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ABSTRACT Deliberate amplitude clipping is a simple and well-known technique to reduce the
peak-to-average power ratio of orthogonal frequency division multiplexing (OFDM) systems. In this paper,
we propose a clipping technique for peak power reduction in orbital angular momentum (OAM)multiplexing
systems with uniform circular array (UCA) antennas. In the proposed technique, clipping is performed on
digital baseband signals prior to OAM beamforming and pulse-shaping filtering, which helps to avoid out-
of-band radiation and affecting the orthogonality of the OAM modes. In addition, an iterative distortion
recovery algorithm is proposed in order to mitigate performance degradation in bit error rate (BER) due
to the clipping. The algorithm is derived by unfolding the clipping noise cancellation (CNC) algorithm for
OFDM systems into layers and by introducing layer-wise learnable parameters. Simulation results show
that for a realistic OAMmultiplexing system with 256QAM signaling, the unfolded CNC exhibits excellent
BER performance even when the conventional CNC suffers from a high error-floor. The combination of the
proposed clipping and distortion recovery schemes provides a significant reduction in the peak power of the
OAM signals at the cost of only a slight degradation in BER performance.

INDEX TERMS Orbital angular momentum (OAM), uniform circular array (UCA), peak power reduction,
clipping, clipping noise cancellation, stochastic gradient descent (SGD).

I. INTRODUCTION
Radio orbital angular momentum (OAM) multiplexing trans-
mission [1], [2] has recently attracted attention for appli-
cation to high-capacity wireless communication systems,
especially to point-to-point (PTP) line-of-sight (LOS) mil-
limeter wave radio systems for mobile fronthaul and backhaul
links [3]–[8].

OAMmultiplexing is realized with electromagnetic waves
of different OAM modes, which are inherently orthogonal
to each other. Several methods have been proposed to gen-
erate OAM waves by using special antennas, such as heli-
coidal parabolic antennas [2], spiral phase plates [3], and thin
metamaterial plates [9]. Among them, the uniform circular
array (UCA) antenna is considered to be especially promis-
ing because of its simple structure and low cost. In [10],
it was shown that standard antennas arranged in circular
arrays can be used to generate OAM and that only local
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measurements are required for detecting OAM-modes.
Edfors and Johansson [11] theoretically investigated the
UCA-based OAM channel and showed its equivalence in
terms of channel capacity to a pre-coded MIMO channel.
Moreover, several experimental studies have recently demon-
strated the effectiveness and feasibility of OAMmultiplexing
systems utilizing UCAs [4]–[7].

The UCA-based OAM system presented in [11] is
equipped with UCAs with N antenna elements at each of
the transmitter (Tx) and receiver (Rx) ends, which face each
other on the same beam axis in free space. The pair of Tx
and Rx UCAs leads to a circulant channel matrix and thus N
parallel channels are created by employing a discrete Fourier
transform (DFT) and its inverse transform as respective pre-
and post-processings. The UCA-based OAM system can thus
be thought of as an N ×N LOS-MIMO system with OAM
beamforming processing. There are two major approaches to
implementing the OAM beamforming processing functions;
one is to use a Butler matrix [4], [12], [13], which is a pas-
sive analog beamforming circuit, and the other is to perform
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digital signal processing [5] on baseband signal samples.
While each of these approaches has its own advantages and
disadvantages, we focus in this paper on the peak-power issue
of the digital beamforming approach, in which the OAM
signals are generated from baseband signals obtained by pre-
coding N independent signals using a DFT matrix. The pre-
coded signal at each antenna element in the UCA exhibits
high peak transmission power, which leads to a significant
reduction in power efficiency of the power amplifier (PA).
The UCA-based OAM transmitter with the digital beamform-
ing function thus needs to reduce the peak power at each
antenna element in order to improve the power efficiency.
The issue concerned in this paper is the high peak power of
the OAM signals, which is caused by signal multiplexing in
digital domain.

A number of peak power reduction techniques have
been presented for orthogonal frequency division multi-
plexing (OFDM) systems in the literature and references
therein [14], [15], and many of them are applicable to the
UCA-based OAMmultiplexing systems. Among the existing
techniques for OFDM systems, we focus on clipping and
filtering (CAF) [16]–[18]. CAF is one of the simplest and
most effective techniques, wherein the peaks of the signal are
clipped and the out-of-band radiation caused by the clipping
is filtered at the Tx side. The critical issue here is the clipping
distortion that remains after the filtering, which leads to a
significant degradation in bit error rate (BER) performance.
As a way to improve BER performance, iterative distortion
recovery algorithms have been proposed [19]–[22], in which
the clipping distortion is reconstructed using a decision feed-
back approach and then it is subtracted from the received
signals observed at the Rx end.

On the basis of the above CAF techniques developed for
OFDM systems, we propose a clipping method and its cor-
responding iterative clipping distortion recovery algorithm
for UCA-based OAM systems. To avoid out-of-band radi-
ation and affecting the orthogonality of the OAM modes,
the clipping process is performed on the baseband digital
signals prior to the OAM beamforming and the pulse-shaping
filtering. The resulting peak power of the signal at each
antenna element depends on the clipping ratio, roll-off fac-
tor (ROF) of the pulse-shaping filter, and an internal param-
eter related to the in-band distortion. The iterative clipping
noise cancellation (CNC) algorithm [21] for OFDM systems
can be applied straightforwardly at the receiver side, where
the number of antenna elements N is the counterpart of
the number of subcarriers in OFDM systems. Unfortunately,
however, simulations show that it performs poorly in a realis-
tic situation [5] where N = 8 and 256QAM is used as the
modulation scheme. As in the OFDM case [23], the value
of N has a significant effect on performance. It seems that,
in this case, N is too small for the CNC to perform well. As a
way to improve distortion recovery performance, we propose
a learning-based algorithm that is derived by unfolding the
CNC algorithm and by introducing learnable parameters.

