9)

where EAr,i = QH
i Ar,i, EAt,i = AH

t,iFi and Y ∈ CNr×Nt×K

is now in Tucker form [36]. Ni ∈ CNr×Nt×K is additive
Gaussian noise tensor.

After constructing the received signals of all users into
a tensor form, we perform convolutional segmentation and
grouping of the received signals to prepare for the following
channel estimation of the user group (Fig. 2).

FIGURE 2. Segmentation and clustering of received signals.

A. CONVOLUTIONAL SEGMENTATION
OF RECEIVED SIGNALS
In the received signal of Y , the 3D cube in the form
of third-order tensor contains rich multi-dimensional struc-
ture information. Because different sources have different
spatial characteristics, multi-source multipath grouping can
be achieved by estimating the parameters of the spatial
characteristics.

The received signal of users can be regarded as three
dimensional tensor Y ∈ CNr×Nt×K of transmitting antenna
spatial characteristics, receiving antenna spatial characteris-
tics and users. First, the received signal Y is divided into
overlapping three-dimensional sub-tensors, where the slid-
ing window step size ω = 1. Therefore, in the spatial
dimension of the receiving antenna, the receiving antenna
array is divided into (Nr −1nr + 1) sub-array blocks, and
each sub-array element is 1nr . In the spatial dimension
of the transmitting antenna, all transmitting antenna arrays
are divided into (Nt −1nt + 1) sub-array blocks, each sub-
array element is 1nt . In the user dimension, all users
are divided into (K −1g+ 1) groups. By convolutionally
dividing the two-dimensional space of the signal tensor,
we obtain (Nr −1nr + 1) (Nt −1nt + 1) sub-tensors. Sub-
tensor 1Y ∈ C1nr×1nt×1g of received signal with multi-
dimensional space information is expressed as:

1Y=
p+1nr−1∑
nr=p

q+1nt−1∑
nt=q

g′+1g−1∑
g=1

EEg EAnr ,g ◦ EAnt ,g ◦ xg +Ng,

(10)

where 1 ≤ p ≤ Nr − 1nr , 1 ≤ q ≤ Nt − 1nt , 1 ≤ g′ ≤
K − 1gnr = p, . . . , p + 1nr , nt = p, . . . , p + 1nt , g =
g′, . . . , g′ +1g. 1Y represents the subtensor after convolu-
tional segmentation. Ng represents white noise tensor.
DL has been effectively applied to multi-user interfer-

ence canceling and channel denoising by considering the
nonlocal similarity property of users [45]. The basic idea
is to firstly cluster the similar users into groups. and then
to encourage each group share similar atoms in the dictio-
nary. The DL model can be extended to the channel esti-
mation of the user group. First, we construct user group
patches for channel estimation of the user group as follows.
Receiving signal of all users with Nr × Nt spatial dimen-
sion and K users can be expressed as a three-order tensor
Y ∈ CNr×Nt×K . By sweeping all across the receiving sig-
nal of all users with overlaps, we can build a user group
of patches

{
Y(p,q,g)

}
1≤p≤Nr−1nr ,1≤q≤Nt−1nt ,1≤g≤K−1g

⊂

YNr×Nt×K from all users. For simplicity, we reformulate
all patches as a group of 3D patches {Yi}Ii=1, where I =
(Nr −1nr + 1) (Nt −1nt + 1) (K −1g+ 1) denotes the
patch number. Each patch constructed in this way contains
two spatial dimension and a user dimension. This can easily
help us consider an important attribute of all users: the rele-
vance of users with similar channels.

Based on this patch set {Yi}Ii=1, the user DLmodel can then
be constructed to calculate the spatial and user dictionaries{
EAnr ,g ∈ C1nr×L , EAnt ,g ∈ C1nt×L , xg ∈ C1g×K

}
, implying

the redundancy of these dictionaries, as follows:

min
EAnr ,g,EAnt ,g,xg, EEg

I∑
i=1

∥∥∥1Y − EEg ×1 EAnr ,g ×2 EAnt ,g ×3 xg
∥∥∥,
(11)

where EEg ∈ CL×L×K corresponds to the coefficient tensor
for 1Y which governs the affiliated interaction between the
dictionaries.

B. CLUSTERING OF RECEIVED SIGNALS
We use the idea of dictionary learning to estimate the channel
of the user group, that is, use the correlation of users with
similar channel characteristics. Therefore, users with simi-
lar channel characteristics need to be clustered into groups.
The established user channel model is based on a geometric
stochastic channel model, using the concept of scattering
clusters, which contains many stochastically varying multi-
path components. Scattering clusters can be used to cluster
user groups. The starting point is a large number of mul-
tidimensional parametric channel estimation data, obtained
from MIMO measurements. It has been investigated that
these parameters appear in clusters [46]–[48], i.e. in groups
of multipath components (MPCs) with similar parameters,
such as delay, AoAs and AoDs. We show that using the well-
known K-means clustering algorithm [49] with multipath
component distance (MCD) as distance measure improves
performance considerably.
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K-means algorithm identifies each cluster by its centroid
position in the parameter space, then it is assumed that there
are G centroids. Each MPC is assigned to the cluster cen-
troid with the smallest distance. The algorithm repeatedly
optimizes the positions of the centroids to minimize the total
distance from each MPC to its centroid, as:

D =
G∑
g=1

d
(
xg, cxg

)
, (12)

where xg denotes the parameter vector of gth g ∈ [1, . . . ,G]
MPC, cxg denotes the parameters of cluster centroid closest
to the gth MPC, and d (·) represents the distance function
between any two points in the parameter space.

