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ABSTRACT Deep learning-based salient object detection (SOD)methods havemade great progress in recent
years. However, most deep learning-based methods suffer from coarse object boundaries and expensive
computations, especially in detecting objects with complex shapes. This paper presents an accurate and
efficient SOD method that is based on a novel double-branch network that includes a body branch and an
edge branch. To obtain an accurate edge, an edge profile enhancement module (EPEM) is embedded in the
edge branch. In addition, a fusion feedback module (FFM) is embedded to integrate features from the two
branches. To address the problem of expensive computations, channel attention module (CAM) is included
to restrain redundant feature channels. Thus, the speed of the inference step can be improved with little
reduction in the boundary accuracy. Experimental results on 9 datasets demonstrate that the proposedmethod
performs favorably against 8 state-of-the-art methods in terms of both accuracy and efficiency. Additionally,
our method achieves excellent detection results for objects with complex shapes.

INDEX TERMS Salient object detection, complex shape object, edge profile enhancement module, channel
attention module, fusion feedback module.

I. INTRODUCTION
Salient object detection aims to locate the principal objects
in an image or video. It is widely applied as a preprocess-
ing procedure in computer vision tasks, including image
compression [1]–[3], image segmentation [4], [5], image
recognition [6], [7], image classification [8], [9], image
retrieval [10], object tracking [11], scene classification [12],
video segmentation [13] and action detection [14]. Most
previous works were based on the contrast, such as color
contrast [15] and global contrast [16], play themost important
role in saliency detection. These methods can locate salient
objects roughly, but failed in irregular shapes or low contrast.

Convolutional neural networks (CNN) have powerful
representation capability in handling the large appearance
variations of scenes and objects [17]–[20], and have signif-
icantly boosted salient object detection results in the past
few years. In general, these methods utilize both highly
semantic features from deep CNN layers and low-level
features from shallow CNN layers. These CNN-based
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methods overtook the leaderboards for almost all of the
widely used benchmarks. However, there are still two issues
need to be improved for SOD. The first issue is that most
methods suffer from the coarse boundary problem. When
there are insufficient low-level features, it is infeasible to
locate salient objects accurately, particularly for objects with
complex shapes. Objects with complex shapes usually have
irregular shapes, uneven contours, thin lines or nonconvex
boundaries. The complexity of the object is defined as C in
Eq. (8). As shown in Fig. 1, when detecting objects with
simple shapes (C < 100), previously established methods
have achieved good performance. However, when detecting
objects with complex shapes (C> 100), thesemethods cannot
predict the object contours accurately. These representative
SODmethods are not efficient enough for implementing SOD
as a preprocessing step for subsequent high-level tasks.

Significant efforts have been made toward addressing
the first issue. [18], [41] focused on detecting salient
object boundaries accurately by extracting edge features.
Feng et al. [21] employed a dilated convolutional pyramid
pooling module to generate a coarse prediction and to guide
the residual learning process through several novel attentional
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residual modules to gradually refine the coarse prediction.
Liu et al. [22] designed a three-task network that can detect
the object, body and edge at the same time and improve
the overall detection performance. Wang et al. [23] proposed
a salient edge detection module that provides a strong cue
for better segmenting salient objects and refining object
boundaries, which emphasizes the importance of salient
edge information. Zhang et al. [24] embedded edge-aware
feature maps from shadow layers into the deep learning
framework. Mukherjee et al. [25] constructed a Bayesian
probabilistic edge mapping that uses low-order edge features
to assign a saliency value to each edge. However, edge
preservation still has not been solved well, and specific
guidance for the edge area is lacking. The complementarity
between the salient edge information and the salient object
information has not been identified. Regarding the second
issue, some models [26], [27] focus mainly on improv-
ing the detection efficiency by simplifying the network.
Li et al. [28] proposed a novel depthwise nonlocal module
that implicitlymodels contrast by harvesting intrachannel and
interchannel correlations to improve the detection efficiency.
Zhang et al. [29] proposed fast salient object detection based
on multiscale feature aggression, which processes images at
a rate of 15 FPS. Although the above detection methods have
made improvements, the accuracy of the detection results still
needs to be further improved.

We propose a novel network that solves both problems. The
body branch of the network detects the body of the object
to locate the position of the salient object. The edge branch
detects the edge profiles, which describe the object with a
precise boundary. Because the proposedmodel is smaller than
other models, its calculation efficiency is significantly higher.

FIGURE 1. Compare the detection effects of different methods for objects
with different complexity.

