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ABSTRACT Magnetic Resonance Imaging (MRI) is a significant technique used to diagnose brain
abnormalities at early stages. This paper proposes a novel method to classify brain abnormalities (tumor
and stroke) in MRI images using a hybridized machine learning algorithm. The proposed methodology
includes feature extraction (texture, intensity, and shape), feature selection, and classification. The texture
features are extracted by intending a neoteric directional-based quantized extrema pattern. The intensity
features are extracted by proposing the clustering-based wavelet transform. The shape-based extraction
is performed using conventional shape descriptors. Maximum A Priori (MAP) based firefly algorithm is
proposed for feature selection. Finally, hybridized support vector-based random forest classifier is used for
the classification. The MRI brain tumor and stroke images are detected and categorized into four classes
which are a high-grade tumor, a low-grade tumor, an acute stroke, and a sub-acute stroke. Besides, three
different regions are identified in tumor detection such as edema, and tumor (necrotic and non-enhancing)
region. The accuracy of the proposed method is analyzed using various performance metrics in comparison
with the few state-of-the-art classification methods. The proposed methodology successfully achieves a
reliable accuracy of 88.3% for classifying brain tumor cases and 99.2% for brain stroke classification. The
best F-score of 0.91 and the least FPR of 0.06 are attained while considering brain tumor classification against
the proposed HSVFC. Likewise, HSVFC has 0.99 as the best F-score and a 0.0 FPR in the case of brain
stroke classification. The experimental analysis offers a maximum mean accuracy of different classifiers
for categorizing MRI brain tumor are 76.55%, 49.24%, 65.12%, 74.36%, 69.25%,and 55.61% for HSVFC,
SVM, FFNN, DC, ResNet-18 and KNN respectively. Similarly, in identifying MRI brain stroke, the average
accuracy for HSVFC, SVM, FFNN, DC, ResNet-18 and KNN are 98.17%, 53.40%, 85.8%, 87.5%, 70.06%,
and 61.24%, respectively is achieved.

INDEX TERMS Neoteric directional quantized extrema pattern, optimal MAP firefly algorithm, edema,
necrotic and non-enhancing region.

I. INTRODUCTION
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stroke diagnosis has increased. The feature representation
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plays a salient role in high-level medical tasks like classifi-
cation [1]. A tumor occurs due to the growth of the unwanted
cells in an uncontrolled manner. The major brain tumor starts
from the brain and has different characteristics such as size,
shape, location, and image intensities [2]. The stroke happens
due to the sudden interruption in the blood supply of the
brain [3]. An early detection of this disease will facilitate an
earlier diagnosis and increase the probability of the individ-
ual’s survival. According to the World Health Organization
(WHO), 15 million people across the world suffer from stroke
annually. Of these, 5 million die, and another 5 million are
permanently disabled. The incidence rate of stroke per year
in India is between 145-154 per 1, 00,000 individuals, while
that of the central nervous system (CNS) tumors ranges from
5to 10 per 100,000 population with an increasing trend. In the
United States, an estimated 23,890 adults (13,590 men and
10,300 women) were diagnosed with primary brain tumors
in 2020 alone.

The above-mentioned diseases are conventionally diag-
nosed through medical imaging modalities such as com-
puted tomography (CT), MRI, ultrasound scan, and positron
emission tomography (PET). Among these imaging meth-
ods, MRI accurately captures the inner parts of the brain
for an accurate diagnosis compared to other methods [4].
Magnetic Resonance based diffusion and perfusion analysis
are more sensitive for the detection of tumors and stroke,
especially in earlier stages. The precision of MRI in detecting
brain tumor and stroke is attributed to its clearer vision of
brain tissues obtained with the help of magnetic and radio
waves.

In clinical routine, the diagnosis of brain tumor and stroke
is employed by different MRI sequences such as T1-weighted
(T1-w), T1-weighted with contrast enhancement (T1-wc),
T2-weighted (T2-w), Proton Density-weighted (PD-w), and
Fluid-Attenuated Inversion Recovery (FLAIR). T1-w is the
most commonly utilized sequence for a brain tumor and it
is used for simple annotation of healthy tissues. The borders
of the brain tumor can be highlighted using T1-wc and this
helps distinguish the active cell region and the necrotic core
regions easily. The edema region can be made brighter by
using the T2-w sequence. FLAIR can be observed as a highly
effective sequence that helps to separate the edema region
from Cerebro-Spinal Fluid (CSF) [5]. In the case of stroke,
Diffusion-weighted imaging (DWI) in MRI is mostly used
for detecting acute stroke. It analyses the biological tissue
structure which depends on the motion of water molecules
at the microscopic level [6]. By using these MRI sequences,
the tasks such as feature extraction, feature selection, and
classification are used for autonomously diagnose the abnor-
malities in the brain.

The rest of this paper is structured as follows: A detailed
descriptions of the related works about the brain tumor and
stroke detection and classification is provided in section II.
The procedure and description of the proposed technique
are explained in section IIl. The comparative results of the
proposed technique with traditional approaches are depicted
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in section IV. Lastly, section V concludes the proficiency of
the proposed approach.