Distance measures: It was customary [49] to calculate
the distance for each dimension (delay, AoAs, AoDs) sepa-
rately. Clustering was subsequently done either sequentially
(first delay domain, then subsequently clustering AoAs and
AoDs) or jointly. We demonstrate that joint clustering is more
promising as the cluster structure in the data is more visible in
high-dimensional spaces, but the data in different dimensions
(coming even in different units) has to be scaled. To identify
clusters correctly, we use the multipath component distance
(MCD) [46]. This metric scales the data to enable joint clus-
tering. To assess the performance, we compare the squared
Euclidean distance with the MCD.

The squared Euclidean distance between any two estimated
MPCs i and j is given by

d2τ,ij =
(
τi − τj

)2
. (13)

The metric is extended for AoAs and AoDs to cope with
the angular periodicity, according to

d2AoA,ij = pv2
(
ϕAoA,i − ϕAoA,j, π

)
, (14)

where pv2 (·, π) maps (·) to its principal value in the interval
[−π, π). The metric reads similar for the AoDs. This metric
is only useful for one-dimensional clustering, as it does not
scale the data.

Assuming that subtensor (p, q) th and subtensor (u, v) th
have L(p,q) paths and L(u,v) paths, respectively, the user
dimension is kept fixed at this time.

The distance of the AoA for the lth path is defined as:

MCD(p,q),(u,v)AoA,l =
1
2

∣∣∣∣∣∣∣∣

sin θ (p,q)rk ,l cosφ(p,q)rk ,l

sin θ (p,q)rk ,l sinφ(p,q)rk ,l

cosφ(p,q)rk ,l



−


sin θ (u,v)rk ,l cosφ(u,v)rk ,l

sin θ (u,v)rk ,l sinφ(u,v)rk ,l

cosφ(u,v)rk ,l


∣∣∣∣∣∣∣∣ (15)

The distance of the AoD for the lth path is defined as:

MCD(p,q),(u,v)AoD,l =
1
2

∣∣∣∣∣∣∣∣

sin θ (p,q)t,l cosφ(p,q)t,l

sin θ (p,q)t,l sinφ(p,q)t,l

cosφ(p,q)t,l



−


sin θ (u,v)t,l cosφ(u,v)t,l

sin θ (u,v)t,l sinφ(u,v)t,l

cosφ(u,v)t,l


∣∣∣∣∣∣∣∣ (16)

The delay distance for the lth path is defined as:

MCD(p,q),(u,v)τl
= η ·

∣∣∣τ (p,q)l − τ
(u,v)
l

∣∣∣
1τl

·
τsd

1τl
, (17)

where η is the scale factor that adjusts the delay weight in
the distance function. η is a suitable delay scaling factor to
give the delay more ‘importance’ when necessary. 1τl is the
range of delay, and 1τl = max(p,q),(u,v)

{∣∣∣τ (p,q)l − τ
(u,v)
l

∣∣∣}.
τsd is the standard deviation of delay.
According to (15), (16), and (17), the multi-path compo-

nent distance metric between the two subtensors is (18), as
shown at the bottom of the page.

In (18), the data can be scaled appropriately to conform
to the MCD metric. L is the maximum number of paths in
the two subchannel tensors, that is L = max

(
L(p,q),L(u,v)

)
,

when L(p,q) < L or L(u,v) < L, the missing bits are filled
with zero.

Our data set is 8 which is the MPC parameter
group obtained from the (Nr −1nr + 1) (Nt −1nt + 1)
(K −1g+ 1) subtensors. The clustering process is as
follows:

1. Randomly initialize the group centroid µ1, µ2, . . . , µg
⊂ 8, that is independently select G centroids from the data
set 8 as the clustering center of the subtensor.
2. Distribute

{
xMPCi

}I
i=1 MPC parameter samples of each

subtensor to a reasonable group centroid µg, for each xMPCi :

c(i) : argmin
g

dMCD

(
xMPCi , µg

)
, (19)

where g = 1, 2, . . . ,G, c(i) represents the set index of the ith
subtensor and gth group centroid cluster. dMCD

(
xMPCi , µg

)
is

the multipath component distance between the MPC parame-
ter sample xMPCi of ith subtensor and centroidµg. For specific
solutions, see (15) and (16), (17) and (18).

3. Update the centroid of the cluster. The centroid of the
gth group is update to:

µg :=

∑I
i=1 1

{
c(i) = g

}
· xMPCi∑I

i=1 1
{
c(i) = g

} , (20)

MCD(p,q),(u,v) =
L∑
l

√∥∥∥MCD(p,q),(u,v)τl

∥∥∥2 + ∥∥∥MCD(p,q),(u,v)AoD,l

∥∥∥2 + ∥∥∥MCD(p,q),(u,v)AoA,l

∥∥∥2 (18)
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4. Repeat steps 2 and 3 until convergence, namely the
cluster centroid position remains unchanged.

5. Output a set of G group subtensors.
The K-means algorithm iteratively optimizes the position

of group centroid. Its clustering algorithm performance can
be measured by the total MPC distance from each subtensor
to its centroid, namely the total MCD square sum of all
objects in the group to the group centroid, which is defined
as:

D′ =
I∑
i=1

dMCD

(
xMPCi , µc(i)

)2
, (21)

where dMCD
(
xMPCi , µc(i)

)
represents the updated MCD of

group centroid µc(i) and objects x
MPC
i , and xMPCi ∈ µc(i) .