The set of the learnable parameters contains the counter-
parts of the Bussgang coefficient that is used in the original
CNC [21] and is computed analytically under the assumption
that the distribution of the pre-clipped signal is Gaussian.
Simulation results show that the CNC performs well with
the parameters optimized through training rather than with
a single Bussgang coefficient. The main contributions of our
study are summarized as follows:
• The statistical distribution is investigated for the instan-
taneous power of the UCA-based OAM signals. It is
shown numerically that the peak power increases rapidly
with increasing OAM modes N up to around 16 and
then saturates. Also shown is the relationship between
the peak power and the ROF of the pulse-shaping filter,
which provides the optimal ROF in terms of minimizing
peak power.

• A clipping method is presented for reducing the peak
instantaneous power of the OAM signals, which neither
causes bandwidth expansion nor has an impact on the
orthogonality of OAM modes. The clipping processing
is performed prior to the OAM beamforming processing
and the pulse-shaping filtering.

• To compensate for the distortion caused by the clipping,
a learning-based clipping noise cancellation algorithm is
derived by unfolding the iterations of the conventional
algorithm developed for OFDM systems into layers and
by replacing the Bussgang coefficient with layer-wise
learnable parameters. Simulations indicate that the pro-
posed algorithm performs very well.

The rest of this paper is organized as follows: In Section II,
we briefly review the UCA-based OAM transmission model
and investigate the statistical distribution of the instantaneous
power of the OAM signals. Simulations show that the digi-
tal OAM beamforming process significantly increases peak
instantaneous power. Section III presents a clipping method
for the UCA-based OAM systems. Section IV describes
the learning-based algorithm for mitigating the clipping
noise distortion. Section V presents the simulated BER per-
formance of UCA-based OAM transmission systems with
the proposed clipping and distortion recovery algorithms.
Section VI summarizes our results and concludes the paper.
Notation:We denote by R and C, respectively, the sets of

real and complex numbers. Uppercase and lowercase bold-
face letters denote matrices and (column) vectors, respec-
tively. The superscripts T , ∗, and † stand, respectively, for
transposition, element-wise conjugation and Hermitian trans-
pose; and < and = denote the real and imaginary part,
respectively. Additionally, I denotes the identity matrix of
an appropriate size, and ◦ and ⊗ are the Hadamard and
Kronecker products, respectively. For a vector x, diag(x)
denotes the diagonal matrix with diagonal entries from x,
and ‖x‖2 denotes the `2-norm of x. Finally, we denote the
N -point discrete Fourier transform (N -DFT) matrix by FN ,
i.e.,FN = (1/

√
N )[exp(−j2πkl/N )]0≤k,l<N , where j denotes

the imaginary unit.
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II. SYSTEM MODEL AND PEAK SIGNAL POWER
A. OAM MULTIPLEXING TRANSMISSION SYSTEMS
We consider an OAM multiplexing transmission system
equipped with UCA antennas at the Tx and Rx sides. For
simplicity, we assume that the UCA consists of N antenna
elements equidistantly arranged on a ring, and we refer it
to as an N -UCA. Let s(k)[n] denote the n-th discrete-time
signal transmitted from the k-th antenna element in the UCA
and x(l)[n] denote the n-th QAM symbol transmitted through
OAM mode-l channel. Then, s(k)[n] can be written as

s(k)[n] =
1
√
N

N−1∑
l=0

x(l)[n] exp
(
j
2πkl
N

)
. (1)

Eq. (1) can be written in matrix form as s[n] = F†
N x[n],

where s[n] = (s(0)[n], s(1)[n], . . . , s(N−1)[n])T and x[n] =
(x(0)[n], x(1)[n], . . . , x(N−1)[n])T . For each k , the signal
sequence (. . . , s(k)[n− 1], s(k)[n], s(k)[n+ 1], . . .) is upsam-
pled and then filtered using a root raised cosine filter
(RRCF) [24]. The signal sequence at each antenna element
in the UCA is modulated on a single carrier frequency fc.
The free space transmission model (e.g., [11]) is used to

simulate an UCA-based OAM channel, in which the transfer
function between a pair of Tx and Rx antenna elements is
given by

h(d) = G
λ

4πd
exp

(
−j

2πd
λ

)
, (2)

where d is transmission distance, λ is wavelength, λ/(4πd)
represents the free space loss, and G contains all relevant
constants such as attenuation and phase rotation caused by
antennas and their patterns on both sides. We denote by d (k,l)

the distance between the k-th antenna element in the Rx
N -UCA and the l-th antenna element in the Tx N -UCA. The
N×N channel matrix HUCA can be expressed as follows:

HUCA

=


h(d (0,0)) h(d (0,1)) · · · h(d (0,N−1))
h(d (1,0)) h(d (1,1)) · · · h(d (1,N−1))

...
...