Il. RELATED WORK

Recent years have seen a sharp increase of machine learning
(ML) applications in medical image analysis [7]-[17]. Out
of this vast literature, particularly, in [18], the researchers
have proposed an improved local derivative pattern for feature
extraction. Here, the local derivative pattern variation method
is used to extract the diagonal directional pattern features
for brain pathology detection. Classification is carried out by
a k-nearest neighbour, conventional neural network (CNN),
and a support vector machine (SVM). The performance
of the proposed system is limited due to time complexity.
Maire et al. [19] presented an article by comparing nine
different classification techniques using a multi-parametric
MRI dataset. The high-level machine learning algorithms
like Convolutional Neural Networks (CNN) and Random
Decision Forests (RDF) produced significant results in clas-
sification with 77% accuracy for CNN and 82% for RDF.
The limitation of this work are challenges in hyperparameter
tuning and higher time complexity in training the features.
A new amalgam technique in a computer-aided diagnosis
(CAD) system for the detection of abnormality using MRI
brain images is proposed in [20]. After a pre-processing,
the features are extracted using the Gabor filter and Walsh-
Hadamard transform (WHT). Finally, SVM is used for the
classification of an abnormality like a tumor. The major
demerit of this system is less energy compacting. In [21]
the researchers utilized wavelet texture features along with
several machine learning algorithms. Intensity, neighborhood
information, intensity difference, and wavelet-based texture
features are extracted and applied on multi-modality MRI
images with numerous classifiers. The utilization of wavelet-
based texture feature with random forest classifier maximizes
the accuracy of classification to a rate of 81% for low-grade
tumors and 85% for high-grade tumors. Automatic diagnosis
and detection of stroke in DWI images are presented in [22].
The rule-based classification approach is chosen because
of its simplicity and the ability to classify stroke lesions.
However, the rule-based method fails to perform well to
prediction quality. The analysis of DWI and FLAIR MRI
images for the detection of acute stroke is presented in [23].
Three machine learning algorithms such as SVM, logistic
regression, and random forest were utilized to detect an acute
stroke. Though the performance of the machine learning
algorithm is more feasible than human perception, it fails to
detect stroke patients with small infarctions.

A new automated method to differentiate the different
cancer diseases from the MRI images has been proposed
in [24]. Its geometrical properties such as shape, texture,
and intensity are used for classification and the results are
endorsed on one local and publicly available dataset with
different cross-validations on the feature set. A novel pattern
descriptor referred to as a directional local quantized extrema
pattern for image retrieval and indexing is presented in [25].

3849



IEEE Access

B. Deepa et al.: Pattern Descriptors Orientation and MAP Firefly Algorithm Based Brain Pathology Classification

The standard local binary patterns and local ternary patterns
encoded a greyscale relationship. This technique uses ternary
patterns from Horizontal-Vertical-Diagonal-Anti diagonal
structure to encode more spatial structural data to obtain
better retrieval, but the assortment of features in a localized
direction limits the classifier performance. Jothi et al. [26]
have utilized a Tolerance Rough Set Firefly-based Quick
Reduct (TRSFFQR) feature selection algorithm for brain
tumor detection. The shape, intensity, and texture-based fea-
tures are extracted from segmented images of the MRI brain.
TRS and Firefly Algorithm (FA) is utilized for selecting the
imperious features of a brain tumor. The results obtained from
this work show that the TRS firefly-based quick redact algo-
rithm effectively selects the useful features with substantial-
quality, but the network convergence speed is slow when
compared to conventional algorithms.

Automated segmentation of brain tumors in multimodal
MRI images is proposed in [27]. A Fully Convolutional Neu-
ral Network (FCNN) and hand-designed features are used for
the classification of MRI images. Also, random forest classi-
fication is used to classify the MRI data. This hybrid approach
of machine learning feature extraction using FCNN and the
proposed texture features offer better results, but it is spatially
invariant to the input data. A region-based Active Contour
Method (ACM) for segmentation and classification using an
artificial neural network-based Levenberg-Marquardt algo-
rithm is proposed in [28]. The process of texture and shape
feature extraction helps for accurate classification. The com-
bination of the classifier with ACM segmentation offers high
accuracy (93.74%), good sensitivity (90.98%) and specificity
(87.47%) measures, combined with a few shortcomings such
as disability to segregate the discontinuous objects. Mach-
hale er al. [29] presented an intellectual classification system,
for identifying the status of the brain images by combining
the SVM and KNN classifier approach. Even though the
results of this hybrid approach give 98% accuracy, it requires
a longer time to predict the status of the brain images if the
database is larger. Gupta et al. [30] proposed a classification
model for MRI-FLAIR images to detect a brain stroke. DWT
is utilized for extracting the feature and the Principal Com-
ponent Analysis (PCA) is employed for selecting the optimal
features. However, the classification model achieves only
88% of accuracy and lacks time complexity. An innovative
system for detecting and classifying brain tumors is described
in [31]. In this system, the rougPrh set theory is developed
for the process of feature extraction, and the Particle Swarm
Optimization Neural Network (PSO-NN) is utilized for clas-
sifying the abnormalities in the MRI brain images. However,
a large converge rate limits the performance of the classifier.
Griffis et al. [32] have presented an approach for the auto-
matic identification of stroke lesions by using naive Bayes
classification in T1-w MRI images. The major drawback of
this approach is that it is sensitive to indirect lesions which
makes detection difficult. A quantitative apparent diffusion
coefficient along with the relaxation time T2 in the character-
izing contrast enhances the brain tumor region and the region
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of peritumoral edema [33]. From this, the potential value,
and relationship of both Vivo quantization of the apparent
diffusion coefficient along with the T2 relaxation times are
investigated to characterize the cellularity of brain tumors
and tumor-related edema. An intra-voxel assessment in the
magnetic resonance imaging is presented in [34]. This novel
technique involves a combination of various acquisitions
known as intravoxel analysis which have been utilized in
the evaluation of spin-spin relaxation and identification of
multiple tissues. In this technique, exceedingly small number
of clinical data sets are used for evaluation, which is the major
disadvantage for this system.

