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ABSTRACT The disclosure of security vulnerabilities plays an important role in notifying vendors and
the public about flaws in digital systems. Among the proposed disclosure approaches, the most utilized
is Responsible Disclosure, which still suffers from several disadvantages such as fostering a false sense
of security among the end-users, allowing arbitrary delays in the disclosure process, and forcing the party
reporting a vulnerability to identify themselves, which has been exploited by vendors through intimidation
and malpractice. To address these issues, this paper presents an improved version of the Responsible
Disclosure approach called Automated Responsible Disclosure (ARD) - a solution that leverages distributed
ledgers and interledger technologies to automate the disclosure process while offering increased security,
privacy, and transparency. A prototype implementation has been released as open-source software, and the
evaluation of the solution shows that ARD is capable of addressing the key shortcomings in existing solutions
and fostering more transparent disclosure practices.

INDEX TERMS Responsible disclosure, automated responsible disclosure, security vulnerability, privacy,
distributed ledger, interledger, smart contract, chaincode.

I. INTRODUCTION
Nowadays, when a significant portion of a person’s life
is dependent on digital systems, the security of those sys-
tems has become crucial due to the increasing number
of cyber-attacks [1]. Alas, all digital systems suffer from
vulnerabilities that expose them to attacks, and the vul-
nerabilities only increase as the systems become more
complex [2]. The situation is further aggravated by the
continuing trend of prioritizing time to market, particu-
larly in the quickly expanding Internet of Things (IoT)
market [3]–[5].

Unfortunately, despite extensive testing strategies, vulner-
abilities are difficult to detect. To increase the efficiency of
the vulnerability detection process, many companies offer
rewards in the form of bug bounty programs in hopes
of encouraging experts to actively look for vulnerabili-
ties [6]. To manage the process of discovering, reporting, and
patching vulnerabilities, different vulnerability disclosure
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approaches have been utilized over the years. The approaches
are typically categorized as full vendor disclosure, full pub-
lic disclosure, and responsible disclosure [7]–[10]: the full
vendor disclosure approach restricts the communication of
the vulnerability only to the vendor, which makes it too
opaque for the public, the full public disclosure method favors
warning the public, which may then also aid cyber-criminals,
while the responsible disclosure approach tries to find a
balance between the other two approaches by disclosing the
vulnerability to the public only when a patch is released
or when the time period to release a patch has expired.
However, it still suffers from several problems. For example,
since the experts are required to identify themselves, vendors
are able to pressure them into concealing the vulnerabilities
they discover from the public [11]–[15]. Moreover, the time
period initially requested by a vendor to produce a patch can
be relatively large and even arbitrarily extended during the
process as the public is not aware of the vulnerability and
is, therefore, not able to exert pressure for a timely patch
release. Finally, another consequence of the public not being
aware of the vulnerability is that they are not always able to
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take the most appropriate countermeasures until details of the
vulnerability are publicized [16].

This paper presents a solution to these shortcomings by
building on the idea of Automated Responsible Disclo-
sure (ARD) proposed by Lagutin et al. [16]. The developed
system leverages distributed ledgers, smart contracts, and
interledger technologies to address the following research
questions:

1) What are the trade-offs between transparency, infor-
mation confidentiality, and privacy in the disclosure
process (addressed in Section VII), and how can
such requirements be balanced in a single solution
(addressed in Section V)?

2) How does automation of the disclosure process
affect the disclosure of vulnerabilities (addressed in
Section VIII)?

3) How does the developed solution affect the latency
and costs associated with the vulnerability disclosure
process (addressed in Section VI)?

The contributions of this paper include (also compared
to [16]):

• The idea of ARD has been developed into a detailed
design where, for the first time, the transparency of dis-
closure, the confidentiality of vulnerability information,
and expert’s privacy are guaranteed simultaneously in a
single solution;

• An open-source implementation of ARD built on
Ethereum, Hyperledger Fabric, and the SOFIE
Interledger component is presented;

• The solution is evaluated by quantitative analysis,
including the costs and required number of transactions,
and qualitative analysis with respect to a list of require-
ments and attack vectors.

The complete solution has been carefully designed to solve
the issues of current responsible disclosure systems, while
respecting the established practices of bounties and divi-
sion of responsibilities. The prototype implementation and
subsequent analysis confirm that the ARD system resolves
the primary pain points in existing vulnerability disclosure
processes, while being computationally efficient, resilient to
attacks, and cost-effective.

The rest of the paper is organized as follows: Section II
provides the background on security vulnerabilities, dis-
tributed ledgers, and interledger technologies; Section III
describes the existing vulnerability disclosure approaches in
more detail; Sections IV and V present the design and an
open-source implementation of anARD system, respectively;
Section VI evaluates the system with quantitative measure-
ments; Section VII qualitatively analyses the solution and
Section VIII discusses the implications and future work;
finally, Section IX concludes the paper.

II. BACKGROUND
This section introduces security vulnerabilities, distributed
ledgers, and interledger technologies.

A. SECURITY VULNERABILITIES
The definition of a (security) vulnerability, according to the
Common Vulnerabilities and Exposures (CVE), is ‘‘A flaw
in a software, firmware, hardware, or service component
resulting from a weakness that can be exploited, causing a
negative impact to the confidentiality, integrity, or availabil-
ity of an impacted component or components’’ [17]. In the
European Union, the Cybersecurity Act [18] and the (NIS)
Directive [19] establish the framework for regulating cyber-
security systems, while the ISO/IEC 29147:2018 [20] and
ISO/IEC 30111:2019 [21] provide guidelines on receiving
reports about potential vulnerabilities and terms of disclosure.

The coordination between different parties, such as the
security experts and vendors, to report vulnerabilities is
normally managed and encouraged through Coordinated
Vulnerability Disclosure (CVD) policies and bug bounty
programs. CVD aims to contribute to the security of IT
systems by sharing knowledge about vulnerabilities [22],
while vendor-sponsored bug bounty programs seek to incen-
tivize the experts to hunt for vulnerabilities and define a
strategy to report vulnerabilities in exchange for Vendor-
defined rewards.

However, even with such mechanisms, security experts are
not fully protected, and vulnerabilities are seldom addressed
in a swift manner. An example of the former would be the
case of the Australian hacker, Patrick Webster, who, in 2011,
discovered a serious security flaw in First State’s Superannu-
ation System and, despite his ethical intentions, was accused
of criminal acts and subjected to legal persecution [23].
A notable example for the latter concerns the well-known taxi
service, Uber, which suffered from a security breach in 2016.
The massive data breach resulted in granting unauthorized
access to the credentials of over 57 million users worldwide,
but the public disclosure of the breach happened only a year
after the incident as the company attempted to cover up the
situation by paying off the attacker [24].

The problems concerning the management of cybersecu-
rity vulnerabilities are therefore as follows: i) lack of trans-
parency: as evident from the aforementioned Uber case,
transparency is essential to ensure awareness among the gen-
eral public since, without any knowledge of the vulnerability,
the general public is open to exploits; ii) lack of privacy
support: while some experts wish to receive recognition for
their services, many others may wish to preserve their pri-
vacy despite their involvement in the vulnerability disclo-
sure process, and all want to avoid undue pressure from the
vendor. However, current disclosure systems do not provide
anonymity for the expert.

B. DISTRIBUTED LEDGER AND INTERLEDGER
TECHNOLOGIES
A Distributed Ledger Technology (DLT) is a peer-to-peer
(P2P) network, where every peer has access to an immutable
shared history called ledger [25]. The peers agree, following a
consensus protocol, on how to update the ledger by inserting
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new records called transactions, but the records on the ledger
cannot be modified by any party.

Several different DLTs have emerged over the years, with
each system having a unique set of strengths and limita-
tions depending on the architectural differences and design
choices. According to the classification of Wust and Ger-
vais [26], DLTs can be classified based on who is allowed
to read the data and who is allowed to write new data. In a
public DLT anyone can read the data, while in a private DLT
only authorized parties have access to the data, so a public
DLT provides transparency and non-repudiation of the data,
while a private DLT provides privacy of the data. Similarly,
in a permissionlessDLT anyone can write data (provided they
meet the requirements of the consensus mechanism), while
in a permissioned DLT only authorized parties can perform
writes. Of the possible four types of DLTs this classifica-
tion enables, currently three types exist. Bitcoin [27] and
Ethereum [28] are examples of public and permissionless
DLTs, while Hyperledger Fabric [29] is a private and permis-
sioned DLT. Moreover, public and permissioned DLTs such
as Hyperledger Indy [30] exist, and they are well suited for
cases where the DLT peers must be authorized because they
need to be known, but public verifiability is also required.