...

h(d (N−1,0)) h(d (N−1,1)) · · · h(d (N−1,N−1))

 .
(3)

Assuming the Tx and Rx UCAs are ideally aligned, HUCA
can be regarded as a circulant matrix. Note that, in this case,
FNHUCAF

†
N becomes a diagonal matrix, which we denote

as H = diag(H (0),H (1), . . . ,H (N−1)). The channel output
signals received at the Rx N -UCA are filtered by RRCFs,
down-sampled, and then post-processed by performing an
N -point DFT. Consequently, the resulting post-processed sig-
nal y[n] = (y(0)[n], y(1)[n], . . . , y(N−1)[n]) can be written as

y(k)[n] =
1
√
N

N−1∑
l=0

r (l)[n] exp
(
−j

2πkl
N

)
, (4)

= H (k)x(k)[n]+ w(k)[n], (5)

FIGURE 1. Simulated CCDFs of normalized instantaneous power of
256 QAM SISO and 8-UCA based OAM signals with ROF=0.1 and 0.4.

where r (k)[n] denotes the n-th (downsampled) output signal
of the k-th RRCF and w(k)[n] is complex white Gaussian
noise, w(k)[n] ∼ CN (0, σ 2).

B. INSTANTANEOUS SIGNAL POWER OF UCA-BASED
OAM SIGNALS
As explained above, the OAM signals are obtained by adding
several independent signals via an IDFT, which may consid-
erably increase the peak power of the transmitted signals.

In this section, we evaluate the complementary cumulative
distribution function (CCDF) of the instantaneous power for
the OAM signals and compare them with those for clas-
sical single carrier SISO signals. The instantaneous power
considered here is normalized by its average power, i.e.,
|s(k)(τ )|2/P(k), where for k = 0, 1, . . . ,N−1, s(k)(τ ) denotes
the output signal of the RRCF associated with the k-th Tx
antenna, and P(k) denotes the average power. The CCDF of
the normalized instantaneous power (NIP) is thus written as

F (k)(ρ) = Pr
[
|s(k)(τ )|2/P(k) > ρ

]
. (6)

Fig. 1 shows the simulated CCDFs F(ρ) for 256QAM
8-UCA-based OAM signals with roll-off factors (ROFs) of
0.1 and 0.4, where the symbol rate and the upsampling rate
were set respectively to 100MHz and 8, and the number of
taps of the RRCF was set to 257. Here, we denote by F(ρ)
the average of F (k)(ρ) on the antenna index k . Although
not shown in the figure to avoid cluttering, there was little
difference between F (k)(ρ) and F(ρ) for k = 0, 1, . . . ,N−1.
Shown for comparison are the simulated CCDFs of the NIP
for conventional 256QAM SISO signals. It can be seen that
when ROF = 0.4, the NIP increases by more than 3.5 dB at
a CCDF of 10−5 by combining eight independent signals via
the IDFT. Also, as the ROF increases from 0.1 to 0.4, the NIP
of the OAM signal slightly increases while that of the SISO
signal decreases by about 1.5 dB at a CCDF of 10−5.
Fig. 2 shows the relationship between the NIP of the

N -UCA-based OAM signals observed at a CCDF of 10−5 and
ROF, where 256QAM was used as the modulation scheme
and the number of antenna elements N in the UCA was
varied from 1 to 64. When N = 1, the OAM signal can
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FIGURE 2. Comparison of instantaneous powers of 256 QAM UCA-based
OAM signals observed at a CCDF of 10−5 with respect to the number of
antenna elements N in the UCA.

be thought of as a classical SISO signal. In this case, the
NIP is minimized around an ROF of 0.4. In contrast, it can
be seen that the NIP for N ≥ 8 increases monotonically
as ROF increases from 0.1 to 1.0. When the ROF is set
to 0.4 as in [5], the NIP increases by more than 3.5 dB by
combining eight independent 256QAM signals using IDFT.
It is known that, due to the nonlinear characteristics of power
amplifier (PA), a high peak normalized instantaneous power
leads to signal distortion, which significantly reduces the
power efficiency of the PA. Thus, peak instantaneous power
reduction techniques become necessary in order to improve
PA efficiency for OAM multiplexing.

III. DELIBERATELY CLIPPING FOR PEAK
POWER REDUCTION
To reduce the peak instantaneous power of the OAM sig-
nals, we present a deliberate amplitude clipping method.
For a given QAM symbol vector x[n] of length N , our
clipping method first generates a signal vector z[n] =
(z(0)[n], z(1)[n], . . . , z(JN−1)[n])T of length JN , where J is a
predetermined positive integer1 and z(k)[n] is defined as

z(k)[n] =
1
√
JN

N−1∑
l=0

x(l)[n] exp
(
j
2πkl
JN

)
, (7)

for k = 0, 1, . . . , JN − 1. Note that z[n] is the IDFT of a
vector obtained by zero-padding x[n] to length JN and it can
be regarded as a signal for OAM transmissionwith JN -UCAs.
Each signal sample z(k)[n] is then clipped by the following
soft-envelope limiter:

z̃(k)[n] =

{
z(k)[n], if |z(k)[n]| ≤ A
A exp(j arg(z(k)[n])), otherwise,

(8)

where a tilde mark placed on top of a symbol represents a
clipped version of that symbol. The amplitudes of the clipped
samples are thus limited to a predetermined threshold value
of A. In the following, we denote (8) as z̃(k)[n] = g(z(k)[n])

1In general, J does not need to be an integer as long as JN is an integer.