The brain intracranial hemorrhage classification using syn-
ergic deep learning model is presented in [35]. Pre-processing
is initially done using gabor filter and grab-cut based seg-
mentation is used to identify the affected portion. Then the
synergic deep learning model is utilized for extracting the fea-
tures and softmax layer is used for classification. In [36], the
various components of evolutionary algorithms including the
fitness function, parents selection, population and crossover
operators etc., for feature selection process has been dis-
cussed in detail. The fitness function forms the basis for
selection of features which opens the door for improving the
classifier performance by representing the task to be solved in
an evolutionary context. The classification of abnormal cervi-
cal cells using transfer learning approach is depicted in [37].
ResNet50, VGG19, inception V3 and squeezeNet are utilized
for abnormal cell classification. The accuracy of 97.89% is
attained from ResNet50 in combination with random forest
classifier for predicting the cancerous cervical cells.

lll. PROPOSED METHODOLOGY
This present work aims to classify brain tumors and stroke in
MRI images using hybridized machine learning algorithms.
The major contributions of the proposed work is highlighted
below:
« Intensity feature extraction by proposing Intensity-based
Clustering Wavelet Transform (ICWT).

« Feature selection by proposing Maximum A Posteriori
(MAP) based Firefly Algorithm (FFA).

« Image classification by proposing Hybridized Support
Vector based Forest Classifier (HSVFC).

« Texture feature extraction by proposing Neoteric Direc-

tional based Quantized Extrema Pattern (NDQEP).

The flow diagram of the proposed methodology is shown
in Figure. 1.

This hybrid machine learning framework is developed to
obtain a robust model capable of handling MRI scans with
hypo and hyper intense sequences. In some MRI sequences,
the affected lesions appear hypo intense which makes it diffi-
cult for the radiologists to distinguish between the abnormal
and the normal regions. Hence image fusion is utilized to
make the lesions hyper intense in order to get better visual
perception. Further, the dimension of the affected region is
not predicted precisely in MRI, so image segmentation is per-
formed to predict the exact boundary of the abnormal region.
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Texture feature extraction
using the proposed NDQEP
and classic GLCM method

Input MRI segmented image

Intensity feature
extraction using the
proposed ICWT

Feature selection for intensity
features using the proposed MAP
based FFA

Classification of images as high-grade or low-grade tumor and sub-acute or acute stroke using the proposed
HSVFC

Shape feature
extraction using basic
shape parameters

FIGURE 1. Flow diagram of the proposed methodology. Legend: NDQEP-Neoteric Directional based Quantized Extrema Pattern; GLCM - Gray Level
Co-occurrence Matrix; ICWT- Intensity-based Clustering Wavelet Transform; MAP- Maximum A Posteriori; FFA- Firefly Algorithm; HSVFC- Hybridized

Support Vector based Forest Classifier.

(Image fusion and segmentation is done in the previous phase
of this present work which is referred in [38]). Then the
texture feature extraction is carried out in the present work
to extract the information from the image at various angles
and to identify the various structures of the image. The inten-
sity feature extraction is performed in this work, because
the identification of different grades of tumor and stroke is
based on the pixel intensity. The selection of best features
is necessary to make the classification process easier and it
helps the radiologist to accurately diagnose the types of tumor
and stroke.

Initially, the input segmented image is taken from the
earlier work, which includes image fusion and segmenta-
tion [38]. The image fusion is performed using Gradient-
based Discrete Wavelet Transform (GDWT). In the fusion
process, two input images are decomposed into low-
frequency and high-frequency sub-bands using Discrete Haar
Wavelet Transform, for which gradient and corresponding
fusion rules must be applied. After fusing the images, seg-
mentation is performed based on the Intensity Factorized
Threshold (IFT) technique. Histogram equalization is per-
formed for the fused image and matrix factorization is
done to estimate the threshold for segmenting the affected
region.

A. TEXTURE FEATURE EXTRACTION USING NEOTERIC
DIRECTIONAL BASED QUANTIZED EXTREMA

PATTERN (NDQEP)

Initially, the segmented images obtained from [38] are taken
as an input for texture extraction. Then it is separated into an
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overlapping pattern in matrix form (Ip) with 7 x 7 dimensions
(i.e. 49 pixels) to extract the spatial relation between any pair
of neighbors in a local region along with the given directions,
by varying the limit variables in each row and column index
(i and j) from 1 to m-7 and 1 to n-7 respectively and is
given by,

I, = lim
i— 1to (m—7),j— 1to (n—7)

Segimala, b] (H

Here, ‘a’ indicates the indices from i”* row to i + 6" row,
‘b’ denotes the indices from j# column to j + 6 column
and Segin, is the segmented image obtained from our earlier
work [38], m and n represents the total number of rows and
columns of the segmented image (i.e 256), [.] indicates the
matrix representation.

The Local Direction Extrema Values (V) in all directions
are computed with dimension 7 x 7 by subtracting the
neighbourhood pixel with the center pixel in the overlapping
pattern. V is represented by,

Vix,y]l = lim

x—1t07,y—1to

7(1p[x, yl—=Io) )

where x and y represent the scalar value for accessing row and
column index of the formed pattern matrix, /¢ is the center
pixel of the pattern matrix. For computing the upper and lower
pattern, the threshold value (th) is calculated by taking the
median value for the obtained LDEV results.

Also, from the LDEV results, the multi-directional
pixel value is estimated in all the different directions
for extracting the upper and lower binary patterns which
are shown in figure 2. Here the horizontal (0°and 180°),
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vertical (90° and 270°), diagonal (45°, 135°, 225°, 315°),
(30°, 60°, 120°, 150°, 210°, 240°, 300°and 330°) anti-
diagonal directions are considered.

(x-3.y)

(x-3,y-3)

(x-2,y-2) (x-2,y-1) (x-2,y+2)

(x-1.y-2) --- (x-1,y+2)
- (xy-2)  (xy-1) - (xytl) | (xyt2) -

(x+1,y-2) --- (x+1,y+2)

(x+2,y-2) -- (x+2,y+1) (x+2,y+2)

(x+3.y) (x+3,y+3)

FIGURE 2. Multidirectional pixel validation.