According to the above analysis and processing, users with
similar channel characteristics are clustered into user groups.
The number of user groups isG, assuming that the number of
users in the gth g ∈ [1, . . . ,G] user group is Mg.
The received signal in gth group can be given by

Ỹg= Ẽg ×1 Ãnr ,g ×2 Ãnt ,g ×3 x̃g

+

G∑
g′=1,g′ 6=g

Ẽg′ ×1 Ãnr ,g′ ×2 Ãnt ,g′ ×3 x̃g′ +Ng, (22)

where three consecutive terms represent the signal tensor of
the gth user group, the signal tensor interference of other user
groups, and the additive white Gaussian noise tensor.

After clustering users with similar channel characteristics
into groups.

{
Yig
}Mg

i=1 (g = 1, 2, . . .G) denotes the signals of
all users in the group, where G is the group number, Mg is
the user number in the gth group and ig denotes the i user in
the gth cluster. And then we attempt to enforce each group
share the similar atoms in each of the spatial dictionaries
EAnr ,g, EAnt ,g and user pilots Exg. For convenience we combine
the subtensors in the gth group together to formulate a four-
order tensor: Ỹg ∈ Cnr×nt×G×Mg . The supplemental fourth
dimension corresponds to the number of users in each group.

Analogously, we align all coefficient tensors correspond-
ing to the gth user group to form Ẽg ∈ Cnr×nt×G×Mg . Then
the aim of the user tensor DL can be attained by the following
group-block-sparsity regularizer.
Definition 1(Group-Block-Sparsity): For a coefficient ten-

sor Ẽg ∈ Cnr×nt×G×Mg , its group-block-sparsity with respect

to the spatial and user mode is
∥∥∥Ẽg∥∥∥

B
=

(
rMS , rBS , rs

)
modes is if and only if the smallest index subsets IMS , IBS , I s

satisfying
(
ẽg
)
i1i2i3i4

= 0 for all (i1, i2, i3) /∈ IMS × IBS ×

I s contain rMS , rBS , rs elements, respectively. sub
(
Ẽg
)
∈

CrMS×rBS×rs×ψ denotes the intrinsic subtensor of Ẽg extracted
from the entries of the three dimensions of Ẽg specified by the
index sets IMS , IBS , I s, respectively.
Note that the group-sparsity [45] can be seen as the degen-

erated case of the group-block-sparsity in user groups. Fur-
thermore, when we set ψ = 1 (meaning only one user in

a cluster), the group-block-sparsity so defined exactly corre-
sponds to the concept of block sparsity proposed in [6], which
has been substantiated to be capable of enhancing better
recovery of the original high order signals since it implicitly
incorporates valuable prior information on real signals and
facilitates making full use of the dictionary atoms of each
mode in signal representation.

Then we can construct the following DL model:

min
Ãnr ,g,Ãnt ,g,x̃g

∑∥∥∥Ỹg − Ẽg ×1 Ãnr ,g ×2 Ãnt ,g ×3 x̃g
∥∥∥, (23)

The group-block-sparsity of Ẽg guarantees that each group
Ỹg shares rMSg , rBSg , rsg atoms of the dictionaries Ãnr ,g, Ãnt ,g,
x̃g respectively, and thus the nonlocal similarity among these
cluster samples can then be implied.

V. THE MANIFOLD LEARNING
We know from the previous section that there areMg users in
gth group. Since the subtensors with similar channel charac-
teristics in each group are clustered together, the subtensors
in the same group have the strongest correlation. But the
real relationship between users is not known, and the group
tensor dimension at this time is high, which is inconvenient
for group tensor channel estimation Let HMg denote the
channel matrix between the BS and the Mg user in group g.
mg
(
1 ≤ mg ≤ Mg

)
denotes the mgth user in group g. Let’s

denote the matrix corresponding to the gth cluster Ỹg as
Hg =

[
H1, . . . ,Hmg , . . . ,HMg

]
∈ Cnr×nt×G×Mg .

Manifold learning can reduce the dimensionality of high-
dimensional data [50]. The basic steps of local linear
embedding (LLE) algorithm show that the linear combination
relationship can only play a role near the neighborhood [51].
The basic steps of LLE algorithm are illustrated in Fig. 3.

FIGURE 3. The basic steps of LLE algorithm.

The high-dimensional receive data can be embedded in
subspaces while retaining the geometric properties of the
underlying channel manifold. When the low-dimensional
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receive data manifold are reconstructed, the subtensors
receive data maintain the same local neighbor relationship
in the corresponding intrinsic low-dimensional space. So that
the high-dimensional receive data can be mapped to the glob-
ally unique low-dimensional coordinate system. Finally, the
global multi-user high-dimensional receive data nonlinearity
is transformed into local linearity to achieve dimensionality
reduction. The inter-group interferences existing in (22) can
be eliminated by the ADMM scheme [52], which will be
explained in Section VI. According to the formula, the signal
of any user of the same group can be approximated by the
approximate linear combination of other nearbyMg−1 users.
The channel coefficients between the Mg users of the group,
Hmg in (24) can be generalized as:

Hmg ≈ wmg1H1 + · · · + · · ·wmgnHn + · · · + wmgMgHMg ,

(24)

where wmgn is the channel correlation coefficient between
the user mg and its neighbor n. In order to calculate the
reconstruction weight coefficient

{
wmgn

}Mg

mg 6=n,n=1
between

the mth user and its adjacent user, the linear combination
effect is optimal. Each high-dimensional channels Hmg and
its neighbor high-dimensional channels HMg are located in
a linear or nearly linear local neighborhood of the mani-
fold by manifold learning. The high-dimensional channels
Hmg in the neighborhood can be represented by its neighbor
high-dimensional channels HMg . When the low-dimensional
channel manifolds are reconstructed, the channels maintain
the same local neighbor relationship in the corresponding
intrinsic low-dimensional space. The objective function must
be constructed and the error value of (24) is minimized:

ε (w) = min
Mg∑
mg=1

∥∥∥∥∥∥Hmg −
∑

n 6=mg,n∈Mg

wmgnHn

∥∥∥∥∥∥
2

s.t.