In permissionless DLTs, maintaining a common state
requires a complex consensus algorithm, which then makes
it more secure from malicious modifications, while a permis-
sioned DLT, given its more controlled setup, can maintain
a common state with a much simpler consensus algorithm,
thus making it more scalable and efficient but less secure
than permissionless DLTs. These contradictory goals have
been summarized in the blockchain trilemma, which states
that a system based on a single DLT cannot be decentralized,
secure, and scalable at the same time [31].

As no single DLT is able to satisfy all the requirements of
every use case, interledger approaches [32]–[34] have been
proposed to connect two or more DLTs to achieve a combi-
nation of features that enables, for example, linking together
data stored in different DLTs, or transferring data from one
DLT to another. Among the various interledger approaches,
this work uses the bridging approach to transfer information
between DLTs. In particular, the bridging approach enables
one or two-way transfer of information between ledgers that
are considered more or less equal [32].

Another key approach used in this work is hash-
locking [34]: in a complex operation, some steps are locked
with a hashlock until either someone provides the pre-image
of the hashlock (at which time all the locked steps can take
place), or the whole operation is canceled if a timer (called
timelock) expires before the pre-image has been revealed.
This technique can be implemented by Hash Time Locked
Contracts (HTLCs) and is used, for example, in atomic cross-
chain swaps [35].

III. VULNERABILITY DISCLOSURE
This section describes the previous work on the disclosure of
vulnerabilities. Section III-A discusses the existing disclosure

approaches and identifies their advantages and limitations,
Section III-B covers the criteria a vulnerability disclosure
approach should ideally satisfy, and finally, Section III-C
summarizes the original idea of ARD.

The following terminology represents the actors involved
in the disclosure process and shall be used throughout the rest
of the paper [16]: i) security Experts discover vulnerabilities;
ii) Vendors are the companies manufacturing the systems
that may have vulnerabilities; iii) a consortium of Authori-
ties manages the vulnerability disclosure processes e.g. for
specific geographical locations, and iv) the General Public
includes anyone interested in the security of the systems.

A. DISCLOSURE APPROACHES
According to the European Union Agency for cybersecurity
(ENISA) [7], different approaches to the disclosure of vul-
nerabilities exist, but the details of the procedure, such as the
submission form or a bounty system, may differ from Vendor
to Vendor. Currently, there are three main approaches.

In the Full Vendor Disclosure approach, the existence of
the vulnerability is communicated only to the Vendor, who
is tasked with the responsibility of fixing it [8]. While this
approach maintains secrecy in communication and prevents
leak of vulnerability information tomalicious parties [36], the
general public is also kept unaware of both the vulnerability
and the patching process, and the Vendor is not under any
pressure to deliver a patch as fast as possible. Thus, this
approach does not protect the users of the system if the
Vendor acts irresponsibly and fails to patch the system within
a reasonable time frame.

In the Full Public Disclosure approach the existence of the
vulnerability is immediately communicated to the General
Public, thus enabling the end-users to take the precautionary
measures they deem appropriate. This approach also affects
the Vendor since, depending on the exploit of the vulnerabil-
ity, the Vendor could also be the target of an attack. Moreover,
the Vendor risks potential loss of reputation that could result
in irreparable marketing damages [9]. However, along with
the General Public, malicious actors are also made aware of
the vulnerability and they could exploit the issue before a
patch is released.

The Responsible Disclosure approach is a trade-off
between the aforementioned approaches and involves a
trusted third party, such as the Computer Emergency
Response Team/Coordination Center (CERT/CC), to coor-
dinate the process. This party is responsible for making deci-
sions in matters such as defining the conditions in which a
vulnerability can or cannot be disclosed. In this approach, the
existence of the vulnerability is communicated to the Vendor,
but if the Vendor does not fix the vulnerability within the
defined time frame (known as the grace period), the Expert is
allowed to release the vulnerability to theGeneral Public [10].

According to Cavusoglu et al., none of the approaches is
optimal but Responsible Disclosure is the approach that is
most likely to ensure the release of a patch, and therefore,
minimize the social loss, i.e., the investment in the patch and
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FIGURE 1. The idea of ARD as proposed by Lagutin et al. [16].

the damage caused by the vulnerability [37]. Arora et al. [38]
perform a quantitative analysis on the CERT dataset and
observe that the disclosure of a vulnerability doubles the like-
lihood of a patch release. However, Responsible Disclosure is
opaque to the General Public, leaving open questions such as
whether there is clear management of the deadlines, whether
a patch entirely addresses the vulnerability, and whether there
are existing vulnerabilities in the systems they use [16].

The UppsalaSecurity company proposed a blockchain-
based platform called the Sentinel Protocol [39], which
allows Experts to report attacks such as hacks, frauds, and
scams, and a team of security experts, the Sentinels, then val-
idates the reports and, if valid, publishes them on a blockchain
that keeps a threat reputation database and rewards the related
Experts. However, this solution does not involve any other
party except the Experts and the Sentinel Protocol, making
it unsuitable for the responsible disclosure of vulnerabilities,
which involves the Vendor as well.

Hoffman et al. [40] propose a blockchain-based bug
bounty program called Bountychain. Their application is
powered by Ethereum smart contracts and the Inter-Planetary
File System (IPFS) storage to build a safe, secure, and trans-
parent platform for a bug bounty program by leveraging
smart contract capabilities. Experts are allowed to submit
vulnerabilities through the blockchain, where the acceptance
process takes place. The payment process is automated via
smart contracts. The transactions on the chain will serve as
a persistent and transparent record of software bugs, while
the bug details are recorded for long-term storage on IPFS.
The system makes use of a database to store the vulnerability
details during the acceptance process, but a submission is
tracked only if accepted, and the Expert is unable to prove
their submission in case of controversy. The Expert is also
obligated to register to Bountychain as a tester and is, there-

fore, required to disclose their identity, which, as discussed
earlier, makes them susceptible to threats and intimidation.
Moreover, the solution does not address eventual modifica-
tions of the grace periods.

B. CRITERIA FOR VULNERABILITY DISCLOSURE
The overall goal of all the disclosure approaches is to make
the available products more secure through transparency.
Vendors that releasemore secure products (with fewer vulner-
abilities) and are able to fix vulnerabilities in a timelymanner,
will gain reputation while vendors that fail to do so will lose
it. Considering the upsides and downsides of each disclosure
approach, it is possible to list the criteria, or requirements,
a good disclosure approach should satisfy:

1) Privacy: the Expert is protected against intimidation
through anonymity;

2) Early disclosure: if the Vendor does not acknowledge
the vulnerability, the Expert is allowed to immediately
disclose the vulnerability;

3) Automation: the disclosure approach should be as
automated as possible, requiring only a minimal
amount of manual intervention;

4) Secrecy until disclosure: the secrecy of the acknowl-
edged vulnerability is preserved until disclosure;

5) Transparency: the information about the whole pro-
cess of vulnerability disclosure is available to the Gen-
eral Public, including the number of vulnerabilities
reported per Vendor and systems, number of accepted
vulnerabilities, and their state in the resolution process.

C. THE IDEA OF AUTOMATED RESPONSIBLE DISCLOSURE
Lagutin et al. [16] proposed the idea of Automated Respon-
sible Disclosure (ARD), wherein the flow of information
between Experts, Vendors, and Authorities is automated with
the use of a public ledger, a private ledger, and interledger
technologies. The basic process of ARD is summarized in
Figure 1. An Expert discovers a vulnerability and commu-
nicates it to the Authorities (step 1). The Authorities eval-
uate the submission and, if approved, communicate it to
the Vendor (step 2.a); otherwise, the Authorities reject the
submission and the process ends (step 2.b). If the Vendor
chooses to acknowledge the vulnerability (step 3.a), they
promise to patch the vulnerability within a grace period; if
they do not (step 3.b), either the Expert or the Authorities
are allowed to disclose the vulnerability, which concludes
the process. If the Vendor patches the vulnerability within
the grace period (step 4.a), the ARD system automatically
discloses the vulnerability and terminates the process; other-
wise, if the grace period expires (step 4.b), either the Expert
or the Authorities are allowed to disclose the vulnerability,
leading to the completion of the procedure.