This multi-directional pixel value representation is also
called (Horizontal, Diagonal, Vertical, and Anti-diagonal)
which represents the 7 x 7 matrix. In figure 2, the (x, y)
signifies the row and column index of center pixel of the
LDEV pattern. The HDVA7 (HA7) is calculated by the fol-
lowing equation,

HA;

f(V45,v43, Ic); f(V46, V42, Ic); f(V4T, V4L, Ic);
o = 0°&180°

f(V35,V53,Ic); f(V26,V62, Ic); f(V1T7,VT1, Ic);
o = 45°&225°

f(V34, V54, Ic); f(V24,V64, Ic); f(V14, V1, Ic);
o = 90°&270°

f(V33,V55,1Ic); f(V22,V66, Ic);, f(V11, V7], Ic);
o = 135°&315°

f(V23,V65,Ic); f(V32, V56, Ic);
o = 120°, 150°, 300°&330°

f(V52,V36,Ic); f(V63, V25, Ic);
o = 30°, 60°, 210°&240°

3

Here f(V4s, Va3, Ic) signifies the (x, y + D)™, (x,y — 1),
(x, )" locations in figure 2 respectively. Similarly, we com-
puted all the elements using the above equation 3. As a
result of equation 3, around 16 pattern pixels are formed
based on the horizontal, vertical, diagonal, and anti-diagonal
directions. The upper and lower binary pattern is constructed
using the obtained threshold value and the multidirectional
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pattern pixel values which are given by,

Upperpaern = 1, Lowerpasern = 0 if
Py <1I. and Py <I.—th
fp1.p2.p3) | Upperpasiern = 0, Lowerpaern = 1 if
Py > 1. and Py > I,
Upperpaern = 0, Lowerpaiern = 0 else

“)

For instance, f (P, P2, I.) denoted as f(Vas, Va3, I.). This
representation is repeated for all terms in equation 3. The
calculated Upperpasrern and Lowerpgyern are in array form
which contains 16 binary values. Then the texture patterns
for the upper and lower binary pattern are represented as:

16
UP = Z Upperpattern(b) * 2\/5
b=1
16
LP = " Lowerpaern(b) ¥ 2¥° )
b=1

Equation 5 provides a scalar value, where b represents the
index number of pixel patterns i.e. 16 signifies the length of
the formed upper and lower pattern. The attained UP and
LP are replaced as the center pixel of the corresponding
overlapping pattern matrix in the respective upper and lower
pattern images which is expressed in equation 6.

Imagejpywer[i +3,j+ 3] = LP
Imageupper[i + 3aj +3] = UP (6)

Equation 2 to 6 is carried out for each overlapping pattern
of the entire image. The histogram count is taken for the
pattern images in equation 6 by counting the number of
values that fall between 0 to 2 vk (i.e. vector form). Finally,
the attained vectors of the counted histogram are combined
to get NDQEP from which 34 features are extracted.

B. TEXTURE FEATURE EXTRACTION USING CLASSIC GRAY
LEVEL CO-OCCURRENCE MATRIX (GLCM)

The image texture pattern is found by employing a pattern
matrix which can be denoted as Gray Level Co-occurrence
Matrix (GLCM) [39]. GLCM is a classic method in tex-
ture analysis. In this approach, the statistical parameters
are extracted from the grayscale images. In this work,
GLCM is utilized for extracting the texture features of the
affected or abnormal region in MRI scan images. Here,
the following twenty texture features are extracted from
the segmented image obtained from [38]: autocorrelation,
correlation I, contrast, cluster prominence, correlation II,
cluster shade, energy, dissimilarity, homogeneity I, entropy,
homogeneity II, sum of square, maximum probability, sum
of average, sum of variance, sum of entropy, difference of
entropy and difference variance, information degree of cor-
rection I and IT and inverse difference normalized [40], [41].
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C. SHAPE-BASED FEATURE EXTRACTION

Shape-based feature extraction plays a significant role in
extracting the information from lesions in MRI scan images.
The characteristics features of tumors and stroke in MRI
images give more valuable information about the disease
progression and its severity. In general, the size of the affected
part in tumor or stroke in MRI images are larger. Hence,
the following shape-based features such as area, perimeter,
eccentricity, circularity, and equivdiameter [42] are extracted
from the segmented images.

D. FEATURE EXTRACTION USING INTENSITY-BASED
WAVELET TRANSFORM AND CLUSTERING (ICWT)

The intensity-based feature extraction can be demonstrated as
the process of extracting the features based on the color inten-
sities that help to identify the affected region of MRI brain
image using intensity level. The input segmented images
are separated into two sub-bands like low-frequency (L) and
high-frequency (H). Then further it can be decomposed into
low-low (LL), High-Low (HL), Low-High (LH), and High-
high (HH) sub-band coefficients using Discrete Haar Wavelet
Transform. The main objective is to extract the high-intensity
features since the affected regions in the MRI brain tumor
and stroke images appear with high intensity. Hence cluster-
ing concept is introduced after wavelet decomposition. The
centroid value for low (L¢) and high (H¢) intensity pixels is
calculated for each estimated wavelet coefficient.

max(coeffc)
He= 1 _
C—l104 K
Le = lim (max(coeﬁ‘c))
C—1w04 K+1
where, coeffc is defined as:
Coeffi = LL
Coeff, = LH
Coeffs = HL
Coeffs = HH 7

where C is the number of co-efficient; K is the number of
pixels which is 2.

For predicting the high-intensity pixels, the cluster distance
is calculated by,

DulPl = , lim \(CoeffelPI~Hey  ®)
DLIPI = lim \[(CoefclPl ~Lc? O

where Dy and Dy, are the high-intensity cluster distance and
the low-intensity cluster distance, p denotes the index of
corresponding co-efficient coeffc, Q indicates the dimension
of coeffc. Based on cluster distance, high-intensity features
are extracted and is denoted by the following equation,

Feajcwr = {coeffclp] ifDulp]l < DL[p] Vp € Q (10)
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E. FEATURE SELECTION USING AN OPTIMAL MAP
FIREFLY ALGORITHM (MFFA)

The dimensions of the resultant ICWT features gets varied
due to the variations in the affected regions of brain image
among different patients. Hence to make the dimensions
equal by taking the significant features, the proposed feature
selection technique is utilized. The extracted ICWT features
are evaluated using the fitness function. This fitness evalua-
tion is calculated by computing the mean and variance value
for every overlapping 1 x 8 feature, to avoid the reduction of
dimensions in the optimized features. For each overlapping
1 x 8 features, the probability function is computed based on
the Maximum A priori (MAP) approach with the help of the
following equation,

P(1)

= lim
t— 1 to [size(Feajcwr —1)]
[max(Feajcwr (t), Feajcwr (t+1))— j1]?