∑

n 6=mg,n∈Mg

wmgn = 1

∀n /∈ Mg, wmgn = 0,
(25)

where, from the constraint conditions,
{
0 < wmgn,wmgn′

< 1 |n , n′ ∈ Mg
}

are any two weight coefficients corre-
sponding to Hn and Hn′ respectively. Let α ∈ R,
0 < α < 1,

{
0 < αwmgn + (1− α)wmgn′ < 1

∣∣n, n′ ∈ Mg
}
.

Therefore, the constraint set of the weight coefficient is a
convex. If the objective function ε (w) satisfies the proper-
ties of convex function, the constraint condition is a con-
vex set. In order to achieve dimensionality reduction, the
data of the high-dimensional space can be mapped to a
lower-dimensional space by using the LLE method.

Proof: Assuming any two points on the set wmg1,
wmg2, α ∈ (0, 1), then as shown in (26).

Therefore, the objective function (25) is a convex under
the constraint condition. In this case, the solution of the
reconstruction weight coefficient can be transformed into a

convex optimization problem, that is, the solution of the least

ε
[
αwmg1 + (1− α)wmg2

]
=

Mg∑
mg=1

∥∥∥∥∥Hm −
[
αwm1 + (1− α)wmg2

]
H1

−
[
αwmg1 + (1− α)wmg2

]
H2

∥∥∥∥∥
2

=

Mg∑
mg=1

∥∥∥∥Hmg − αwmg1H1 − wmg2H1 + αwmg2H1
−αwmg1H2 − wmg2H2 + αwmg2H2

∥∥∥∥2

=

Mg∑
mg=1

∥∥∥∥Hmg − [α (wmg1H1 + wmg1H2
)

+ (1− α) (wm2H1 + wm2H2)]

∥∥∥∥2
≤ αε

(
wmg1

)
+ (1− α) ε

(
wmg2

)
, (26)

convex optimization problem, that is, the solution of the
least square problem under two constraints. Assuming that
the channel matrices Hmg ,Hn,Hn′ of the gth group are all
known, a local covariance matrix R̃

m
n,n′ is constructed:

R̃
mg
n,n′ =

(
Hmg −Hn

)T (Hmg −Hn′
)
, (27)

Combined with the constraint
∑

n∈Mg
wmgn = 1, the min-

imum matrix problem of the objective function is solved.
At this time, wmgn has a closed solution, which is expressed
as:

wmgn =

∑
n′∈Mg

(
R
mg
nn′

)−1
∑

n1∈Mg

∑
n2∈Mg

(
R
mg
n1n2

)−1 , (28)

After the LLE dimensionality reduction method, the pro-
jection in the low-dimensional space of the input channel
matrix Hmg of a user mg in the group g is H̃mg . And
Hn, Hn′ the corresponding projections are H̃n, H̃n′ , respec-
tively. H̃mg can be reconstructed by the linear combination
approximation:

H̃mg ≈ wmgnH̃n + wmgn′H̃n′ + · · · + wmgMgH̃Mg , (29)

Therefore, the low-dimensional space representation H̃mg
corresponding to Hmg can be solved by the following kernel
function as (30). In (30), H̃ is composed of all H̃mg column
vectors, I is an identity matrix with dimensionMg×Mg. Img
is the mgth column of I . And wmg denotes the mgth column
of the matrixWg, with dimension

ε
(
H̃
)
= min

Mg∑
mg=1

∥∥∥∥∥∥H̃mg −
∑

n 6=mg,n∈Mg

wmgnH̃n

∥∥∥∥∥∥
2

= min
Mg∑
mg=1

∥∥∥H̃ (
Img − wmg

)∥∥∥2
= min

{
tr
(
H̃
(
I −Wg

) (
I −Wg

)T H̃T
)}

s.t.


∑Mg

mg=1
H̃mg = 0

H̃H̃
T
= I

(30)
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Mg ×Mg, is given by:

wmg =


wmg1
wmg2
...

wmgMg

 ,Wg =


w11 w21 · · · wMg1
w12 w22 · · · wMg2
...

...
. . .

...

w1Mg w2Mg · · · wMgMg

 ,
(31)

Define B =
(
I −Wg

) (
I −Wg

)T. So that, let
λ1, λ2, . . . , λMg be the non-zero eigenvalues of the matrix

B by decomposing the eigenvalue for B̃H̃
T
= λH̃

T
. And the

eigenvalues are sorted from small to large. The corresponding
eigenvectors are H̃

T
1 , H̃

T
2 , . . . , H̃

T
Mg

. To minimize the kernel

function error ε
(
H̃
)
, the low-dimensional channel matrix

of the output H̃
T
are consisted of the first b eigenvector of

the matrix B. B can be obtained through
(
H̃

T
,3
)
= eig (B),

where3 is the eigenvalue matrix. The main diagonal element
of 3 is the eigenvalue of B.