In summary, our main contributions are as follows:
1. To improve the detection accuracy for objects with

complex shapes, an EPEM is embedded into the edge branch.
An FFM is designed to combine the feature channels from the
two branches.

2. To improve the detection efficiency, a CAM is added into
both branches, which suppresses redundant channels. And the
rough version without the FFM can accelerate the inference
speed.

3. We compare the proposed method with 8 state-of-
the-art SOD methods on 9 datasets. Our method obtains
better results than other methods, especially for objects with

complex shapes. It achieves better performance under various
evaluation metrics while realizing a forward reasoning speed
of 73 FPS on a GPU.

The remainder of this paper is organized as follows:
Section II reviews related works. In Section III, we introduce
our method in detail, including the network structure and
corresponding learning algorithm. The experimental results
are presented in Section IV, and the conclusions are discussed
in Section V.

II. RELATED WORKS
In recent years, CNN have been successfully applied for
saliency detection and have achieved substantial improve-
ments over other methods due to their powerful feature
representation abilities. In particular, various SOD meth-
ods [30]–[32] that are based on fully convolutional neural net-
works (FCN) have achieved accurate results. Guan et al. [30]
added edge features as complementary information for SOD.
Huang et al. [31] leveraged a multiscale iteration of a CNN
with two complementary subnets on different spatial scales,
which combined the predictions of the two subnets to
generate a more accurate boundary. Han et al. [32] used edge
information as a constraint and predicted the saliency map
pixel by pixel. Tu et al. [33] extracted hierarchical global and
local information in FCN to incorporate nonlocal features for
effective feature representations. Wang et al. [34] developed
a new saliency detection method based on recurrent fully
convolutional networks. Ren et al. [35] proposed a densely
connected refinement network that fully utilizes deep fea-
tures that are derived from multiple convolutional layers.
Zhang et al. [36] proposed a hierarchical image co-saliency
detection framework as a coarse-to-fine strategy for capturing
this pattern. Jin et al. [37] proposed a novel complementary
depth network that well exploits salient information depth
features for RGB-D SOD.Although thesemethods have good
performance in detecting objects with simple shapes, they
have difficulty detecting objects with complex shapes.

To address this problem, many researchers designed
networks for extracting powerful features for describing
complex shapes objects. Qi et al. [38] designed a multiscale
capsule attention module that captures functionality at
multiple scales and generated an accurate saliency map by
high-level semantic information and low-level spatial fea-
tures. Guo et al. [39] proposed the AugFPN module, which
narrows the semantic gaps between features of different
scales before feature fusion through consistent supervision.
Zhuge et al. [40] designed a novel integrity cognition network
(ICON), which explores three important components to
learn strong integrity features. Wei et al. [41] utilized an
encoding-decoding network to detect the object body and
edge separately and merged the two detection results into
a saliency map. Li et al. [42] adopted a complementary
perception network that uses a positive attention module to
detect the foreground and a negative attention module to
detect the background. Wei et al. [43] proposed F3Net for
extracting powerful features, which consists a cross feature
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FIGURE 2. Overview of the proposed double branch networks.

module and a cascaded feedback decoder, and is trained by
minimizing a new pixel position-aware loss. Liu et al. [44]
designed a feature aggregation module that fuses the coarse-
level semantic information with the fine-level features.
Liu et al. [45] introduced a dual-branch method for SOD
in which one branch provides a coarse-level saliency map
that is optimized by the second branch. Wu et al. [47]
proposed training saliency detection networks by exploiting
supervision from not only salient object detection but
also foreground contour detection and edge detection.
Zhang et al. [48] proposed a novel attention-guided network
that selectively integrates multilevel contextual information
to detect objects. Although these methods perform relatively
well in detecting objects with complex shapes, they reduce
the computational efficiency.

To achieve high computational efficiency, researchers
have focused on simplify the model. In [26], the authors
proposed a reverse attention-based residual network, which
simplifies the model size to 63 Mb and increases the
detection speed to 35 FPS. An attentive feedback network
of size 127 Mb and detection speed 26 FPS was designed
by [27]. Zhang et al. [29] proposed a fast salient object
detection algorithm with multiscale feature aggregation.
Wu et al. [49] proposed a novel cascaded partial decoder
framework for fast and accurate salient object detection.
Li et al. [50] designed a novel depth nonlocal module
that can model the contrast by collecting the correlations
between channels using self-attention and realize fast and
accurate detection in a single CPU thread. In practice, SOD
methods should focus on both computing efficiency and
object boundary accuracy.