202 *exp( 202 )
(1)

(n+

From the calculated probability, the optimized features are
attained which is considered as population (firefly) and is
given by,

woif pu> P()
max(Feajcwr (1), (12)
Feajcwr(t + 1)) else

X_

= m
t— 1 to [size(Feajcwr)—1]

The position of feature is considered as light intensity in
the assigned population. The firefly position is updated by
checking the neighborhood features and is estimated by the
following equation,

A= B+ Bfa +ae if X(LIg) >0
B fa else

Ja (13)

where f; is the current firefly position, f; is the previous
firefly position, LI; represents the light intensity of the
current firefly, « is the adjusting parameter (i.e, 0.2), and
€ = 2.220 x 107'%s a constant. B is the estimation of
attractiveness with distance r and itis given as § = Ioe”’2 and
I is the light intensity at the source (i.e., 1), y is the adjusting
parameter (i.e., 1), r is the distance amongst the two fireflies
which is represented by » = /(f; — f4)? The above process
is repeated from equation 11 to 13 until the stopping criteria
is reached which occurs when the updated firefly positions
at each iteration reach nearer to higher light intensity. Then,
the best solution can be updated as the optimized features.
As a result, two features are selected by MFFA in ICWT
features.

Around 61 features are collected from feature
extraction and selection for the classification of brain
pathology.
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FIGURE 3. Flow diagram of the proposed classification approach.

F. CLASSIFICATION APPROACH USING HYBRIDIZED
SUPPORT VECTOR BASED FOREST CLASSIFIER (HSVFC)
The Classification is the process of classifying the images
based on the trained features. Generally the level or grade
of the tumor and stroke can be determined by applying the
classification technique [43].

Here, the process of classification is performed based
on the combination of Support Vector Machine (SVM) and
the Random Forest classifier which is represented in fig-
ure 3. The dataset is comprised of different levels of tumor
images (High-Grade and Low-Grade) and various types
of stroke images (Sub-Acute and Acute) based on which
binary labeling (L) is done separately for tumor (High-
Grade-1; Low-Grade-0) and stroke (Sub-Acute-1; Acute-0)
images.

The total number of classes (CL) are predicted by consider-
ing the same values in the formed label (L) without repetitions
(CL = 2 for tumor and CL = 2 for stroke). Initially, SVM
(binary) classifier is trained with dataset features and the
formed label (L), from which the weight vector is calculated
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using Lagrange multipliers and it is given by,

Wi ()
Ity
Z a(o) * L(0) * Traing[o, tr]

o=

= lim lim
k— 1to CLtr— 1to FD

(14)

here,W; is the weight vector of each class, « is a vector of
Lagrange Multiplier, which varies from 0 to 0.5 for Iz, I,
depicts the total number of tumor or stroke images (that are
to be trained ), Traing, signifies the input dataset features in
matrix form, FD denotes the indices from 1 to a total number
of extracted features (i.e. 61).

After this, the bias is estimated which separates the two
classes and is given by,

1
Bi(tr) = — lim lim
i ITrk > 1to CLts — lto FD
T,
x Y (L(0) — Traingalo, tr] % We(ty)) ~ (15)
o=1
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where, B, is the bias vector of each class with the dimension
of extracted features. From the estimated bias and weight
vector, the support vectors (SV) are formed which helps to
determine the appropriate margins among two classes and is

given by,
lim (_B"(tf)) (16)
tr— 110 FD \ Wi (tr)
The train features and the test features are updated using
hyperparameters such as scale factor (S7) and shift (S; ) from
the formed support vectors and is denoted as,

SVilty) =

Trainfeglo, tr] = lim lim
o— lto Iy ty— lto FD

(S2(tf) * Traingeqlo, tr] + s1(2p))  (17)

Testrqlu, tr] = lim lim
’ u— 1to I, tr— lto FD

(S2(tr) * Testpeqlu, tr] +s1(tr))  (18)
where Iz, represents the total number of tumor or stroke
images that are to be tested, Testy, indicates the features for
testing images, s1is calculated by the mean of support vectors,
and s is calculated by taking the inverse of the standard
deviation of support vectors. The updated train features and
the formed label (L) are given as input to the random forest
algorithm for regression tree formation. In the RF algorithm,
bootstrapping is done initially, in which Q number of features
are selected randomly from the given updated train features
for forming the decision trees. The Gini index (G) is con-
sidered as the splitting criterion at each node of the tree and
given by,

CL
Ginip =1— Y (Pa)’ (19)
ab=1
where P, represents the probability of ab™ class in the Q

. ab
features associated at the parent node (p) and P, = ’V}’\, , M

indicates the number of features in ab™ class among Q fea-
tures and N signifies the total number of Q features.