Since the relationship among the users in the group is
known, then we can reconstruct all the users in the group into
a new group tensor, and the gth group can be written as

Ŷg= Êg ×1 Ânr ,g ×2 Ânt ,g ×3 x̂g ×4 Wg

+

G∑
g′=1,g′ 6=g

Êg′ ×1 Ânr ,g′ ×2 Ânt ,g′ ×3 x̂g′ ×4 Wg′+Ng,

(32)

where Ŷg ∈ CNt×Nr×Mg is the received signal of the gth
group after the correlation coefficient of the channel matrix
is known.

VI. CHANNEL ESTIMATION OF THE USER GROUPS
The tensor analysis method is used to analyze all users at the
same time to improve work efficiency. But from (32), it can
be seen that the desired signal of user groups is still interfered
by other group tensors, so we use the tensor ADMM method
to eliminate it. Then the tensor-MUSIC method is used to get
our estimated channel parameters of user groups.

A. THE ADMM FOR ELIMINATING INTERFERENCE
For the convenience of calculation, we temporarily sim-
plify (32) as follows

Ŷ = X + Z +N , (33)

where

Ŷ = Ŷg ∈ CNt×Nr×Mg , (34a)

X = Êg ×1 Ânr ,g ×2 Ânt ,g ×3 x̂g ×4 Wg, (34b)

Z =
G∑

g′=1,g′ 6=g

Êg′ ×1 Ânr ,g′ ×2 Ânt ,g′ ×3 x̂g′ ×4 Wg′ ,

(34c)

N = Ng. (34d)

X , Z,N represent the desired signal of gth user group,
interference signals from other user groups and additive
Gaussian white noise.
Our object is to obtain the desired signal of gth user group

from (33). Without considering Gaussian noise, Lu et.al. [53]
used tensor robust principal component analysis to restore
low-rank tensors through convex optimization, is given by

min
X ,Z
‖X‖∗ + ρ2 ‖Z‖1

s.t. Y ′ = X + Z, (35)

where ρ2 = 1/
√
max (Nt ,Nr )Mg [54], (35) can be solved by

polynomial-time algorithms, e.g., the standard ADMM.
We follow this convex optimization scheme to eliminate

interference from other user groups and noise. In this paper,
the eliminating interference is formulated as

min
X ,Z,N

‖X‖∗ + λ1 ‖N‖2F + λ2 ‖Z‖1

s.t. Y = X +N + Z, (36)

where λ1, λ2 are the optimized values to achieve a satisfactory
recovery result of the user group signal.

The constrained problem defined in (36) can be addressed
by a quadratic penalty approach, i.e., by solving

min
X ,Z,N

‖X‖∗ + λ1 ‖N‖2F + λ2 ‖Z‖1

+
β

2
‖Y − (X +N + Z)‖2F , (37)

where β is a factor that guarantees the convergence of the
algorithm.

The solution of (37) can be approached by alternating
this minimization with respect variables X , N and Z . How-
ever, the intermediate minimization becomes increasingly ill-
posed when β becomes large. The augmented Lagrangian
method (ALM) provides another term to mimic Lagrange
multiplier and to overcome the ill-posed problem caused by
large value of β. The augmented Lagrangian function for
problem defined in (36) is

L (X ,Z,N ,31; λ1, λ2, β)

= ‖X‖∗ + λ1 ‖N‖2F + λ2 ‖Z‖1
+ 〈31,Y − (X +N + Z)〉

+
β

2
‖Y − (X +N + Z)‖2F , (38)

where 31 is the Lagrangian multipliers. ALM is used to
minimize L (·) with respect to variables X , N , and Z while
keeping31 fixed. It then updates31 according to the follow-
ing rule:

3σ+11 ← 3σ + β
(
Y −

(
X σ+1

+N σ+1
+ Zσ+1

))
. (39)

The ADMMmethod uses partial updates by keeping other
variables fixed each time. Using the ADMM framework
for (38), we can update the variables X , N , and Z in the
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(σ + 1) th iteration, by alternately minimizing the following
function while keeping the value of 31 fixed at 3σ1

L
(
X ,Z,N ,3σ1 ; λ1, λ2, β

)
= ‖X‖∗ + λ1 ‖N‖2F + λ2 ‖Z‖1

+
β

2

∥∥∥∥Y − (X +N + Z)+
3σ1

β

∥∥∥∥2
F
. (40)

In the (σ + 1) th iteration, X σ+1, N σ+1, Zσ+1 and 3σ+11
are updated as follows:

For the updating of X σ+1,we have

X σ+1

:= argmin
X

L̄
(
X ,N σ ,Zσ ,3σ1

)
= argmin

X

(
‖X‖∗+

β

2

∥∥∥∥Y−(X +N σ
+Zσ

)
+
3σ1

β

∥∥∥∥2
F

)
.