IV. THE ARD DESIGN
This section describes the design of a system based on the
idea of Automated Responsible Disclosure (ARD), which
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leverages both a public ledger for open access and a private
ledger to address privacy concerns. The design highlights
the key steps of the disclosure process, while in reality, the
process can be more complex and may require additional
dialogue between the parties in some of the exchanges. Sup-
port for such dialogue can, however, be added when deemed
necessary.

A key feature of the design is the use of two ledgers and
interconnecting them with an interledger technology. A pub-
lic ledger is used for the status information that needs to
be visible to everyone at all times to provide the necessary
transparency. However, as the vulnerability details and related
information need to be kept secret even from the other Ven-
dors until disclosure, a public ledger alone does not suffice,
so the design uses a private ledger for this information. This
means the interledger technology connecting the two ledgers
must support the transfer of information [32], i.e. vulnerabil-
ity’s related data and metadata. According to Siris et al. [32],
the interledger approaches enabling the transfer of informa-
tion are the bridging and the ledger-of-ledger approaches. The
latter approach requires a complex setup with a main ledger
validating the transactions of interconnected ledgers, which
is not the focus of the ARD system. Therefore, the bridging
approach is the most suitable and from now on, the term
‘‘interledger’’ will indicate the bridging interledger approach.
With these key choices all 5 criteria can now be addressed
successfully.

Using the same steps as in Figure 1 [16], Figure 2 illustrates
the components of an ARD system, and how the participants
interact with the system. A consortium of Authorities acts as
an intermediary between Experts and Vendors by managing
the disclosure of vulnerabilities. A Vendor V can register
to the ARD system and delegate the responsibility of vetting
the vulnerability reports to the consortium of Authorities.
In exchange, V agrees to follow the protocol to acknowledge
and patch vulnerabilities. Experts can then report vulnera-
bilities in a registered Vendors’ products through a portal
(e.g. a web page), which stores the status information to
the public ledger (e.g. with Web3 technology [41]), while
securely communicating sensitive information, such as the
description of a vulnerability, directly to the Authorities. Key
assumptions behind the design are 1) the Authority (ideally:
a consortium of Authorities) is trustworthy and does not
misbehave, and 2) the Vendor is solely responsible (to its
customers and the public) for the fix of a vulnerability even
if it internally uses (multiple) subcontractors.

To satisfy criterion 4, secrecy until disclosure, the design
uses a private ledger, whose validator nodes belong to the
consortium of Authorities and registered Vendors. Although
the Vendor nodes participate in the private ledger, the private
ledger must prevent a Vendor from accessing the data of
the other Vendors, while the Authorities must have access
to all the information. However, in a larger consortium
of Authorities, a single Authority may not have access to
every Vendor’s data outside of the subset of Vendors it
represents.

FIGURE 2. A high level view of the ARD system presented in this paper.
The figure shows the components of the system (the private and public
ledgers and the interledger) and how the participants interact with the
system (symbols have been listed in Table 1). The step numbers match
Figure 1. The dashed arrows 3.b, 4.a, and 4.b represent the operations to
disclose a vulnerability and they are mutually exclusive (only one of them
will be performed).

The public ledger can be any public distributed ledger
secure enough to guarantee the immutability of data with
a high level of confidence. Since the data is accessible to
any peer, the public ledger should store only the informa-
tion required to track the disclosure process and to prevent
repudiation to satisfy criteria 2, early disclosure, and 5, trans-
parency.

To protect the privacy of the Experts, they interact only
with the Authority portal to report the vulnerabilities (pos-
sibly through suitable privacy-oriented tools) and sometimes
with the public ledger1 to trigger the disclosure of the vul-
nerability. Together, these measures satisfy the criterion 1,
privacy.

The public ledgers are typically powered by cryptocur-
rencies, which can then be used to pay the bounties to the
Experts. Even though the Expert might wish to receive the
bounty immediately after their report has been approved by
the Authorities, every single anonymous Expert cannot be
trusted not to publish the vulnerability before a patch has
been released. To discourage premature disclosures, in ARD
the Expert receives the bounty only after the availability of a
patch, and therefore after the official disclosure. Also, if there
is reasonable doubt (which is deployment dependent) that the
Expert has, nevertheless, published the vulnerability prema-
turely, the Authority is able to cancel the bounty promised to
the Expert.

Finally, the interledger component is used to connect the
two ledgers, and it is involved whenever a step of the process
requires the interaction between public and private ledgers.
This way, the trigger is only one transaction on one of the

1Most popular ledgers, such as Bitcoin end Ethereum, provide
pseudonymity.
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TABLE 1. The parameters used in the ARD process.

ledgers, and interledger automatically manages the rest as
required by the criterion 3, automation.

The following steps (illustrated in Figures 1 and 2) define
the detailed ARD process (the symbols have been summa-
rized in Table 1):

0) Discovery: An Expert E discovers a vulnerability u
in Vendor V ’s product P. u represents the detailed
information of the vulnerability, while mu consists of
the metadata of the vulnerability (product name and
version, vulnerability type,2 date of discovery, etc.).
The Expert generates a random secret s and with hash
function H () computes the hashlock hs = H (s) and the
hash of the vulnerability hu = H (u). hu can then be
used to verify u’s integrity in later stages, for example
by the Authorities at step 2.a, or by the General Public
after the disclosure;

1) Report: E reports the new vulnerability u. The data
E needs to submit is divided into public (the tuple
(mu, hs, hu)) and private (the tuple (u, s)) parts. Using,
e.g., a portal run by the Authorities, E sends the public
tuple to the public ledger while the private tuple goes
to the Authorities for approval;

2.a) Approval: One or more of the Authorities A ∈

Authorities verifies the integrity of the information, i.e.
that H (s) == hs, H (u) == hu etc. The main duty of
A is then to determine (to the best of A’s knowledge)
whether u is a valid vulnerability, i.e. if it fulfills the
conditions a) u can be reproduced; and b) it is a new
discovery, not something already discovered by some-
one else. If A considers u a valid vulnerability, A stores
the tuple (u, s) in the private ledger in such a way the
tuple is shared with the Vendor V only (criterion 4,
secrecy). However, to satisfy criterion 5, transparency,
A is also required to communicate the approval of u to
the public ledger, which is automatically handled by
interledger using the information stored in the private
ledger. As a consequence, the public ledger computes
two timelocks, ta and tp, indicating the times in which
V has to first acknowledge and then patch u;

2Denial of Service, Memory Overflow, Injection, etc.,
https://www.cvedetails.com/vulnerabilities-by-types.php

2.b) Rejection: If H (s) 6= s, or H (u) 6= u, or u is not a
valid vulnerability, A rejects E’s submission. Then the
only action performed by A is to store a flag, Invalid
or Duplicated , in the public ledger to indicate that
the vulnerability submitted by E is not a valid one.
No information of this rejected vulnerability report is,
therefore, recorded on the private ledger;

3.a) Acknowledgment: V now has time ta to acknowledge
on the public ledger their intention to fix u. To acknowl-
edge, V stores a tuple (Acknowledged, b) on the public
ledger, where b ≥ 0 is the bounty, in cryptocurrency,
that V is willing to pay to E after the disclosure of u.

3.b) Disclosure after the expiration of ta: If ta expires,
either E or A can disclose u. The disclosure is triggered
by revealing s to the public ledger: if H (s) = hs,
an interledger operation reads u from the private ledger
and stores it in the public ledger. If u is large, and the
fee to store it is too large, an alternative solution is to
store the location (e.g. a URL) of u;

4.a) Disclosure after a patch: V has time tp to publish a
patch to u. In order to do that, V stores the patch data,
or a link to a location, e.g. a URL, if the patch data is too
large, and the secret s on the public ledger. If H (s) =
hs, this triggers the disclosure process as explained in
step 3.b. In this scenario, the location containing the
vulnerability may also include the patch. If a reward
was promised to E in Step 3.a, E gets rewarded within
the same transaction;

4.b) Disclosure after the expiration of tp: If tp expires, E
or A are allowed to disclose u by storing s to the public
ledger and, if H (s) = hs, this triggers the Disclosure
step as described in Step 3.b. Similar to step 4.a, E gets
rewarded within the same transaction.

V. THE ARD IMPLEMENTATION
This section presents a prototype implementing the ARD
design and answers the second half of the research question
1) ‘‘How can such requirements3 be balanced in a single
solution?’’. The implementation is available as open-source
software [42] and is built on top of Ethereum [28] and Hyper-
ledger Fabric [29] as the public and private ledgers, respec-
tively, and utilizes the SOFIE Interledger component [43] for
automating operations across the ledgers.