FIGURE 3. Proposed OAM transmitter with clipping processing unit.

for short. The clipping ratio γ of g is defined as

γ =
A√

E[|z(k)[n]|2]
. (9)

It is customary to express the clipping ratio γ in units of dB
as γdB = 20 log10(γ ). By definition, the average power of
the input signal z(k)[n] can be considered not to depend on
the antenna index k . The clipped version of x[n] (hereafter
denoted as x̃[n]) is obtained by performing the JN -point DFT
on z̃[n] = (̃z(0)[n], z̃(1)[n], . . . , z̃(JN−1)[n]). More precisely,
x̃[n] consists of the first N entries of FJN z̃[n]. The procedure
for clipping the original QAM symbol vector x[n] can be
summarized as follows:

x̃[n] = FJN ,N ·̃z[n] = FJN ,N ·g
(
F†
JN ,Nx[n]

)
, (10)

where FJN ,N denotes an N×JN matrix consisting of the first
N rows of FJN and g(·) is applied in an element-wise manner.
Fig. 3 is a block diagram of the proposed OAM multi-

plexing transmitter with the above clipping procedure for
instantaneous peak power reduction. The original QAM sig-
nals are clipped via (10) and then pre-processed by N -IDFT,
as described in (1). The resulting signals are written in vector
form as s̃[n] = F†

N x̃[n]. Each entry of s̃[n] is upsampled
and then filtered using RRCF, as noted in Section II-A. The
computational complexity required for the above processing
is O(JN 2), which can be reduced to O(JN log(JN )) if JN is
a power of 2. Note that when J = 1, s̃[n] is given simply
by s̃[n] = g(F†

Nx[n]), and thus, the computational complexity
is lower than that of the case of J ≥ 2. Another difference
between the J = 1 and J ≥ 2 cases is the amount of
distortion contained in the clipped signal s̃[n]. Fig. 4 shows
the simulated CCDFs F(ρ) of the NIP for the clipped 8-UCA
based OAM signals with the clipping ratio of γ = 1.50,
where J = 1, 2, 4, ROF = 0.1, 0.4, and the other simu-
lation conditions were the same as those of Fig. 1. Shown
for comparison are the simulated CCDFs of the NIP for the
unclipped OAM signals that were plotted in Fig. 1. When
ROF = 0.1, the NIP at a CCDF of 10−5 decreases by about
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FIGURE 4. Comparison of CCDFs of instantaneous power of clipped OAM
signals, where the clipping ratio is γ = 1.50 (γdB = 3.5 dB).

FIGURE 5. Normalized instantaneous power of clipped OAM signals at a
CCDF of 10−5 versus clipping ratio.

1.8 dB if J = 1 and by 1.3 dB if J = 2, 4 after clipping with
γ = 1.50, where the simulated CCDF curve of J = 2 is
almost overlapped with that of J = 4. As shown in Fig. 4, the
difference between the simulated CCDF curves of J = 1 and
J = 2 becomes larger when ROF = 0.4, while there is no
significant difference between the curves of J = 2 and J = 4.
Fig. 5 shows the relationship between the clipping ratio γdB
and the NIP of the OAM signals observed at a CCDF of 10−5.
Similarly to Fig. 4, there is no significant difference between
the curves of J = 2 and J = 4. Note that when ROF = 0.4,
the NIP for (J , γdB) = (1, 6.0) is almost the same as that for
(J , γdB) = (2, 4.0). The difference in NIP between J = 1 and
J = 2 at the same clipping ratio increases as the clipping ratio
decreases. As we will show by simulations in Section V, the
in-band distortion of the transmit signal for J = 1 is much
larger than those for J = 2 and J = 4, while there is no
significant difference between J = 2 and J = 4.

IV. LEARNING-BASED ITERATIVE
DISTORTION RECOVERY
A. UNFOLDING THE CLIPPING NOISE
CANCELLATION ALGORITHM
In this section, we present a method for estimating the
originally transmitted QAM symbol vector x[n] from the
post-processed received signal vector y[n]. For simplicity of

notation, we will drop the index n in the following discussion.
The received signal vector y can be written as

y = H ·FJN ,N ·g
(
F†
JN ,Nx

)
+ w, (11)

wherew = (w(0),w(1), . . . ,w(N−1)) is a complex white Gaus-
sian noise vector. Let us consider the linear minimum-mean
square error (LMMSE) estimate of z̃(k) given z(k). Denoting
the error in the LMMSE estimate by ε(k), z̃(k) can bewritten as

z̃(k) =
E[̃z(k)z(k)∗]
E[|z(k)|2]

z(k) + ε(k), (12)

where ε(k) is uncorrelated with z(k), i.e., E[ε(k)z(k)∗] = 0.
Note that by definition, the coefficient E[̃z(k)z(k)∗]/E[|z(k)|2]
can be considered not to depend on the antenna index k .
In the following, we refer to it as the Bussgang coefficient
and denote it by α. It is known that for sufficiently large N ,
the probability distribution of the magnitude of z(k) is well
described by a Rayleigh distribution and that the following
expression for α is obtained [17], [21], [25]:

α = 1− exp(−γ 2)+
√
πγ

2
efrc(γ ). (13)

The clipped symbol vector x̃ of (10) can then be rewritten as
x̃ = αx+ε, where ε = FJN ,N ·(ε(0), ε(1), . . . , ε(N−1))T . Since
ε is a deterministic function of the originally transmitted
QAM symbol vector x, we often denote it by ε(x), i.e.,

ε(x) = FJN ,N ·g
(
F†
JN ,Nx

)
− αx. (14)

In accordance with (11) and (14), x can be estimated by
solving the following optimization problem:

x̂ = arg min
x∈QN

∥∥y−H ·FJN ,N ·g(F†
JN ,Nx)

∥∥2
2, (15)

= arg min
x∈QN

∥∥yε −H ·(αx)∥∥22, (16)

where yε = y − Hε(x) and Q denotes the set of the QAM
constellation points. If the receiver can observe yε (i.e., ε(x)
is known at the receiver), the problem can be reduced to
the OAM detection problem discussed in [7]. In a realistic
scenario, however, x̂ should be obtained even if the exact
value of ε is not known at the receiver.
The clipping noise cancellation (CNC) algorithm pre-

sented by Chen and Haimovich [21] for OFDM systems can
be used to find a solution to the above problem. Here, the
number of subcarriers in the OFDM system is a counterpart
of the number of transmission modes (i.e., the number of
antenna elements N ) in the OAMmultiplexing system. In the
CNC algorithm, the originally transmitted symbol vector x
and the clipping noise vector ε are alternately and iteratively
estimated. The CNC algorithm for the OAM multiplexing
system can be described by the following iterations:

ε`+1 = FJN ,N ·g(F
†
JN ,Nx`)− αx`, (17)

x`+1 = 5Q
(
α−1D(H, y−Hε`+1)

)
, (18)

where ` denotes the iteration number,5Q(·) is the entry-wise
projection onto the QAM constellation set Q, and D(H, ·)
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FIGURE 6. UCA-based OAM receiver with unfolded clipping noise cancellation.

denotes a linear MIMO detector function. When the QAM
constellation is square,5Q(z) can be written as5(x)+ j5(y)
for z = x + jy, where

5(x) =
q∑

i=−q

sign(x − 2i), (19)

for some nonnegative integer q, and sign(x) = +1 if
x ≥ 0 and −1 otherwise. Furthermore, for simplicity,
we use conventional zero-forcing (ZF) as the MIMO detector
D(H, ·). In a practical system, the channel matrix H will be
estimated using predetermined pilot symbols. Note that this
is not affected by the clipping process when it is assumed that
the pilot symbol power is the same level as the average data
symbol power. If the Tx and Rx UCAs are ideally aligned,
D(H, y−Hε`) can be simply written as

D(H, y−Hε`) = H−1(y−Hε`)

=

(
y(0)

H (0) ,
y(1)

H (1) , . . . ,
y(N−1)

H (N−1)

)T
− ε`. (20)

Note that if the Tx and Rx UCAs are not ideally aligned, the
OAM modes are not orthogonal to each other. In this case,
(20) does not perform well, and as a result, an inter-mode
interference cancellation function must be integrated into the
MIMO detector, as discussed in [7].

At the first iteration of (17), x0 is set to 0 as the initial
condition, and thus, the transmitted signal vector is estimated
as x1 = 5Q((αH)−1y). Then at a subsequent iteration `, the
estimate ε`+1 of the clipping noise vector is obtained from the
given x` by (17). The estimate x` is then updated to x`+1 by
using ε`+1, as described in (18). Note that the iterations (17)
and (18) contain the parameter α, which must be determined
in advance. It was shown in [21], [23] that for the OFDM
counterpart with a sufficiently large number of subcarriers,
the clipping noise cancellation in [21] performs well with α
determined by (13). For UCA-based OAM systems, however,
a realistic number of transmission modes N seems to be not
large enough for the iterations (17) and (18) to perform well
with α of (13). Indeed, as we will show in Section V, when it

is applied to a realistic system presented in [5], the clipping
noise cancellation performs poorly with α given by (13),
where the number of transmission modes is 8 and 256QAM
is used as the modulation format.

To optimize the unknown parameter and improve the clip-
ping noise cancellation performance, we unfold the iterations
(17) and (18) into multiple layers and introduce layer-wise
parameters that can be trained using a stochastic gradient
descent (SGD) method. Fig. 6 is a block diagram of the OAM
receiver with the unfolded CNC, which consists of L layers
each with the same structure. For ` = 0, 1, . . . ,L − 1, the
processing in the `-th layer is as follows:

ε`+1 = FJN ,N ·g(F
†
JN ,Nx`)− α`x`, (21)

x`+1 = ψQ,t`
(
β`◦H

−1(y−Hε`+1)
)
, (22)

where α` is a learnable parameter, β` and t` are learnable
parameter vectors, and ψQ,t` (·) is a parameterized counter-
part of 5Q(·). Similarly to (19), for z = x + jy and a real
vector t = (ti), ψQ,t(z) is given as ψt(x)+ jψt(y), where

ψt(x) =
q∑

i=−q

(
−1+

R(x − 2i+ ti)− R(x − 2i− ti)
ti

)
,

(23)

and R(x) denotes the ReLU function. The following pseu-
docode summarizes the unfolded CNC algorithm.

Algorithm 1 Unfolded Clipping Noise Cancellation
Input: Received vector y and channel matrix H
Output: Estimated transmitted vector x̂
1: x0← 0
2: for ` = 0, 1, . . . ,L − 1 do
3: ε`+1 ← FJN ,N ·g(F

†
JN ,Nx`)− α`x`

4: x`+1← ψQ,t`
(
β`◦H

−1(y−Hε`+1)
)

5: end for
6: x̂← xL

For each layer ` = 0, 1, . . . ,L − 1 in the above algo-
rithm, the learnable parameters are α` ∈ R, β` ∈ RN and
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t` ∈ R2q+1, where we may set α0 to 1 since x0 = 0. The loss
function we use for training these parameters is given by

E(x, x̂) =
1
2
‖x− x̂‖22 =

1
2

N−1∑
k=0

(
x(k) − x̂(k)

)2
, (24)

where x = (x(0), x(1), . . . , x(N−1)) is the originally trans-
mitted symbol vector and x̂ = (̂x(0), x̂(1), . . . , x̂(N−1)) is its
estimate obtained from y by the unfolded CNC algorithm.