(41)

The updating of X σ+1 has a closed-form solution.
For the updating of Zσ+1,we have

Zσ+1
:= argmin

Z
L̄
(
X σ+1,N σ ,Z,3σ1

)
= argmin

Z

(
λ2 ‖Z‖1

+
β

2

∥∥∥∥Y − (X σ+1
+N σ

+ Z
)
+
3σ1

β

∥∥∥∥2
F

)
(42)

Equation (42) can be solved by a soft-shinkage operator

Zσ+1
:= shrink

(
Y −

(
X σ+1

+N σ
)
+
3σ1

β
,
λ2

β

)
(43)

where shrink (·, ·) is an elementwise soft-shrinkage operator.
For each element a of tensor Y −

(
X σ+1

+N σ
)
+

3σ1
β
,

we have

shrink
(
a,
λ2

β

)

a−

λ2

β
, a >

λ2

β

0, |a| ≤
λ2

β

a−
λ2

β
, a < −

λ2

β
.

(44)

The soft-shrinkage operator shrink (·, ·) is the proximity
operator of the l1-norm. For N σ+1, we have

N σ+1

:= argmin
N

L̄
(
X σ+1,N ,Zσ+1,3σ1

)
= argmin

N

λ1 ‖N‖21F
+
β

2

∥∥∥∥Y − (X σ+1
+N + Zσ+1

)
+
3σ1

β

∥∥∥∥2
F

 .
(45)

Similarly, we can obtain the closed-form solution for the
updating of N σ+1

N σ+1
:=

(
β

2λ1 + β

)(
Y +

3σ1

β
−

(
X σ+1

+ Zσ+1
))
.

(46)

The update of 3σ+11 can be formulated as

3σ+11 ← 3σ1 + β
(
Y −

(
X σ+1

+N σ+1
+ Zσ+1

))
.

(47)

With a fixed β, ADMM converges slowly. Consequently,
an adaptive updating strategy for the penalty parameter is
adopted

βσ+1 = min (βmax, ηβσ ) , (48)

where βmax is the upper bound for β, and η is the adaptive
parameter.

B. THE STOPPING CRITERION FOR ADMM IS

min
{
β
(∥∥∥Zσ

− Zσ+1
∥∥∥+ ∥∥∥N σ

−N σ+1
∥∥∥) ,

1
β

∥∥∥3σ+11 −3σ1

∥∥∥} ≤ ς, (49)

where, ς is an infinitesimal number, e.g., 10−6.
After the ADMM method, interference signals from other

user group tensors have been eliminated. The desired signal
of gth user group is given by

Ȳg = Êg ×1 Ânr ,g ×2 Ânt ,g ×3 x̂g ×4 Wg +Ng. (50)

C. THE CHANNEL MATRIX AND SIGNAL MATRIX
After the tensor ADMM method, interference signals from
other user group tensors have been eliminated.

Due to the sparsity of the antenna sub-array block, the
ULA antenna has higher resolvability. In this paper, the
spatial-multiple signal classification (SMUSIC) of spatial-
multiple signal classification (SMUSIC) combined with
angle delay estimation is derived by deriving the time and
space covariance matrix. And Time-Multiple Signal Classi-
fication (TMUSIC) algorithm [55], using the orthogonality
between the signal and noise subspace, MUSIC needs to per-
form a full-spectrum search in space and time to accurately
obtain the path Angle and delay information. The actual wire-
less communication system has a pilot sequence embedded
in its frame, which is used as a reference symbol for channel
estimation, the pilot symbol occupies some subcarriers, and
the rest is used for data transmission. In order to obtain the
best estimate, it is assumed that each user in the network sends
an orthogonal training symbol set.

According to the channel model in section III. Ȳg in (50)
is given by

Ȳg =
L∑
l=1

α̂g,lQ̂r,g,l
(
θr,g,l, φr,g,l

)
◦ F̂t,g,l

(
θt,g,l, φt,g,l

)
◦ e−j2πτg,l fs x̂gWg +Ng (51)

where

Q̂r,g,l
(
θr,g,l, φr,g,l

)
= QH

g âr
(
θr,g,l, φr,g,l

)
, (52a)

F̂t,g,l
(
θt,g,l, φt,g,l

)
= âHt

(
θt,g,l, φt,g,l

)
Fg. (52b)
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When the MUSIC algorithm is used to jointly estimate the
AoA and AoD ofMPC, the steering vector involving multiple
parameters can be expressed as

Ĉg
(
θr,g,l, φr,g,l, θt,g,l, φt,g,l

)
= Q̂r,g,l

(
θr,g,l, φr,g,l

)
◦ F̂t,g,l

(
θt,g,l, φt,g,l

)
. (53)

The delay component in (51) is given by

G̃
(
τg,l
)
= ĝ

(
τg,l
)
diag

(
x̂gWg

)
, (54)

where

ĝ
(
τg,l
)
= e−j2πτg,l fs . (55)

At this point, (51) can be rewritten as

Ȳg = ECg
(
θr,g, φr,g, θt,g, φt,g

)
EDg
(
G̃g (τ )

)T
, (56)

where G̃g (τ ) =
[
G̃
(
τg,1

)
, . . . , G̃

(
τg,l
)
, . . . , G̃

(
τg,L

)]
.

ĝ
(
τg,l
)
is the time array vector.

EDg = diag
(
Eαg,1, . . . , Eαg,l, . . . , Eαg,L

)
, (57)

ECg
(
θr,g, φr,g, θt,g, φt,g

)
=

[
Ĉg
(
θr,g,1, φr,g,1, θt,g,1, φt,g,1

)
, . . . ,

Ĉg
(
θr,g,L , φr,g,L , θt,g,L , φt,g,L

)]
. (58)

Fading rays are generally considered to be uncorrelated
in wireless communication applications, and their fading
amplitude is assumed to be a zero-mean complex Gaussian
distribution. Therefore, the covariance matrix of the fading
vector Eα =

[
Eαg,1, . . . , Eαg,l, . . . , Eαg,L

]T is:

E
[
EαEαH

]
= diag

(
σ 2
1 , . . . σ

2
l , . . . , σ

2
L

)
, (59)

where E
[
EαEαT

]
= 0, σ 2

l is the average signal power of the
lth path.