Similarly, splitting criteria for the left and the right node
from the parent node are given by,

- Ny ., .  Np, .
Ginigpjir = FGml,, + ﬁGlm,2 (20)
where N; and N, imply the number of features at node
and 1, i.e., left and right node. The Gini index value must
be minimum, and it ranges from O to 1. The node splitting in
the tree continues until the value of Gini index is zero. The
tree formation is repeated for the given two classes. More-
over, the hyperparameters used for the RF classifier include
an ‘out-of-bag error prediction (OOBPred)’, ‘minleafsize’
(minimum number of observations per leaf). The condition
for OOBPred is ‘ON’ and the value of ‘minleafsize’ is 1.
Thus, the RF classifier is trained with the updated train fea-
tures to classify the updated test features. After tree forma-
tion, the votes f at each formed decision tree is calculated as,

fiw) = lim lim lim
k— 1to CL u— 1to I, tr— 1to FD

U (Testpealu, s} (21)
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where f; denotes the decision tree at each class
arg ma f 22
( & ltg(CL(fk(u))> 22)

The equation (22) represents the predicted class (high-
grade, low-grade, sub-acute and acute) for all the given test
features. It is done by selecting the class label which is having
maximum vote values.

class(u) = lim
u— 1to I,

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this work, MRI brain images from BRATS (Brain Tumor
Segmentation) 2013 [44] and ISLES (Ischemic Stroke Lesion
Segmentation) [45] databases of having the image resolution
of 96 dpi is used for brain pathology classification. The
MRI brain tumor image dataset is obtained from BRATS
2013 challenges.! The MRI brain stroke image dataset is
obtained from ISLES 2015 challenges.?

The dataset of a tumor consists of low-grade and high-
grade patients, whereas the stroke dataset includes sub-acute
and acute patients. Each low-grade and high-grade tumor
patient has the MRI image sequences of T2-w, T1-w, T1-c,
FLAIR, and each sub-acute stroke patient has the sequences
like T2-w, T1-w, DWI, FLAIR whereas each acute stroke
patient has the sequences like T2-w, T1-w, and DWI. In this
present work, 1100 image samples (or patients) are consid-
ered for each MRI sequence (among which 600 samples are
tumor affected images and 500 samples are stroke affected
images) i.e., around 4,150 images are taken for experimenta-
tion. The Ground Truth (GT) images are taken from the same
BRATS 2013 and ISLES 2015 database, which is used for the
calculation of performance metrics.

As for computing, we have used the Desktop personal
computer which has intel® core " i5-6200U CPU running
at 2.40 GHz using 4 GB of RAM, operating in the Windows
10 platform. MATLAB 2019b is used to implement the pro-
posed methodology.

A. GRAPHICAL USER INTERFACE (GUI) IMPLEMENTATION
The experimental results are obtained by implementing GUI
in MATLAB 2019b platform. The following steps were
involved:

Stepl. Selection of input image.

Step2. Pathology detection as tumor or stroke using
KNN algorithm [38].

Step3. Segmentation of image using IFT algorithm. It is
carried out for both individual MRI sequences
and for fused images which are obtained using
the GDWT algorithm [38].

Step4. Feature extraction using NDQEP, GLCM, and
shape-based extraction, and ICWT. Feature
selection for ICWT features using MFFA.

StepS. Classification of MRI images as high-grade or
low-grade tumor, sub-acute or acute stroke using
HSVEFC.

1 https://www.smir.ch/BRATS/Start2013
2https://www.smir.ch/ISLES/Sta.rtZOl5
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FIGURE 4. Input MRI sequences and classification output for brain tumor image of: (A) patient no.1, slice no.95; (B) patient no.14, slice no.95; (C) patient
no.4, slice no.109; (D) patient no., slice no.143; and (E) patient no.10, slice no.77.

Step6. Performance analysis of different classifiers to
prove the efficiency of the proposed classifier.

The classification results for MRI brain tumor images of

patient no. 1, slice no. 95, and patient no. 14, slice no. 95 is
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shown in figure 4(A) and figure 4(B). The proposed HSVFC
algorithm appropriately classifies the given MRI input as a
high-grade tumor; besides, three different affected regions are
identified such as edema, enhancing core tumor, and necrotic
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FIGURE 5. Input MRI sequences and classification output for brain tumor image of: (A) patient no.8, slice n0.96; (B) patient no.15, slice no.81; (C) patient

no.16, slice no.46; and (D) patient no.8, slice no.42.

tumor core based on the segmented result. figure 4(C) depicts
the high-grade tumor classified result of patient no.4, slice
n0.109. Here, two tumors are predicted with two different
regions such as edema and enhancing core tumor. Figure 4(D)
and figure 4(E) represent the low-grade tumor classified
results of patient no. 6, slice no. 143 and patient no.10, slice
no.77. Edema and enhancing tumor core are identified as
like in-ground truth images and highlighted with different
colors. For patient no.8, slice n0.96 and patient no.15, slice
no.81, patient no. 16, slice no. 46 and patient no.8, slice
no.42, the proposed classifier pertinently classifies the given
MRI stroke input as sub-acute and acute case as shown in
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figure 5(A), 5(B), 5(C), and 5(D). The sub-acute stroke region
is identified from the segmented output of DWI and FLAIR
fused MRI, whereas acute stroke is known from a segmented
result of DWI MRI and it is emphasized with green color.

In this work, we have tested the classifiers with five dif-
ferent training and testing ratios as 50-50, 60-40, 70-30,
80-20, and 90-10 and the accuracy of all these ratios has
been presented in this section. The summary statistics of
extracted features and its distributions over different classes
are depicted in Table 1. Table 2 illustrates the accuracy of
different features when the train-test ratio is 70-30. From
the tabulated results it is understood that better accuracy
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TABLE 1. Summary statistics of extracted features.

Methodology Distribution of features
NDQEP 34
GLCM 20
Shape features 05
ICWT + MFFA 02
All* 61

*NDQEP + GLCM + Shape + (ICWT + MFFA)

TABLE 2. Accuracy measure of texture, shape and intensity features.

Methodology Accuracy in(%)
NDQEP 60.11 | 66.27
GLCM 49.28 | 50.34

Shape features | 48.08 | 50.94
ICWT+ MFFA | 58.66 | 62.81
All* 80.00 | 98.67

*NDQEP + GLCM + Shape + (ICWT + MFFA)

is achieved by combining the texture, intensity, and shape
features compared to individual features.