Note that the total number of parameters to be learned in
the above unfolded CNC algorithm is (2q + 2 + N )L − 1.
The number can be reduced by imposing restrictions on
the parameters, which may lead to a performance degrada-
tion while reducing the complexity of the training param-
eters. For example, when imposing the restriction β` =
(α−1` , α−1` , . . . , α−1` ) for 1 ≤ ` ≤ L − 1, the number
is reduced to (2q + 2)L. Another restriction is ψt(−x) =
−ψt(x), i.e., t−i = ti. In this case, the number of parameters
to be learned is reduced to (q + N + 2)L − 1. Furthermore,
by imposing t0 = ti for all −q ≤ i ≤ q, the number becomes
(N + 2)L − 1.
The computational complexity of each iteration in

Algorithm 1 is the sum of the complexity of the DFT/IDFT in
(21) and the MIMO detection in (22). The former complexity
is O(JN 2), which can be reduced to O(JN log2(JN )) if JN is
a power of 2. The latter complexity is O(N ) if the Tx and
Rx UCAs are ideally aligned and otherwise O(N 2) as shown
in [7]. The total complexity is thus at most O(L(J + 1)N 2).

B. OPTIMIZING PARAMETERS
We begin this section by introducing notation. For a given
complex-valued matrix A, let A denote its real-valued coun-
terpart defined by

A = <(A)⊗
(
1 0
0 1

)
+ =(A)⊗

(
0 −1
1 0

)
. (25)

Similarly, for a given complex-valued column vector a,
we denote by a its real-valued counterpart, i.e.,

a = <(a)⊗
(
1
0

)
+ =(a)⊗

(
0
1

)
. (26)

Lines 3 and 4 of Algorithm 1 can be rewritten using this
notation as follows:

ε`+1 ← FJN ,N · g
(
FJN ,N

T
· x`

)
− α`x` (27)

x`+1 ← ψt`

(
diag(β`) ·H

−1
(
y−H · ε`+1

))
. (28)

Furthermore, for a vector u = (ui), ∂E/∂u denotes the
gradient (column) vector of the loss function of (24) w. r. t.
u, and for two vectors v = (vi) and w = (wi), ∂v/∂w denotes
a matrix whose (i, j)-th entry is ∂vj/∂wi. Then, the gradient
∂E/∂α` for ` = 0, 1, . . . ,L−1, can be computed as follows:

∂E
∂α`
=

(
∂x`+1
∂α`

)T
∂E
∂x`+1

=

(
∂ψt` (u`+1)
∂u`+1

· B` · x`

)T
∂E
∂x`+1

, (29)

where B` = diag(β`) and u`+1 = B`H−1(y − Hε`+1). For
u = (ui) ∈ R2N , ∂ψt(u)/∂u becomes a diagonal matrix,
whose diagonal entries are of the form,

∂ψt(ui)
∂ui

=

∑
j∈It (ui)

|tj|−1, (30)

where It(ui) = {j | |ui − 2j| ≤ |tj|, −q ≤ j ≤ q}. For the
parameter vector β`, we have

∂E
∂β`
=
∂x`+1
∂β`
·
∂E
∂x`+1

=
∂u`+1
∂β`

·
∂ψt` (u`+1)
∂u`+1

·
∂E
∂x`+1

. (31)

Note that the (i, j)-th entry of ∂u`+1/∂β` is given by

∂u`+1,j
∂β`,i

=

{
v`+1,j if j ∈ {2i, 2i+ 1}
0 otherwise,

(32)

where v`+1,j is the j-th entry of H
−1

(y − H · ε`+1). For the
parameter vector t`, we have

∂E
∂t`
=
∂x`+1
∂t`
·
∂E
∂x`+1

=
∂ψt` (u`+1)

∂t`
·
∂E
∂x`+1

, (33)

where for uj, ti ∈ R, ∂ψt(uj)/∂ti is given as

∂ψt(uj)
∂ti

=

{
(2i− uj)/t2i if |uj − 2i| ≤ |ti|

0 otherwise.
(34)

For z = x + jy, let gR(x, y) and gI (x, y) denote, respectively,
the real and imaginary parts of the soft-envelope limiter
function g(z). LetDg(z) denote the Jacobianmatrix of themap
(gR, gI ) at (x, y), i.e.,

Dg(z) =
∂(gR, gI )
∂(x, y)

=
A
|z|

(
I −

1
|z|2

(
x2 xy
xy y2

))
(35)

if |z| ≥ A and Dg(z) = I , otherwise. For a complex vector
z = (zi), we denote by diag(Dg(z)) a real block diagonal
matrix whose diagonal entries are of the form Dg(zi). Then,
∂E/∂x` can be computed inductively for ` = L − 1,
L − 2, . . . , 1 by

∂E
∂x`
=
∂x`+1
∂x`

·
∂E
∂x`+1

= B` ·
(
α`I − FJN ,N · diag(Dg(z`)) · FJN ,N

T
)

·
∂ψt` (u`+1)
∂u`+1

·
∂E
∂x`+1

, (36)

where z` = F†
JN ,Nx`. The gradients ∂E/∂α`, ∂E/∂β`, and

∂E/∂t` are then determined by (29), (31), and (33) in the
order of ` = L − 1,L − 2, . . . , 1.
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FIGURE 7. BER performance of 8-UCA based 256 QAM OAM receiver with unfolded clipping noise cancellation. Left: J = 2 and
γ = 1.50 (γdB = 3.5 dB). Right: J = 2 and γ = 2.00 (γdB = 6.0 dB).

FIGURE 8. BER performance of 8-UCA based 64 QAM OAM receiver with unfolded clipping noise cancellation. Left: J = 2 and
γ = 1.26 (γdB = 2.0 dB). Right: J = 2 and γ = 1.50 (γdB = 3.5 dB).