In practical applications, according to (59), the spa-
tial covariance matrix corresponding to the tensor can be
expressed as follows:

Rs = E
[
Ȳg
(
Ȳg
)H]

= ECg
(
θr,g, φr,g, θt,g, φt,g

)
×Pg

(
ECg
(
θr,g, φr,g, θt,g, φt,g

))H
, (60)

where Pg = E
[
EDg
(
G̃g (τ )

) (
EDg
(
G̃g (τ )

))H]
. In (60),

the spatial covariance matrix Rs and spatial feature matrix
ECg
(
θr,g, φr,g, θt,g, φt,g

)
share the same column space.

Similarly, the covariance matrix Rt of the delay domain of
tensor is:

Rt = E
[(
Ȳg
)T (Ȳg)∗] = G̃g (τ )Pg

(
G̃g (τ )

)H
, (61)

In (61), after excluding the noise subspace, the delay
domain covariance matrix Rt and the delay domain feature
matrix G̃ (τ ) share the same column space.

Eigenvalue decomposition of the spatial covariance matrix
Rs and the time-domain covariance matrix Rt respectively:

Rs = Us,x3s,x
(
Us,x

)H
++Us,n3s,n

(
Us,n

)H
, (62)

Rt = U t,x3t,x
(
U t,x

)H
++U t,n3t,n

(
U t,n

)H
, (63)

where the column vectors Rs of Us,x are the eigenvectors of
the signal subspace in the space domain, the column vectors
Rt of U t,x are the eigenvectors of the signal subspace in
the space domain. Us,n and U t,n are the noise subspaces
supplemented orthogonally by Us,x and U t,x column spaces,
respectively.
Using the orthogonality of the signal subspace and noise

subspace in the space and delay domain, the zero-spectral
functions of S-MUSIC and T-MUSIC are respectively
defined as (64) and (65), shown at the bottom of the page.
Estimate the angle and delay information by search-

ing the peaks of the following spatial and delay spectra
(66) and (67), as shown at the bottom of the page, where
Ps,n = Us,n

(
Us,n

)H, P t,n = U t,n
(
U t,n

)H.
VII. NUMERICAL RESULTS
A. COMPUTATIONAL COMPLEXITY
In our algorithm, the complexity is dominated by the
construction of ECg

(
θr,g, φr,g, θt,g, φt,g

)
and G̃g (τ ). Our

algorithm is a gridless search with the complexity of

Ps
(
θr,g, φr,g, θt,g, φt,g

)
=

1(
ECg
(
θr,g, φr,g, θt,g, φt,g

))H
Us,n

(
Us,n

)H ECg
(
θr,g, φr,g, θt,g, φt,g

) , (64)

P t (τ ) =
1(

G̃g (τ )
)H

U t,n
(
U t,n

)H G̃g (τ ) . (65)

(
θ̂r,g, φ̂r,g, θ̂t,g, φ̂t,g

)
= argmax
(θr,g,φr,g,θt,g,φt,g)

1(
ECg
(
θr,g, φr,g, θt,g, φt,g

))H
Ps,n ECg

(
θr,g, φr,g, θt,g, φt,g

) , (66)

(
τ̂g
)
= argmax

(τ )

1(
G̃g (τ )

)H
P t,nG̃g (τ )

(67)
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O (NtNrKG). As a comparison, the computational complex-
ity of the IP-OMP [17] is of order O

(
NtNrK + NxNyNz

)
where NxNyNz denotes the number of columns of the
overcomplete dictionary. The basic algorithm is the Alter-
nating Least Squares (ALS) in MSVD [32], which has
a complexity of the order O

(
3L2G+ L3 (Nt + Nr + K )

)
per iteration. The computational complexity of LRTD [31]
is O

(
NtNrK

(
Nx + Ny + Nz

))
. In each iteration, the

computational complexity of BCD-R [34] is
O
(
q
(∑n

n=1
∏3

k=1 3Ik (L
n)2
)
+
∑N

n=1
∑3

k=1 (L
n)3
)
where

q is the number of iterations at convergence.

B. SIMULATION RESULTS
In this section, we present simulation results to examine
the estimation performance of the proposed scheme. We use
the antenna distance of the conventional antenna array. The
distance between neighboring antenna elements is assumed to
be half the wavelength of the signal. Also, in our experiments,
the precoding matrix F and the combining matrixn Q are
randomly generated with their entries uniformly chosen from
a unit circle. Typical values are set as follows: the antenna
array sizes for symbol transmission are set as Nt = 64, Nr =
32. the number of RF chains are set as N t

RF = 12, N r
RF = 6.

the number of paths is set equal to L = 4; the number of
subcarriers for transmitting pilot symbols is set as K0 = 128;
the sampling rate is set to fs = 0.32GHz. All simulation
results represent an averaged over 5000 independent Monte
Carlo runs. The MATLAB Tensor Toolbox [56] is used.