The ARD implementation uses Ethereum and Hyperledger
Fabric DLTs because the design requires the public ledger
to execute code, which is supported by Ethereum smart con-
tracts, and it also requires the private ledger to store data that
is hidden from some of the participants, which is supported
by a combination of Private Data Collections and Channels
in Fabric. Moreover, Ethereum and Fabric enjoy popular-
ity in the community and of the availability of developer
tools. Finally, the SOFIE Interledger component has been
chosen because it implements the bridging approach support-
ing ledger agnostic communication with no assumptions on

3Transparency, information confidentiality, and privacy.
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FIGURE 3. Relationship of the smart contracts on the public ledger.
A circle indicates an internal data structure.

the ledgers, and it enables transactional information transfer
for customized applications not limited to cryptocurrency
assets [44]. However, the ARD design is not tied to Ethereum,
Hyperledger Fabric, or the SOFIE Interledger component,
and it can be deployed on any other ledger and interledger
technology that supports the necessary functionalities.

The operations in the public ledger are implemented with
Solidity smart contracts as explained in Section V-A while
the operations on the private ledger are implemented with
chaincode in Typescript for Hyperledger Fabric v1.4 as
explained in Section V-B. Finally, Section V-C describes how
the interledger operations have been implemented with the
Interledger component. For simplicity, this implementation
supports only one Authority though in real deployments a
consortium of Authorities is recommended due to the lower
trust requirements.

A. PUBLIC LEDGER SMART CONTRACTS
Interactions with Ethereum smart contracts require an
Ethereum address. To simplify the descriptions below, the
following addresses are assumed: 0xauthority for the Author-
ity, 0xvendor for the Vendor, 0xexpert for the Expert, and
0xinterledger for Interledger.

The prototype builds on two smart contracts (SC) on
the public ledger: one called Authority SC and another
called Vendor SC as shown in Figure 3. The Authority
SC is owned by the Authority, and it implements an HTLC
contract (see Section II-B) to secure the operations. The
contract stores the references to Vendor SCs belonging to
Vendors registered in the ARD system with this Authority. A
Vendor SC is owned by a Vendor, and it stores a data struc-
ture containing the public information of the vulnerabilities in
that Vendor’s products. The contracts provide the functions to
proceed through the ARD process as described in Section IV,
except for step 0 (Discovery), which is not controlled by the
ARD and is assumed to be done independently by the Expert.

The Authority SC is called in several of the steps in
the ARD process, and it provides the following functions:

• registerVendor(vendor_address) accepts new Vendor
registrations and deploys the corresponding Vendor
SC with vendor_address as its owner. This approach is
more rigid than allowing a Vendor to implement and

TABLE 2. The public fields representing a vulnerability in Vendor SC.

deploy a smart contract by themselves, but it reduces the
possibility a Vendor attaches a vulnerable or malicious
smart contract;

• registerVulnerability(vendor_address, hs, pid , hu) imple-
ments the step 1, the submission of a new vulnerability
involving the product with ID pid . The parameter hu will
be used as unique identifier for u in the later steps;

• reject(hu, motivation) implements the step 2.b, the rejec-
tion of a vulnerability identified by hu with motivation
indicating the motivation of the rejection i.e. a duplicate
or invalid submission;

• publishSecret(hu, s) implements steps 3.b, 4.a, and 4.b,
beginning the disclosure of a vulnerability identified by
hu by exposing the secret s;

• interledgerReceive(nonce, payload) is a function the
Interledger component [45] invokes to approve a vul-
nerability at step 2.a, and to terminate the disclosure at
steps 3.b, 4.a, and 4.b.

The Vendor SC is responsible for storing the IDs of
the products sold by the Vendor and the list of vulner-
abilities reported by Experts. The contract exploits the
acknowledge(hu, b) function to trigger step 3.a, the acknowl-
edgment of the vulnerability identified by hu and assigning a
bounty amount b ≥ 0. The contract is also involved in every
step that requires the Authority SC to store or update
information about a vulnerability. The Vendor SC can be
funded with cryptocurrency by the Vendor to also manage a
bounty system that rewards the Experts who report approved
vulnerabilities. However, theAuthority SC operations do
not involve any cryptocurrency so the contract never receives
funds.

In the public ledger, each vulnerability u is represented
by the fields listed in Table 2. The fields include the public
variables listed in Table 1: the address of the Expert who
submitted the vulnerability report, a state flag to track the
disclosure process of each vulnerability, the bounty infor-
mation that includes the amount and its state, the ID of the
involved product, the timestamp of the submission, and the
data containing the disclosure information.

In Ethereum, storing large amounts of data has a high cost
in terms of gas (see Section VI-A), and, as a consequence,

10478 VOLUME 10, 2022



A. Lisi et al.: Automated Responsible Disclosure of Security Vulnerabilities

FIGURE 4. The state machines of a) the vulnerability and b) the bounty
(bold indicates the steps of the procedure, italic the smart contract
functions).

a large fee. Since the full vulnerability and patch descriptions
can be very large, the prototype makes use of the following
simplifications: (i) the disclosure data is a single string rep-
resenting the URL of a public web page storing the vulnera-
bility and patch descriptions (whose integrity can be verified
since the vulnerability hash is available in the public ledger);
(ii) the presence (or absence) of a patch is represented by a
boolean flag emitted as an event by Authority SC and
set to true if the secret is published by the Vendor (step 4.a)
and false otherwise (steps 3.a and 4.b).
Possible states of the vulnerabilities and their evolution are

shown in Figure 4 (a). The Figure shows in bold the actions
as described in Section IV, and in italic the smart contract
functions. A newly submitted vulnerability u is in Pending
state. If u is approved by the Authority, u transitions to Valid
state, otherwise either to Duplicated or Invalid state depend-
ing on the Authority’s decision. When the Vendor acknowl-
edges u, the vulnerability transitions to Acknowledged state.
Finally, the disclosure requires two state transitions, to Dis-
closable when the secret is published, and Disclosed when
the procedure is over and u has been disclosed.
A similar approach is used (and shown in Figure 4 (b))

to track the bounty for the Expert: when a vulnerability is
approved, the bounty is initially in state Null until the Vendor
acknowledges it. Once acknowledged, an amount b ≥ 0 is
set in cryptocurrency, and the state is updated to Set; when
the vulnerability is in Disclosable state, the amount b is sent
to the Expert’s address, 0xexpert, and the state is updated to
Sent; the Authority has the power to cancel the bounty (in case
the Expert has prematurely leaked the vulnerability) with the

cancelBounty(hu) function by setting b to 0 and the state to
Canceled . However, this does not affect the disclosure of the
vulnerability. Finally, a Canceled bounty cannot return to Set
state.

B. CHAINCODE IN THE PRIVATE LEDGER
The private ledger exploits the concept of Private Data Col-
lections (PDCs) to store sensitive vulnerability information
in a secure manner. The collection definitions specified dur-
ing the creation of private assets (in this case, vulnerability
records) ensure that only the Vendor in question and the
Authority have read/write access to the Collection. In particu-
lar, to safeguard confidential vulnerability details, Interledger
does not function as a peer in the private ledger so it has
no direct access to any data on the private ledger, but once
it knows the secret matching the hashlock (either from the
Expert, the Vendor, or the Authority in either steps 3.b, 4.a or
4.b), Interledger can request the vulnerability data from the
application chaincode.

A separate Private Data Collection is created for every Ven-
dor registered with the ARD system but all members reside
in a common Channel, which is a private blockchain overlay,
where all transacting peers (in this case, the Vendor and
Authority peers) must be authorized to perform said transac-
tions. The Vendors receive proper authentication to operate
on the Channel when they register with the ARD system.
This design drastically reduces the administrative overhead
compared to creating new Channels for every Vendor while
still catering to the trust and transparency requirements of
Responsible Disclosure.

The architecture is comprised of a single chaincode, the
vulnerability-records-contract. This chain-
code is responsible for the creation of the vulnerability
records with the corresponding key (in this case, secret s).
The CRUD (Create, Read, Update, Delete) operations of the
vulnerability records are also handled by this chaincode along
with a verify operation that checks if the Channel state hash
matches the hash calculated from the vulnerability object to
be verified. This function, called the verifyVulnerability func-
tion, is particularly useful in case of controversy and could be
invoked by any Channel member to verify the existence of a
transaction. Other Vendors, besides the Vendor responsible
for the vulnerability, can see a hash-encrypted copy of the
transactions, which could be used for validation and audit
purposes, but bear no knowledge of the private states. The
hash essentially serves as evidence for the existence of a
vulnerability in a particular Vendor’s product, but does not
allow any unauthorized member to access the private states.