To assess the performance of the proposed hybridized clas-
sifier (HSVFC), we compared its performance with the state-
of-the-art classifiers such as K-Nearest Neighbor (KNN),
Discriminant Classifier (DC), Feed Forward Neural Net-
work (FFNN), Residual Network-18 (ResNet-18), and SVM.
The performance measures to evaluate the proposed method
include accuracy, precision, recall, F-score, False Positive
Rate (FPR), and Jaccard.

BKNN DC mFFNN mESVM mResNet-13 mHSVFC
90
80
70
£ 50
B 40
s .
E] 30
8 2
2 20
10

0-50 60-40 70-30 80-20 90-10
Train-Test Ratios

FIGURE 6. Accuracy measure of various classifiers for MRI brain tumor
detection.

In figure 6, the highest mean accuracy of about 88.33%
is obtained for HSVFC and DC algorithm when the train-
test ratio is 90-10 and the lowest mean accuracy of 34% is
obtained for SVM when the train-test ratio is 50-50 with
respect to MRI brain tumor. Accuracy analysis concerning
different train and test ratios for MRI brain stroke is shown
in figure 7. The preferred accuracy value of 99.2% is achieved
for the proposed HSVFC algorithm compared to other tradi-
tional classifiers even if the training data size is decreased
and the testing data size is increased (50-50). Regardless of
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FIGURE 7. Accuracy measure of various classifiers for MRI brain stroke
detection.

the train-test ratio, the performance of the proposed classifier
seems to be loftier than the other conventional classifiers,
since it is not necessary to do the training process repeatedly
as like in other traditional classifiers to check the occurrence
of error and also we have found support vectors alone from
SVM which is given as input for the random forest to avoid
the overfitting and frequent tuning of hyperparameter during
the training process is not necessary. Further, the collection of
features using our proposed techniques makes the proposed
HSVEFC classify the results in a better manner. The least
accuracy of 50% is attained for the SVM classifier because
it is prone to overfitting. For all the remaining conventional
classifiers, such as KNN, DC, and ResNet-18 it is necessary
to do the training process repeatedly which is a major draw-
back. However, the FFNN classifier also prone to overfitting
and the convergence rate is large.

The most reliable and acceptable training and the testing
ratio of 70-30 and 60-40 are considered for more detailed
investigation about the performance measure and is discussed
in the following section.

B. RESULT ANALYSIS OF PROPOSED HSVFC FOR 70-30 AS
TRAIN AND TEST RATIO

In figure 8, it is understood that the value of recall (0.80),
precision (0.94), F-score (0.86), and Jaccard (0.76) seems to
be high and the value of FPR (0.18) is low for the proposed
classifier compared to others in detecting high-grade tumors
from MRI images. Next to the proposed HSVFC algorithm,
DC is performing better. The concert of KNN and SVM
classifier goes hand in hand. Further, the recital measures
of ResNet-18 are found to be low compared to the proposed
HSVFC and DC, but they are found to be high compared to
KNN, FFNN, and SVM.

In figure 9, a high value of F-score (0.63) is attained for
HSVFC, since it has low false positive and false negative val-
ues compared to others. The FPR (0.34) is high for KNN but
low for ResNet-18 (0.18). A high Jaccard index value (0.46)
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FIGURE 8. Performance measures of various classifiers in brain
high-grade tumor detection.
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FIGURE 9. Performance measures of various classifiers in brain
low-grade tumor detection.

is observed for the proposed HSVFC and a low (0.05) for
FFNN. The ResNet-18 classifier performs better than KNN,
DC, FFNN, and SVM classifiers, but its performance is
observed inferior to the proposed HSVFC.

The comparative analysis of various classifiers for MRI
brain sub-acute stroke is depicted in figure 10. The best
recall (1.00) and F-score (0.98) is achieved for the proposed
classifier, whereas SVM has the least recall (0.5) measure and
KNN has the poor F-score (0.55). The FPR is zero for SVM
and 0.02 for HSVFC. The highest Jaccard index value (0.97)
is achieved for the proposed HSVFC. The recital measures of
DC and FFNN classifiers concord with each other. Likewise,
the performance of the KNN classifier and ResNet-18 model
goes hand in hand.

The concert measures for MRI brain acute stroke are
depicted in figure 11. For DC and FFNN algorithm, the range
of performance metrics gets along with each other. The least
FPR of 0.02, high Jaccard index of 0.97, and high F-score
of 0.98 are obtained for the proposed HSVFC. The F-score
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FIGURE 10. Performance measures of various classifier in MRI brain
sub-acute stroke detection.
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FIGURE 11. Performance measures of various classifiers in MRI brain
acute stroke detection.

and Jaccard index look similar for the KNN and ResNet-18
algorithms.

C. RESULT ANALYSIS OF PROPOSED HSVFC FOR
60-40 AS TRAIN AND TEST RATIO
In the case of testing, the proposed HSVFC with 60% training
and 40% testing data, the range of F-score varies from 0.31 to
0.81 for all the classifiers in brain tumors detection as shown
in figure 12. Among the F score, the highest score (0.81) is
accomplished by the proposed classifier, besides, the recall
(0.75) and precision (0.98) rates are high. The utmost Jaccard
index (0.68) is obtained for the proposed HSVFC. The false-
positive rate (0.23) is low for HSVFC and high (0.66) for
KNN. For DC and FFNN, the FPR concords with each other.
The F-score of ResNet-18 is 18% low compared to HSVFC.
In figure 13, the recall value of 0.79, precision rate of 0.12,
F-score of 0.50, FPR of 0.23, and Jaccard index of 0.33 are
attained for HSVFC in low-grade tumor detection. Next to
the proposed HSVFC, the ResNet-18 method performs well.