We first examine the estimation accuracy of the channel
parameters

{
θr,g, φr,g, θt,g, φt,g, τg

}
by themean square error

(MSE). To provide a benchmark, we derive the CRB of each
parameter as a lower bound of unbiased estimators [57].
Fig. 4, Fig. 5 and Fig. 6 plot the MSE and CRB curves versus
the receiving signal-to-noise ratio (SNR), and SNR is given
by

SNR =

∥∥Yg −Ng
∥∥2
F∥∥Ng

∥∥2
F

, (64)

FIGURE 4. MSE performance of AoA vs. SNR.

FIGURE 5. MSE performance of AoD vs. SNR.

FIGURE 6. MSE performance of delay vs. SNR.

The proposed method is compared with IP-OMP [17],
LRTD [31] and SCPD [33]. Our method is abbreviated as
TDML. It indicates that the performance of TDML continues
to improve as SNR increases. Moreover, TDML consistently
outperforms other algorithms, especially in terms of AoA and
AoD. In terms of the estimation accuracy of time delay, the
accuracy is slightly lower than SCPD at low signal-to-noise
ratio. But as the SNR increases, the accuracy is better than
SCPD.

Then, we focus on the overall estimation accuracy of chan-
nel matrices measured by the normalized MSE (NMSE) and
NMSE is defined as

NMSE =
1
R

 R∑
i=1

∥∥∥Hg − Ĥg

∥∥∥2
F∥∥Hg

∥∥2
F

 , (65)

whereHg denotes the channel matrix associated with the user
group, and Ĥg is its estimate. R is number of monte carlo
trials.

In Fig. 7, our proposed method is compared with IP-OMP
[17], MSVD [32], BCD-R [34], LRTD [31], and TS [35].
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FIGURE 7. Channel NMSE performance vs. SNR.

FIGURE 8. Channel NMSE performance vs. Transmit antenna.

we set Nt = 64, Nr = 32, and the user K = 128. The
results show that as the SNR increases, the performance of
TDML has been improved and is better than other algorithms.
This is mainly because other algorithms are limited by the
complexity of multi-user high-dimensional channels. BCD-R
and IP-OMP use a non-standard tensor decomposition model
and the grid search method, so their performance is slightly
lower than our solution. Our algorithm clusters users with
similar channel characteristics into user groups, and uses
manifold learning to reduce dimensionality. Therefore, the
performance is higher than other algorithms.

Fig. 8 plots the NMSE curves versus the number of trans-
mit antennas. Fig. 9 plots theNMSE curves versus the number
of receive antennas. The SNR is set to 30dB, and the user K
is set to 128. It illustrates all the other methods can achieve
enhanced estimation accuracy against the increasing anten-
nas. With the increase of antennas, the beamforming of other
algorithms and the reception of MS become better. Their
performance is gradually improving. However, the dictionary
constructed by our proposed algorithm after convolutional
segmentation and clustering is more complete.

FIGURE 9. Channel NMSE performance vs. Receive antenna.

FIGURE 10. Channel NMSE performance vs. User.

This is mainly due to the fact that the two dimensions
of the tensor model we build are the transmitting antenna
and the receiving antenna. With the increase of antennas,
our algorithm uses a large number of antennas for multiple
low-dimensional tensor dictionary manifolds after the seg-
mentation of the antennas and the subsequent clustering of
similar channels and the learning of manifolds. This allows
our algorithm to improve its performance as the number of
antennas increases. The accuracy of channel estimation is
better than other algorithms.

In Fig. 10, we plot the NMSEs of respective methods
vs. and the user K , where the SNR is set to 10dB. With
the increase of users, the performance of LRTD and MSVD
hardly changes. The performance of TS and BCD-R contin-
ues to decline. With the increase of users, the performance of
our solution gradually declines. But it is always better than
other solutions. When the number of users reaches a certain
level, our algorithm stabilizes. This can be explained by the
fact that our algorithm is user group specific and uses a man-
ifold learning approach for dimensionality reduction of high
dimensional channels. The performance of other algorithms
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FIGURE 11. Run time vs. SNR.

is limited mainly by the nonlinear low resolution of the high-
dimensional channel for multiple users as the number of users
increases. In a dense area of users, there are more similar
channels between users, and our performance is better.

In Fig. 11 the comparison of the computational complexity
is performed by comparing the run time of different algo-
rithms. The user K is set to 128. The run time is chosen
because iterative algorithms are used to achieve a tensor
decomposition in MSVD, TS, LRTD, and BCD-R. As seen
from the figure, the proposed TDML channel estimation
algorithm has the lowest complexity. TS and MSVD yield
a much higher complexity especially in the low to medium
SNR regime because the tensor decomposition converges
slowly.

VIII. CONCLUSION
In this paper, we propose a tensor dictionary manifold learn-
ing method for channel estimation and interference elimi-
nation of the multi-user mmWave massive MIMO system.
This method uses user groups with similar channels to build
tensor manifold dictionary learning of channel information.
Specifically, the multi-user signal at the user end is estab-
lished as a third-order tensor. We prove that users with similar
channel characteristics can build a tensor pop dictionary of
user group channels. Research on the extraction of channel
information shows that even a few pilots can obtain the time
delay and angle of the user group. We compare our proposed
method with the channel estimation method based on the
tensor method. The simulation results show that compared
with other methods, this method has obvious performance
advantages in terms of estimation accuracy.

In future work we will optimize the clustering of user
groups and the method of building dictionaries, as this will
directly affect the accuracy of our channel estimation for user
groups. In addition, we may also consider more diverse user
group scenarios, such as dense groups of people in small areas
or distant groups of people in large areas. A more optimal
manifold approach will be considered as users are constantly
on the move.
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