Finally, this chaincode implements the Interledger inter-
faces for Fabric to receive the secret from and transfer the
vulnerability location and related disclosure information to
the Public Ledger via the Interledger component. If the secret,
which serves as a key to a collection in the private ledger,
reveals a valid vulnerability stored in a Private Data Collec-
tion, the corresponding vulnerability information is obtained
from the Collection. The chaincode then emits an event to
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FIGURE 5. A detailed view of the Interledger operations during the disclosure: a) communication from public to private ledger; b) communication from
private to public ledgers.

notify Interledger of the acceptance (or rejection if the secret
is deemed invalid). If the secret is correct, the chaincode
updates the vulnerability information as a document to a
Cloudant Database, generates the URL of the web page that
displays the corresponding vulnerability details, packs this
URLwith the corresponding vulnerability hash that identifies
the vulnerability, and emits the payload as an event to the
Interledger component.

C. INTERLEDGER OPERATIONS
The Interledger component automatically carries out the
operations involving both ledgers. To achieve this, the
public Authority SC in Ethereum and the private
vulnerability-records-contract in Hyperledger
Fabric implement the interfaces provided by the SOFIE
Interledger component [43]. Interledger implements the
bridging approach [32], meaning that an entity runs an
Interledger node that listens for specific events and triggers
corresponding functions. In this prototype, the Authority runs
the Interledger node. A detailed description of the Interledger
component can be found in the paper of Wu et al. [44].
When a contract on a ledger wishes to trigger an Interledger

operation, this contract emits an interledgerEventSending(id,
payload) event, with the identifier of an application object (in
this case: the vulnerability) as id and an encoded message
as payload . Interledger node then invokes the interledger-
Receive(nonce, payload) function on the receiving ledger,
with nonce (a value used by the Interledger component to
uniquely track each transaction) and the payload . The receiv-
ing ledger emits either an interledgerEventAccepted, or an
interledgerEventRejected, event to communicate the positive,
or negative, outcome of the operation on the ledger, which
is communicated back to the originating ledger by invok-
ing either the interledgerCommit(id) or interledgerAbort(id)
function respectively, with id being the same id parameter
of interledgerEventSending. Figure 5 shows the Interledger
operations during the disclosure step.

The following sections describe the interledger operations
during the approval and the disclosure of the vulnerability u
identified by hu.

1) INTERLEDGER OPERATIONS DURING APPROVAL
(STEP 2.a)
The approval of a vulnerability begins with the Author-
ity storing the vulnerability u and the secret s on the pri-
vate ledger. After the tuple (u, s) is successfully stored on
the private ledger, the code dedicated to this operation,
the vulnerability-records-contract chaincode,
emits the InterledgerEventSending(hu, payload) event, where
payload is (hu, action = Approve) encoded in bytes. The
parameter action is a numerical identifier required by the
interledgerReceive function on the public ledger to distin-
guish between the approval and disclosure processes. The
payload is encoded by a chaincode contract in plain bytes
with ethereumjs-abi library [46] to render it compatible with
Solidity abi encoding.

Interledger then calls the InterledgerReceive(nonce, pay-
load) function on the public ledger, implemented by the
Authority SC. The smart contract decodes the payload,
sets the state of the vulnerability identified by hu to Valid,
and generates the timelocks ta and tp for that vulnerability.
For simplicity, the timelocks ta and tp have a fixed size
in the prototype but this can easily be modified based on
the deployment policy as discussed in Section VIII. Finally,
the Authority SC signals the success/failure back to the
private ledger using either the interledgerEventAccepted or
interledgerEventRejected event.

2) INTERLEDGER OPERATIONS DURING DISCLOSURE
(STEPS 3.b, 4.a OR 4.b)
The disclosure of a vulnerability begins with the Authority
publishing the secret s on the public ledger. In this phase,
Interledger is triggered twice: first to transfer s from the
public to the private ledger as shown in Figure 5 (a) and then
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FIGURE 6. Sequence diagram of ARD when the Vendor provides a patch in time. Each function call,
represented by a plain arrow, includes the step number as in Figure 1 and the input parameters. A dashed
arrow represents an off-ledger operation, for example the Expert generating the hashlock. The Interledger
function calls of Figure 5 have been collapsed in two wide arrows.

to transfer the URL from the private to the public ledger as
shown in Figure 5 (b).
When called with secret s as input, the publishSecret func-

tion in theAuthority SC checks the following conditions:

(H (s) = hs)AND

((u.State = Valid AND Timestamp > u.ta) OR

(u.State = Acknowledged AND Timestamp > u.tp) OR

(u.State = Acknowledged AND Sender = Vendor))

(1)

The first condition implies that the hash of the secret H (s)
must match the stored hashlock hs. The first condition within
the OR chain represents the expiration of ta, the second one
the expiration of tp, and the third one the patch notifica-
tion from the Vendor. If the boolean expression evaluates to
false, the function fails. Otherwise, the public ledger fires the
InterledgerEventSending(hu, payload) event to communicate
the (hu, s) as payload encoded in bytes4 to the private ledger
(Figure 5 (a)). The state of u is set to Disclosable.

In the private ledger, the chaincode is invoked by
Interledger calling the interledgerReceive function with the
received payload . The chaincode decodes the payload and
verifies the validity of s using the vulnerabilityExists function
that checks if the vulnerability record matching the speci-
fied secret s exists in the Collection. If the function returns
false, the InterledgerEventRejected event is emitted to

4bytes payload = abi.encode(hu, s) in Solidity.

inform Interledger that no vulnerability exists for the given
the secret s, i.e., the secret is invalid.5 If the function returns
true, the following steps are carried out: (i) the vulnerability
records for s are obtained from the Private Data Collection
using the readVulnerability function, (ii) the JSON encoded
information obtained from the Collection is then uploaded to
an external Cloudant database as a new document with the
corresponding document identified by hu, and the URLwhere
the details of this particular vulnerability shall be displayed
is generated, and (iii) the InterledgerEventAccepted event is
emitted.

The private ledger then has to communicate the URL
to the public ledger to finalize the disclosure. The chain-
code encodes (hu, action = Disclose, URL) as payload ,
with the action that identifies the disclosure phase, and
the URL, where the vulnerability details are published.
Finally, the emitData function is called to transfer the afore-
mentioned payload to the public ledger via Interledger.
As illustrated in Figure 5 (b), the private ledger emits the
interledgerEventSending(hu, payload). Interledger catches
the event and forwards the payload to the public ledger. The
interledgerReceive function on the public ledger decodes the
payload to retrieve the URL,6 stores it, and sets the vulner-
ability state to Disclosed, thereby ending the disclosure
process. After the process is completed and the vulnerability

5This actually suggests that the data in the private ledger has been tam-
pered with since the Authority SC approved the secret earlier in the
process.

6hu, action, url = abi.decode(payload, (bytes32, uint, string)) in Solidity.
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TABLE 3. Cost in gas and Euro of the smart contract operations. Length of the test URL: 38 characters.

is disclosed, the Authority or the Vendor can use the delete-
Vulnerability function to delete the vulnerability records in
the Collection and free up space on the private ledger.

The full protocol involving the case the Vendor provides
a patch, with the function invocations, is illustrated as a
sequence diagram in Figure 6. The dashed arrows represent
the off-ledger operations, the plain arrows represent the on-
ledger operations, i.e. transactions, and the wide arrows are a
simplification of the Interledger function calls as depicted in
Figure 5.

VI. QUANTITATIVE EVALUATION
This section presents the quantitative evaluations of the ARD
system using two key metrics: cost and performance.
• Costs for all participants, i.e. the money spent on the
distributed ledger operations over the whole ARD life-
cycle for all parties, including deployment and different
processing. The costs should be low enough not to be a
disincentive for experts and vendors.

• Performance of an ARD system covers the latency of
operations, the overall throughput, i.e. number of disclo-
sure transactions per unit of time, and the usage of other
computation resources.

Section VI-A provides the gas and Euro costs of the oper-
ations performed on the Ethereum ledger for all the par-
ticipants of the system. Moreover, it evaluates whether the
Ethereum throughput is high enough to process the vulnera-
bilities submitted each year. Section VI-B then provides the
benchmark tests of the Hyperledger Fabric setup.

This Section answers the research question 3) ‘‘How does
the solution affect the latency and costs associated with the
vulnerability disclosure process?’’ applied to an implementa-
tion with Ethereum, Hyperledger Fabric, and Interledger.