V. SIMULATION RESULTS
This section provides simulation results that demonstrate the
performance of the unfolded CNC algorithm. We consider as
a typical example the UCA-based OAM transmission system
in [5], [7]. In our simulations, unless stated otherwise, the
number of antenna elements N was set to 8; the distance
separating the Tx and Rx antennas was set to 40m; the
carrier frequency was set to 84.5GHz; and the radius of the
UCAwas set to 0.265m. These conditions were selected with
reference to those of the field trial experiment reported in [5].
In addition, for simplicity, the channel matrixH was assumed
to be known at the Rx side. In practice, this assumption
may not be true, and the receiver needs to estimate H via
pilot symbols [5]. Note that assuming that the pilot symbol
power is the same level as the average data symbol power, the
estimation of H will not be affected by the clipping process.
Furthermore, equal power allocation over all transmission
modes was assumed, and Gray-coded 22m QAMwith constel-
lation pointsQ = {x + jy | x, y ∈ {±1,±3, . . . ,±(2m − 1)}}
was used for all modes. Note that, in this case, the number of
entries of the parameter vector t in (23) is 2q+ 1 = 2m − 1.
As noted in Section IV-A, for each ` = 0, 1, . . . ,L − 1,
we imposed a restriction on the parameter vector t` = (t`,i),

i.e., t`,−i = t`,i, i = 1, 2, . . . , 2m−1−1. Accordingly, the total
number of parameters to be learned was (2m−1+1+N )L−1,
where the number of layers L was set to L = 2, 4, 8, 16.
The Adam optimizer [27] with a learning rate of 10−3 was
used for training these parameters. The training and testing
processes were implemented using TensorFlow [26] on an
NVIDIA GeForce RTX 2080 with 8GPU cores and 2GPUs
each with 8GB RAM. The batch size and number of training
epochs used for the training were set to 4,096 and 40,000,
respectively.

Fig. 7 shows the simulated BER performance of the
unfolded CNC algorithm with the trained parameters set for
L = 2, 4, 8, 16, where 256QAM was used as a modulation
scheme, the scale factor J for clipping processing was set to
J = 2, and the clipping ratio γ was set to γ = 1.50 (left)
and γ = 2.00 (right). In each epoch of the training process,
the SNR per transmit symbol Es/N0 was chosen randomly
from a uniform distribution between 23 dB and 27 dB. For
purposes of comparison, the figure also shows the simulated
BER performance of the unclipped case and that of the con-
ventional CNC algorithm described as (17) and (18) with the
Bussgang coefficient α computed by using (13). We can see
that a significant improvement in the BER of the unfolded
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FIGURE 9. Required Es/N0 to achieve a BER of 10−3. Left: 256 QAM. Right: 64 QAM.

FIGURE 10. BER performance of 8-UCA based 256 QAM OAM receiver with unfolded clipping noise cancellation. Left: (J, γ ) = (4, 1.50) and
(J, γ ) = (2, 1.50). Right: (J, γ ) = (1, 2.00) and (J, γ ) = (2, 1.58).

CNC can be gained by increasing the number of layers to
L = 16, while the BER of the conventional CNC saturates
after iterations of L = 2 and suffers from a high error floor.
When γ = 1.50, there is a gap between the BER performance
of the unfolded CNC with L = 16 and that of the unclipped
case, and the gap at a BER of 10−3 is about 0.8 dB. When
γ = 2.00, near optimal performance can be achieved by the
unfolded CNC after a small number of iterations. At a BER of
10−3, there is negligible difference in performance between
the unfolded CNC with L ≥ 4 and the unclipped case. Note
that the conventional CNC suffers from a high error floor even
when γ = 2.00. It can also be seen that in the low SNR
region, the BERs of the CNC algorithms are slightly lower
than that of the unclipped case. This is because the clipping
of the OAM signals leads to a reduction in the transmit signal
power.

Similarly, Fig. 8 shows the simulated BER performance
of the unfolded CNC algorithm, where 64QAM was used
as a modulation scheme and the clipping ratio γ was set to
γ = 1.26 (left) and γ = 1.50 (right). In each epoch of the
training process, the SNR per transmit symbol Es/N0 was
chosen randomly from a uniform distribution between 17 dB
and 21 dB. The other simulation conditions were the same as
those of Fig. 7. It can be seen that a significant improvement
in the BER of the unfolded CNC can be gained by increasing
the number of layers while the conventional CNC suffers
from a high error floor. When γ = 1.26, there is a gap

between the BER performance of the unfolded CNC with
L = 16 and that of the unclipped case, and the gap at a
BER of 10−3 is about 1.1 dB. When γ = 1.50, near optimal
performance can be achieved by the unfolded CNC, and at a
BER of 10−3, there is negligible difference in performance
between the unfolded CNC with L ≥ 4 and the unclipped
case. Fig. 9 plots the Es/N0 required for the unfolded CNC
algorithm to achieve a BER of 10−3 versus the clipping ratio
γdB for L = 2, 4, 8, 16, where the modulation schemes used
were 256QAM (left) and 64QAM (right). It can be seen from
Fig. 9 (left) that for γdB ≥ 3.5, the SNR loss relative to the
unclipped case can be reduced to less than 1.0 dB after at
most 16 iterations. Note that from Figs. 4 and 5, it is clear that
applying the proposed clipping process with γdB = 3.5 and
J = 2 can reduce the NIP at a CCDF of 10−5 by about
2.5 dB when ROF = 0.4. Similarly, it can be seen from
Fig. 9 (right) that for γdB ≥ 2.5, the SNR loss relative to
the unclipped case can be reduced to less than 1.0 dB after at
most 16 iterations. It can thus be concluded that the proposed
clipping and distortion recovery schemes perform effectively
with 256QAM and 64QAM signaling.