3859



IEEE Access

B. Deepa et al.: Pattern Descriptors Orientation and MAP Firefly Algorithm Based Brain Pathology Classification

EKNN nDC mFFNN mSVM mResNet-13 m HSVFC

1
09
0.8

0.7
0.6
0.5
0.4
03
0.1

0

Recall Jaccard

Range ofwvalues

[2¥]

Precision F-Score

Perfortance metrics

FIGURE 12. Performance measures of various classifiers in MRI brain
high-grade tumor detection.
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FIGURE 13. Performance measures of various classifiers in MRI brain
low-grade tumor detection.

Unique performance metric values are accomplished for each
classifier. Poor performance is observed for KNN, by having
the least recall, precision, and F-score, and high FPR.

The result analysis of different classifiers in brain sub-
acute and acute stroke detection is shown in figure 14 and
figure 15. For both sub-acute and acute stroke, the perfor-
mance of DC and FFNN agrees with each other. The small
F-score is perceived for the KNN algorithm, whereas the
perfect F-score of 0.99 is achieved for HSVFC for both sub-
acute and acute stroke. The FPR is zero for HSVFC in the
case of acute stroke, and 0.02 for sub-acute stroke.

D. RESULT ANALYSIS OF PROPOSED HSVFC USING
CONFUSION MATRIX AND RECEIVER OPERATING

CURVE (ROC)

The total number of tumor images for each MRI sequence
considered in this work is 600, amongst which 400 images
belong to the High-Grade (HG) class and the remaining
200 images are the Low-Grade (LG).

3860

EKNN =DC mFFNN mSVM mResNet-18 mHSVFEC

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

2
0.1
0

Jaccard

Range ofvalues

Recall Precision F-Score

Performance metrics

FIGURE 14. Performance measures of various classifiers in MRI brain
sub-acute stroke detection.
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FIGURE 15. Performance measures of various classifiers in MRI brain
sub-acute stroke detection.

TABLE 3. Confusion matrix of HSVFC for tumor detection (70-30 as
train-test ratio). TP: True Positive; TN: True Negative, FP: False Positive,
FN: False Negative.

Predicted values
TP=113 (HG) | FN=29 (HG)
Actual values TP=31 (LG) FN=7 (LG)
FP=7 (HG) TN=31 (HG)
FP=29 (LG) TN=113 (LG)

In Table 3, 70% of the images are considered for training,
which means that 280 HG and 140 LG tumor images are
reviewed for training. For the testing process, 30% of the
tumor images are considered, which implies 120 HG tumor
images and 60 LG tumor images are taken for testing. The
results in the confusion matrix show that, of the 120 HG
tumor images, around 113 images are predicted correctly
(i.e, positive cases) and among 60 LG tumor images,
31 images are projected as positive cases. The total number of
stroke images for each MRI sequence considered in this work
is 500, amongst which 250 images belong to Sub-Acute (AC)
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TABLE 4. Confusion matrix of HSVFC for stroke detection (70-30 as
train-test ratio). TP: True Positive; TN: True Negative, FP: False Positive,
FN: False Negative.

Predicted values
TP=73 (SA) FN=0 (SA)
Actual values TP=75 (A) FN=2 (A)
FP=2 (SA) TN=75 (SA)
FP=0 (A) TN=73 (A)

ROC Curves of HSVFC for high-grade tumor detection
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FIGURE 16. ROC of HSVFC for MRI brain high-grade tumor detection.
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FIGURE 17. ROC of HSVFC for MRI brain sub-acute stroke detection.

class and the remaining 250 images are Acute (A). In Table 4,
70% of the images are considered for training, which means
that 175-SA and 175-acute tumor images are reviewed for
training. For the testing process, 30% of the stroke images are
considered, which implies 75 SA and 75 acute stroke images
are taken for testing. The results in the confusion matrix
show that, of the 75 SA stroke images, around 73 images are
predicted correctly (i.e, positive cases) and among 75 acute
stroke images, all the 75 images are projected as positive
cases.

In figure 16, for high-grade tumor class detection, the high
value of Area Under the Curve (AUC-0.95) is obtained for
the proposed HSVFC when the train-test ratio is 70-30.
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Similarly, for sub-acute stroke detection, the high value of
Area Under the Curve (AUC-0.99) is obtained for the pro-
posed HSVFC when the train-test ratio is 50-50 (figure 17).
The proposed work is not suitable for large databases (i.e., for
multiple images with different pathological condition) which
is considered as the major limitation.

V. CONCLUSION AND FUTURE WORK

This paper describes a hybridized classification technique
by combining support vector machine and random forest
methods for detecting tumor and stroke in the brain MRI’s.
Also, NDQEP and ICWT are proposed for feature extrac-
tion and MFFA is projected for feature selection technique
to augment the classification process. By using the pro-
posed HSVFC method, MRI brain tumor images are detected
and classified as low-grade tumors and high-grade tumors.
Similarly, MRI brain stroke images are detected and clas-
sified as acute stroke and sub-acute stroke. In tumor detec-
tion, three different regions such as edema, necrotic tumor
core, and non-enhancing tumor core region are identified and
emphasized with different colors. The experimental analysis
offers the results in such a way that, for MRI brain tumor
classification, the average accuracy of HSVFC is prominent
than SVM by 43.42%, FFNN by 16.13%, DC by 2.90%,
ResNet-18 by 10.01%, and KNN by 31.68%. Similarly, for
MRI brain stroke classification, the average accuracy of
HSVEC is greater than SVM by 53.40%, FFNN by 13.45%,
DC by 11.49%, ResNet-18 by 33.42%, and KNN by 46.33%.
For the proposed HSVFC, the best F-score of 0.91 and the
least FPR of 0.06 are attained concerning MRI brain tumor
classification. Likewise, HSVFC accomplishes 0.99 as the
best F-score and FPR as 0 in the case of MRI brain stroke
classification. Deep neural networks can be utilized in the
future for detecting multiple brain diseases by collecting
the input images from several databases without applying
data augmentation to achieve high accuracy and low error in
predicting the diseases.
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