A. COSTS AND THROUGHPUT IN THE PUBLIC LEDGER
Storing information on the Ethereum ledger requires transac-
tions and a corresponding fee in the Ethereum cryptocurrency
proportional to the amount of gas spent to execute the trans-
actions [28]. The transaction fee is computed by multiplying
the amount of gas spent by the gas price, i.e. the amount in
cryptocurrency (typically in GWei7) the account sending the
transaction is willing to pay for each unit of gas. Normally,

71 ether (ETH) = 1,000,000,000 GWei

miners favor transactions with higher gas prices, so promising
a higher price usually expedites the completion of the trans-
action, but also raises the cost. Also, each block of Ethereum
has a block gas limit, i.e. the maximum amount of gas all
transactions in a block can spend together.
Table 3 shows the gas cost for the main operations of the

ARD smart contracts along with the step numbers used in
Section IV: the steps of the initialization, such as the creation
of the smart contracts, have been labeled as init. The table
shows also the cost in Euro of each operation, computed with
the following parameters on 12th February 2021: the price
of one Ether is 1,464.40e, and the average gas price of the
transactions is 110 GWei [47].

The deployment of a smart contract (Authority SC or
Vendor SC) is the most expensive operation in terms of
gas because it needs to deploy the smart contract’s bytecode,
which is a relatively large amount of data, on Ethereum.
However, this is only a one-time cost and amortized over
all the thousands of vulnerabilities that could be managed
with the system each year it becomes negligible. In contrast,
products and vulnerabilities are not stored as smart contracts,
and, therefore, their creation costs are cheaper.

Reporting a vulnerability costs ca. 23e to the Expert,
which is a relatively high cost. The operation does not per-
form complex computations, but it requires the instantiation
of a vulnerability record that includes a high number of fields
(see Table 2): a trade-off between cost and transparency (cri-
terion 5) can be met by reducing, or increasing, the number
of public fields of a vulnerability, or the size of the disclosure
data.

The overall cost to report and disclose a vulnerability is
ca. 85e. When the Expert discloses a vulnerability, the cost
for each participant would be ca. 43 for the Expert, 13e for
the Vendor, and 29e for Interledger. If the Vendor discloses a
vulnerability, the cost would be ca. 23e for the Expert, 33e
for the Vendor, and 29e for Interledger. Such costs can be
somewhat lowered by the participants by reducing the gas
price of each transaction, but if the gas price is too low it may
risk beingmined very late or even never, which would prevent
the disclosure process from finishing (steps 3.b, 4.a, or 4.b).

While the cost for the Expert is relatively high, it is still
negligible compared to rewards in vulnerability bounties [48],
therefore it is a relatively small price to pay for the Expert
to maintain anonymity towards the vendor. As an upside, the
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high cost for the Expert can also discourage submissions of
fake vulnerabilities frommalicious Experts, thus reducing the
amount of work for the Authorities.

Assuming a massive submission of vulnerabilities over a
short period, the throughput of the smart contract to pro-
cess them is dependent on the underlying ledger processing
capacity. At the time of writing, Ethereum produces blocks
roughly every 13 seconds [49], and each block has a gas limit
of 12M units [50]. Therefore, an empty block can store at
most 12M/146K = 72 new vulnerability reports, meaning
a maximum throughput of about 418,000 reports per day.
However, every block is shared among all the participants of
the Ethereum blockchain, so the actual reports per day would
be much lower due to other traffic.

According to the CVE details dataset [51], 16,556 vulner-
abilities were disclosed in 2018, while in 2019 there were
12,174 disclosures. Similarly, in a report published by the
European Union Agency for Cybersecurity [52], during the
period from January 1st 2018 to August 31st 2019 (608 days)
the authors collected a dataset of about 27,000 vulnerabilities
from different sources. Assuming that all of these vulner-
abilities are communicated through an ARD system uni-
formly, the system should collect about 16, 556/365 = 45.3,
12, 174/365 = 33.35, or 27, 000/608 = 44.4 vulnerabilities
a day on average. Each vulnerability requires between 2-6
Ethereum transactions, potentially spread over months, to be
processed. Assuming a relatively even rate of disclosures,
ARD requires between 90-2728 transactions per day, which
is a tiny fraction of the potential throughput of Ethereum.

The measurements presented in this section show that:
i) gas-wise the operations of the system to manage vulner-
abilities are not expensive, but Euro-wise the actual cost is
not insignificant, especially for the Experts, because they are
vulnerable to the fluctuation of both the Ether cryptocur-
rency and the average gas price. However, compared to the
costs of patching the vulnerabilities or the potential costs of
unpatched vulnerabilities could incur, the cost of running the
ARD system is negligible. ii) throughput-wise the system
requires only a small portion of the daily transactions on
Ethereum, which are over 1 million [53] and the ARD system
could, therefore, easily be deployed in the real world.

B. LATENCY, THROUGHPUT, AND RESOURCE UTILIZATION
IN THE PRIVATE LEDGER
For the private ledger, the transaction latency, resource uti-
lization, and throughput in Transactions per Second (TPS)
were measured to demonstrate that the public ledger is indeed
the bottleneck of the whole system.

The private blockchain was benchmarked using Hyper-
ledger Caliper [54], a popular benchmarking tool that mea-
sures the performance of a Blockchain application with a
set of predefined use cases. Within the network are two
Organization types, namely the Authority and the Vendor,
with a single Authority peer and 4 Vendor peers. For each

82 ∗ 45.3, and 6 ∗ 45.3

TABLE 4. Chaincode benchmark results using Hyperledger Caliper.

benchmark round, 2 test clients were used to generate the test
load, with 10 vulnerability records per round. In the Fabric
Smart Contracts, CouchDB was used as the state database to
store the public and private states. Within the test callback
file, all the functionality was tested, namely, creating, read-
ing, updating, and deleting a vulnerability, along with the
operations involving information transfer with Interledger.
All experiments were performed on a local machine running
on Ubuntu 18.04 Operating System, with 4.15.0 Kernel ver-
sion and Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz.
The results are listed in Table 4.

The Caliper measurements confirm that the private ledger
built on Hyperledger Fabric framework has negligible con-
tribution to the overall latency of the architecture and that it
supports a significantly higher TPS than the public ledger. It is
also worth noting that all the operations, including the func-
tions that interact with the Interledger component, are defined
within the same chaincode, thereby reducing the number of
chaincode installations, approvals, and invocations to one per
approved vulnerability. Further, once a Private Data Collec-
tion is defined between a Vendor and Authority, the same
collection definition could be used to store any further vulner-
abilities reported in the same/different products that belong to
the same Vendor, thus reducing the administrative overhead
incurred by the Authority in setting up Collections. Besides
the security aspect of using Private Data Collections to handle
the storage [55]–[57], verification, query, and disclosure of
vulnerability records, the Fabric Network design also reduces
the latency and management concerns by a great extent.

VII. QUALITATIVE ANALYSIS
This section analyses the design of the ARD system, describ-
ing in Section VII-A how well the design satisfies the evalua-
tion criteria listed in Section III-B, and in Section VII-B how
well the design can resist a vector of potential threats. These
together can be summarized as the metric of Correctness,
which means the vulnerability disclosure is conducted as
intended, i.e. securely and reliably while remaining resistant
to security risks for each of the participants.

A. QUALITATIVE ASSESSMENT OF THE CRITERIA
The assessment of the evaluation criteria, listed in
Section III-B, answers to the first part of research question
1) ‘‘What are the trade-offs between transparency, informa-
tion confidentiality, and privacy?’’.

Privacy (the Expert is protected against intimidation): in
the ARD design, the Expert communicates the tuple (u, s)
through a secure connection off-ledger, and thereafter only
through transactions on the public ledger. The only identifier
required from the Expert is on the public ledger. For example,
in Ethereum the Expert has an associated pseudonymous
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address, i.e., the address is associated with a unique identity.
As long as users themselves do not reveal their identity behind
the address, their identity is considered protected with a high
level of confidence. Non-reusing the same address, like in
Bitcoin, can help maintain this high level of privacy [58].
However, receiving and spending the bounty may put the
Expert’s privacy at risk with clustering and de-anonymization
techniques that can be processed on a public ledger [59],
[60]. To mitigate this risk and improve their privacy, Experts
can rely on mixing services to conceal their public spending
traces [61]. Overall, the ARD system protects the Expert’s
privacy well.