Next, we show the clipping noise cancellation performance
of the proposed method for the cases of J = 1 and J = 4.
Fig. 10 (left) plots the simulated BER performance of the
unfolded CNC algorithm, where the transmit signals were
clipped with J = 4; the clipping ratio was set to γ = 1.50;
and the other simulation conditions were the same as those
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FIGURE 11. BER performance of N-UCA based 256 QAM OAM receiver
with unfolded CNC, where N = 16,32,64.

FIGURE 12. BER performance of 8-UCA based 256 QAM OAM receiver
of [7] combined with the unfolded CNC.

of Fig. 7. For comparison purposes, Fig. 10 (left) also plots
the performance for the case of J = 2 and γ = 1.50. We can
see that the performance of J = 4 is superior than that of
J = 2, especially when the number of layers L is small. Thus
it seems better to set J to a large value if the computational
complexity allows. Fig. 10 (right) plots the simulated BER
performance for the case of (J , γ ) = (1, 2.00). The figure
also plots the performance for the case of (J , γ ) = (2, 1.58)
for comparison purposes. Note here that, when ROF = 0.4,
the NIP of the transmitted OAM signals clipped with J = 1
and γ = 2.00 (γdB = 6.0) is almost the same as that of the
OAM signals clipped with J = 2 and γ = 1.58 (γdB = 4.0).
As can be seen from the figure, the unfolded CNC algorithm
suffers from high error-floors when J = 1. The OAM signals
clipped with J = 1 are not restored even using the unfolded
CNC, while for the signals clipped with J = 2, they are
successfully restored. The clipping process with J = 1 thus
leads to a large amount of distortion compared with that with
J = 2 even when the resulting NIPs are almost the same.
Next we show the simulated BER performance of N -UCA

based 256QAM OAM receiver with the proposed clipping
method when the number of antenna elements N is 16, 32
and 64. In the simulation for the case of N = 16, the
distance d between the Tx and Rx antennas, the carrier

frequency fc, and the radius r of the UCA were set
to (d, fc, r) = (40m, 157GHz, 0.271m), and in the
simulations for N = 32 and 64, they were set to
(40m, 157GHz, 0.413m) and (15m, 157GHz, 0.360m),
respectively. These conditions were selected so that they
can maximize the channel capacity under practical con-
straints [7]. Fig. 11 shows the simulated BER performance
of the unfolded and the conventional CNC algorithms for the
cases of N = 16, 32, 64, where the clipping ratio and the
scale factor J were set to γ = 1.50 and J = 2, respectively,
and the number of layers was set to L = 8. Shown for
comparison are the simulated performance for the case of
N = 8 that were plotted in Fig. 7 (left). We can see that
similarly to the case of N = 8, the proposed clipping and
distortion recovery schemes can achieve good performance
for N = 16, 32, 64.

Finally, while we assumed so far for simplicity that there
is no inter-mode interference (IMI), we show by simulations
that the proposed clipping and distortion recovery methods
work well even when there is IMI due to antenna misalign-
ment. As discussed in [7], when the Tx and Rx UCAs are
not ideally aligned, the channel matrix H does not become
diagonal anymore. For each OAM mode-k , the signal-to-
interference ratio (SIR) due to the antenna misalignment can
be evaluated by using the entries H (k,l) of the matrix H as
SIR(k) = |H (k,k)

|
2/
∑N−1

l=0,l 6=k |H
(k,l)
|
2. We used the average

of SIR(k) over k = 0, 1, . . . ,N − 1 to measure the amount
of IMI. Fig. 12 shows the simulated BER performance of
the unfolded CNC algorithm, where instead of the ZF-based
MIMO detection of (20), we employed an iteration of the
learning-based OAM-MIMO detection algorithm presented
in [7] in order to cancel the IMI. In the simulations of Fig. 12,
the antenna misalignments were set randomly so that the
resulting SIR becomes around 6 dB and 10 dB. The clipping
ratio was set to γ = 1.78 (γdB = 5.0) and 1.50 (γdB = 3.5).
The number of layers L was set to 16, and the other conditions
were the same as those of Fig. 7. From Fig. 12 it can be seen
that when γ = 1.78, the BER performances for the cases
of SIR = 6 dB and 10 dB only slightly deteriorate compared
with that of the IMI-free case (SIR = ∞). When γ = 1.50,
while it can be seen that the slope of the BER curves for
SIR = 6 dB and 10 dB decrease gradually as increasing
the Es/N0, the required Es/N0 to achieve a BER of 10−3

deteriorates by only 0.5 dB even for SIR = 6 dB. It can be
thus concluded that our clipping method works effectively,
even in IMI environments.

VI. CONCLUSION
We investigated the statistical distribution of the instanta-
neous power of UCA-based OAM signals. It has been shown
that the OAM signal at each antenna element exhibits high
peak power and that a reduction in peak power is needed
in order to improve power efficiency. To address this issue,
we presented a clipping method and an iterative distortion
recovery algorithm for UCA-based OAM systems. The algo-
rithm can be regarded as an unfolded version of the clipping
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noise cancellation algorithm developed for OFDM systems,
in which learnable parameters are introduced in place of the
Bussgang coefficient used in the OFDM case.

We performed simulations for UCA-based OAM multi-
plexing systems with the proposed clipping and distortion
recovery schemes. The simulation results showed that the
combination of the proposed clipping and distortion recovery
schemes provides a significant reduction in peak power of
the OAM signals at the cost of only a slight degradation
in BER performance. We also showed by simulations, the
proposed clipping and distortion recovery methods work well
in combination with the OAM-MIMO detection algorithm
presented in [7] even when there is inter-mode interference
due to antenna misalignment.
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