Early disclosure (if the Vendor does not acknowledge the
vulnerability, the Expert is allowed to immediately disclose
the vulnerability): a condition to disclose a vulnerability (see
Condition 1, Section V-C) is the expiration of the first grace
period ta, i.e. the time the Vendor has to acknowledge the
vulnerability. If the Vendor does not respond to the acknowl-
edgment request, the smart contract allows the Authority or
the Expert to trigger the Disclose procedure by publishing the
secret.

Automation (the disclosure approach should be as auto-
matic as possible, requiring only aminimal amount of manual
intervention): the automation of the disclosure of a vulnera-
bility, either after the grace period or with a patch-release,
is achieved through the Interledger component. After acquir-
ing the secret from a smart contract function on the public
ledger, interledger is able to read the vulnerability data (or
its location) from the private ledger and store it on the public
ledger. However, currently, smart contracts cannot normally
self-activate, therefore the expiration of the grace period
cannot be automatically detected by the contracts alone.
This could be solved with tools, such as Ethereum Alarm
Clock [62], which schedule transactions in the future.

Secrecy until disclosure (the secrecy of the acknowledged
vulnerability is preserved until disclosure): the secrecy of
the sensitive vulnerability details is ensured by the private
ledger. How this is accomplished depends on the private
ledger capabilities. The prototype demonstrates an approach
using the chaincode logic and collection policies provided by
the Hyperledger Fabric framework. For every accepted vul-
nerability report, the Authority creates a record in the Private
Data Collections and the corresponding collection definition
only grants read/write access to the Authority and the Vendor
whose product is affected. The Interledger component can
only access the information that is sent by collection using
events. While a single Channel is shared across all Vendors
(and the Authority), the other Vendors do not have access to
the Private States. Instead, they see a hash-encrypted copy of
the transactions in the Collection, which can be used for vali-
dation and audit purposes. This approach increases the trans-
parency of transactions within the consortium while avoiding
the administrative overhead and latency concerns that would
be incurred if the actors were to create a separate Channel per
Vendor. Further, the private details stored in these Collections
are also not revealed to the Ordering Service (comprising of

nodes with the responsibility to arrange batches of submitted
transactions into a well-defined sequence and package them
into blocks for the Hyperledger Fabric network), thereby
adding another layer of security.

Transparency (the information about the whole process
of vulnerability disclosure is available to the General Pub-
lic): the operations computed by the smart contracts in the
public ledger provide the ARD system the transparency of
the process. The general public is aware of the existence
of the vulnerability u, along with the additional information
stored in the metadata mu, and is also aware of the patching
process by virtue of the states illustrated in Figure 4. Also, the
information on the acknowledgment and the bounty offered
by the Vendor is also made public, which serves as a display
of the Vendor’s willingness and dedication towards fixing
vulnerabilities and improving the quality of their products.
Moreover, a transparent system pushes all parties to adhere
to the rules: it allows the general public to validate the oper-
ations by recomputing them. Combined with the resistance
to modifications and the non-repudiation, if the Authority
does not accept a valid vulnerability, then the Expert can
reveal it and anyone can check that the hash of the revealed
vulnerability matches the hash of the rejected one stored
on the public ledger, indicating either foul behavior by the
Authority or an erroneous evaluation of the validity of the
vulnerability submission.

Therefore, an ARD system can successfully satisfy all the
evaluation criteria of the Correctness metric proving it to be
better than the previous disclosure solutions.

B. POTENTIAL THREATS
This section analyses the potential attacks that any party can
mount against the ARD system using a threat model similar
to Satija et al. [63].

1) GENERAL PUBLIC
An adversary belonging to the general public can be anyone,
including a Vendor, state actor, or a malicious hacker. A
motivation driving an attack could be to gain knowledge of
the vulnerability to exploit it, to use it for industrial espionage,
or to sell it in the black market. In the ARD, the secrecy
of the vulnerability is protected by the private ledger, and
the attacker would need the same permission level as the
Authority, or breach the private ledger, to be able to access a
vulnerability.

Another motivation for the attacker would be the collection
of bounties. Here, the attacker would need to modify the
transactions on the public ledger, an action that is prevented
by the ledger itself on account of being immutable with a very
high level of confidence. Any other modification of the smart
contracts is prevented in the same way.

An adversary may also flood the system with bogus vul-
nerability reports, trying the undermine the reputation of the
system or a Vendor, since the Vendor’s reputation may be
affected by the number of open issues in their products.
However, this attack is discouraged by the fees of public
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ledgers, and prevented by the Authority, since their task is to
filter bogus reports, and in the ARD system, a vulnerability
is not considered valid until it is approved.

2) EXPERT
A malicious Expert may wish to access previously reported
vulnerabilities. However, even if the Expert reports a vul-
nerability, the Expert is not allowed to participate in the
private ledger consortium nor access any of the vulnerability
information (including the one they themselves submitted).

An Expert may also try to disclose the vulnerability before
the grace period has expired and still collect the bounty.
However, the smart contracts protect the bounty from early
disclosures (unless the grace period ta has elapsed). More-
over, the attempt will be recorded in the public ledger, even
if unsuccessful. Since the ARD system cannot prevent a
malicious Expert from publishing the vulnerability outside
the system, the only action that can be taken is the revocation
of the bounty. This can be achieved through a smart contract
function that is invocable only by the Authority in case an
unauthorized disclosure outside of the system is detected and
deemed to likely be the fault of the Expert. Thus, it’s not in
the interest of the Expert to leak the vulnerability on any other
forum before the grace period has expired as that would risk
their ability to collect the bounty.

3) VENDOR
A Vendor registered to the ARD might act maliciously to
avoid the costs of fixing a vulnerability or paying the boun-
ties. In the former case, a Vendor may not acknowledge
any vulnerabilities, but this allows the Expert to disclose the
vulnerability earlier (after the acknowledgment grace period
ta has elapsed): owing to the transparency of the system,
a customer can see that a Vendor never agrees with Experts
and Authorities to fix issues in their products, so the Vendor
risks losing the trust of their customers. In the latter case,
a Vendor may never pay the bounties to Experts but everyone
can view this information (due to the transparency of public
ledgers) and lose trust in that Vendor.

Alternatively, a Vendor may attempt to avoid paying for
the bounties by disclosing a vulnerability outside the ARD
system while pretending to be the Expert. However, this is
not a reasonable solution for the Vendor, for two reasons:
(i) disclosing the vulnerability too early might have worse
consequences for the Vendor than paying the bounty, and
(ii) the Vendor knows the Expert’s public ledger address only
and is therefore not able to provide authentication for the
disclosure, i.e. a valid digital signature matching the Expert’s
public key.

The Vendor may also employ malicious techniques such as
value-fingerprinting attacks to de-anonymize the Expert [64]
to e.g. intimidate them. To protect from attacks that
exploit address reuse (a practice prevalent in account-based
blockchains such as Ethereum), trustless mixing tech-
niques [61] could be employed in the public ledger design.

Finally, since a Vendor participates in the private ledger,
they may try to access the vulnerability information of their
competitors. However, this can be prevented if the private
ledger provides a suitable data access control mechanism, like
Private Data Collections in Hyperledger Fabric. As demon-
strated by the prototype, a Collection is shared only between
the Authority and the Vendor in question, and no other mem-
ber on the Channel is privy to the sensitive vulnerability
records stored in the Collection. The Channel members can
only see a hash of the Private states, which could be used for
verification and audit purposes. Further, since proof of every
transaction is made available to all members on the Channel,
if the Vendor exhibits questionable behavior (such as deleting
a vulnerability before it is disclosed), the Authority is made
aware of such malpractice and can take the requisite steps
against the Vendor.

4) AUTHORITY
A potential threat is the difficulty to know whether the
Authority’s decision to approve or reject a vulnerability sub-
mission is justified. If the Authority rejects a valid vulnerabil-
ity, they are likely to lose their reputation, since the Expert can
always release the vulnerability details through other means.

Since the Authority is managing the website for vulnera-
bility submissions, it can theoretically employ browser-based
fingerprinting attacks to try to de-anonymize the Expert.
However, the likelihood of a successful attack is low, since
Expert does not submit vulnerabilities frequently, and the
Expert can easily use combinations of various means such as
using a separate browser profile, Tor Browser, VPN, proxy,
etc. to defend from the fingerprinting during the submission
of the vulnerability [65].

It is important to note that the Authority might serve
as the Governing body in the private ledger. For example,
in the prototype, the Authority is responsible for making deci-
sions on membership criteria and access rights for all nodes
requesting to join a Channel within the Fabric network.More-
over, in the prototype implementation, the Authority runs
the Interledger component as well. This allows the malicious
Authority (or the attacker that has breached the Authority) to
prevent automatic disclosure of the vulnerability after it has
been approved. Redundant Interledger nodes could reduce the
impact of such attack.

Overall, the Authority plays a central role in the ARD
system and, if working alone, is the main trusted party of
the system. The power and importance of a single Author-
ity can, however, be mitigated, if they belong to a consor-
tium of Authorities jointly running the ARD system. Such
a distributed trust has successfully been utilized e.g. in the
DLTs themselves to reduce the level of trust required on this
key intermediary.

VIII. DISCUSSION
The ARD system solves the key problems of responsible dis-
closure, such as the lack of transparency and privacy concerns
for the Experts, while automating much of the disclosure
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process. Other solutions involvingDLTs, such as the one from
Hoffman et al. [40] and the Sentinel Protocol [39], do not
entirely solve these problems, as described in Section III-A,
though, e.g. the Sentinel Protocol could be integrated into the
ARD to further reduce the reliance on the Authority in the
Approval step by delegating the validation of the vulnerability
submission to a separate consortium of security experts. The
deployment of the ARD solution is also quite feasible because
it does not require a complex setup or high costs.

Assuming a society with an extensive deployment of
the ARD systems, the existence of the vulnerabilities, their
evaluations, and the associated bounties would be publicly
recorded with no possibility of repudiation. This should moti-
vate honest behavior from the Experts, Vendors, and Author-
ities because false statements can neither be removed nor
hidden. As a consequence, the General Public becomes more
informed about security vulnerabilities and can better under-
stand their severity from how quickly the Vendors promise to
fix them and how much they reward the Experts. In the long
run, this should raise the awareness of the General Public
about the digital world, its advantages, and especially its
risks.

As analyzed in Section VII-A, the ARD design protects
the Expert’s identity, since the Expert uses a pseudonymous
identity when submitting the vulnerability information on the
ledger. However, there is also no additional information about
the person who reports a vulnerability, which could have been
helpful to understand their expertise in cybersecurity. To fill
this gap, the design could integrateVerifiable Credential (VC)
and Decentralized Identifier (DID) technologies [66], [67] to
allow the Experts to (anonymously) demonstrate their past
contributions. As a result, submissions from verified Experts
can increase the awareness of the issue, and push Vendors
to fix the vulnerability faster. Moreover, since evaluating
submitted vulnerabilities might be a long process, extra infor-
mation on who submitted the reports might help the decision
to ignore potentially bogus submissions.

To answer the research question 2) ‘‘How does automa-
tion of the process affect the disclosure of vulnerabilities?’’,
implementing the key steps of the disclosure process with
interledger and DLTs to automate the important decisions
of the process can prevent manual decisions from being too
flexible. First, generating the timelocks as a function on the
public ledger instead of being inputs from the Authorities
avoids exceptions to the rules to e.g. favor certain Vendors or
penalize others. Further, the interledger operations that facil-
itate the disclosure of a vulnerability are triggered with a sin-
gle manual operation, i.e. revealing the secret, thus reducing
the number of potential human errors. A further benefit of
the choice of using two ledgers and automation is that it
can also support extraordinary circumstances preventing the
disclosure of the vulnerability, for instance after a court order:
if for any reason the vulnerability data cannot be disclosed,
a related action can be fired on the private ledger, and a
special state, indicating the vulnerability will currently not
be disclosed, can be added to the public ledger that will be

automatically set with an interledger operation. The required
information, e.g. reference to the relevant court order, should
then be published, instead, to protect the Vendor from being
accused of trying to hide the vulnerability.

Though the prototype chose to implement automated time-
lock generation with fixed time periods, fundamentally the
choice of grace periods is not an ARD architecture choice but
a deployment policy decision - and the ARD implementation
can then be modified, if necessary, to support the new policy.
For instance, it would be possible to allow the Authority to set
the time period after negotiation with the Vendor or it could
be based on the recommendation of the security experts in
the Sentinel Protocol. Alternatively, given the difficulty of
always choosing the best grace periods, it would be possible
to allow the Vendor to request an extension to the timelock
in case the vulnerability turns out to be particularly difficult
to fix. Similarly, it would be possible to provide support
for re-opening supposedly fixed vulnerabilities if the pro-
vided patch turns out to be insufficient. Implementing any
of the above changes would require only minor changes to
the ARD implementation, but their introduction needs to be
weighed against the potential misuses the added flexibility
enables. However, in all cases, any favoritism/penalizing or
slow fixing would then be apparent from the public ledger.
After all, the main idea of the ARD system is to improve
security through transparency, and therefore Vendors that
produce insecure products and fail to fix the vulnerabilities
quickly should be penalized through the loss of reputation
while Vendors doing the opposite should gain reputation.
To that end, regardless of the method of how the timelock
period was chosen, it should be short enough in order to
provide real incentives for Vendors to fix the vulnerabilities
quickly.

In ARD, the Authority plays a central role in arbitrating
between the interests of individual Vendors and the public
and in weeding out false vulnerability reports. This enables
many of the benefits of ARD, but it also requires trusting the
Authority to behave properly. Ideally, even this step could be
automated, but currently such solutions are not technically
feasible, so the next best solution to reduce the required trust
is to have multiple Authorities working as a consortium,
which helps prevent any single Authority from misbehaving.
Also, utilizing a separate consortium of experts to evaluate
the submissions as suggested by the Sentinel Protocol would
further reduce the trust requirement on the Authority, but
would then also introduce a new party that needs to be trusted
with the sensitive vulnerability details.

In addition, the combination of a reward system and VC
and DID technologies would allow Experts to take credit for
their contributions as the Expert could at any time connect its
ledger identity either to a pseudonym, or to their real identity,
and could help Experts and Vendors to choose a trustworthy
Authority in a case there are multiple competing Authorities
offering ARD services. Also, a reputation mechanism could
be added for the Vendors and the Authorities to further moti-
vate their actions [68]–[71].
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Finally, because it is built with DLTs and interledger tech-
nologies, the ARD system also inherits some of their flaws
as well [32]–[34], [55]–[57], [72]–[75]. For instance, the
high fees on the public ledger can discourage Experts from
reporting the vulnerabilities since it may be too costly for
them, especially when they do not seek rewards or if their
reports are rejected by the Authorities. However, since the
transparency and immutability of an ARD system depend on
the public ledger’s security, a high price of the cryptocurrency
is synonymous with higher participation, and consequently,
a greater level of security of the ledger. Similarly, the more
popular a private ledger framework is, the more effort is
likely put into further improving its security. By combining
multiple ledgers, interledger technologies utilize the strengths
of different DLTs while avoiding many of the drawbacks.
Ultimately, it’s up to the deployers to carefully consider all of
these aspects, whose combination will determine the balance
between transparency, security, privacy, and decentralization
of the ARD system.

IX. CONCLUSION
This paper presents a solution to improve the current state
of the art concerning the disclosure of vulnerabilities, based
on the idea of Automated Responsible Disclosure (ARD).
A complete and detailed design of the solution is presented,
together with an open-source implementation that leverages
Ethereum, Hyperledger Fabric, and the SOFIE Interledger
component. The paper benchmarks the solution on several
performance parameters, evaluates its resistance to a set of
attack vectors, and addresses the research questions about the
different trade-offs in system design.

In the currently used Responsible Disclosure approach,
the Experts reporting the vulnerabilities suffer from a lack
of privacy as they are often required to identify themselves,
thereby risking intimidation and legal recourse. Also, the
lack of transparent communication fosters a false sense of
security among the general public. Finally, the approach
still allows Vendors to arbitrarily delay the disclosure of a
vulnerability.

The ARD solution presented in this paper tackles all the
aforementioned problems. The combination of a public and
a private ledger achieves both a transparent vulnerability
management scheme, and secrecy-oriented storage of the vul-
nerability data. In an ARD system, the Expert is not required
to identify themselves but uses an address in the public ledger
instead, which improves privacy and avoids threats from
Vendors. In addition, the interledger functionalities automate
the key steps of the entire vulnerability disclosure process,
bridging the communication between the two ledgers. Finally,
the transactions on the public ledger allow anyone to find out
about the existence of a vulnerability in a digital system, and
the current stage of its resolution. As shown by the prototype
implementation, the costs of the transactions are negligible
compared to the costs of the vulnerabilities themselves, and
the amount of transactions required by the ARD system is
low.
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