III. PROPOSED METHOD
In this paper, the network is built on ResNet-50 [31].
As illustrated in Fig. 2, our network is divided into a
body branch (which includes Conv3_4b, Conv4_6b, and
Conv5_3b) and an edge branch (which includes Conv3_4e,

Conv4_6e, and Conv5_3e), which share Conv1 and Conv2_3.
To segment salient objects accurately, an EPEM is embedded
into the input of the edge branch. To accelerate the inference
speed, both the body branch and the edge branch are
postprocessed with a CAM. The outputs of the two branches
are combined by an FFM. The FFM is an important
module that influences the detection accuracy and efficiency.
Therefore, our method can be classified into two versions:
The fine version, which uses the full FFM, can extract more
accurate boundaries. The rough version, which simplifies the
FFM, can obtain higher efficiency.

A. MASK COUPLING
To train the body branch and the edge branch individually, the
original mask is converted into the original bodymask and the
original edge mask. These two masks can be generated with
the same strategy as in [41]. The mask is a binary image M ,
and each pixel g ∈ M is its corresponding value. We define
the foreground as Mfg (if g ∈ Mfg , g equals 1) and the
background as Mbg (g ∈ Mbg , g equals 0). We use Euclidean
distance to measure the distance between pixels, and we
utilize Euclidean distance as the metric function:

f (p, q) =
√
(px − qx)2 +

(
py − qy

)2
, (1)

where p, q ∈ M and x, y are the pixel abscissa and ordinate,
respectively. If pixel p belongs to the foreground and pixel
q is the background pixel that is closest to p, then we use
f (p, q)to calculate the distance between pixels p and q. If pixel
p belongs to the background, their minimum distance is set to
0. After distance transformation, the original body mask, M ,
can be expressed as:

M̃ (p) =

{
minq∈Mbg f (p, q), p ∈ Mfg,

0, p ∈ Mbg,
(2)

We obtain the original edge mask by removing the original
bodymask M̃ from the original mask,M . Finally, wemultiply
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the newly generated body mask with the original mask, M ,
to remove the background interference:

Mask ⇒
{
B = M ∗ M̃ ,
E = M − B,

(3)

whereB denotes the bodymask, andE denotes the edgemask.
The body mask is used to train the body branch; the edge
mask is used to train the edge branch.

B. EDGE PROFILES ENHANCEMENT MODULE
According to [18], the edge profile feature can be extracted
in the early stages of ResNet-50 (as block conv2_3 in our
network). However, these edge feature maps are single scaled
and cannot describe the salient object properly. The EPEM
is embedded between conv2_3 and conv3_4e to extract
multiscale edge features. As illustrated in Fig. 3(a), four
dilated convolutional layers with different dilation rates are
integrated into one module. The dilation rates are set to 1,
3, 5 and 7. Then, the outputs of the four dilated convolution
layers are combined by 1 × 1 convolution. With different
rate settings, the EPEM can extract edge profile features
in parallel and concatenate the results together. Finally,
64 featuremaps can be generated through a 1×1 convolution.
The dilated convolutional layer provides a larger receptive
field without changing the size of the CNN kernel. Therefore,
this module improves the edge accuracy without significantly
increasing the computational complexity.

FIGURE 3. (a) shows the edge profiles enhancement module, and
(b) shows the channel attention module.

C. CHANNEL ATTENTION MODULE
The number of output channels in each branch is 2048,
which is redundant for SOD. The invalid information not only
causes inaccurate results but also leads to additional expen-
sive computations. Therefore, inspired by [46], we introduce
a channel attention module to suppress unimportant feature
channels, as illustrated in Fig. 3(b). The CAM is embedded
between the output of each branch and the FFM. First, the
feature maps are generated via global average pooling to gen-
erate channel-wise statistics. Second, to suppress redundant
information, the gating mechanism forms a bottleneck with
two fully connected layers, a ReLU and a sigmoid, thereby
returning to the channel dimension of the transformation

output. Finally, the output of the block is obtained by rescal-
ing. Because the weights of unimportant feature channels are
approximately 0, the amount of redundant information will
be greatly reduced.

D. FUSION FEEDBACK MODULE
To fuse the information of the edge and the body, a feature
interaction network is proposed in [41]. In this method, the
feature maps of the two branches are fed back to the two
branches through an interaction encoder. In the proposed
method, we instead feed back the rough saliency map, which
not only contains more detailed information but also can
be fed back more quickly. This module is divided into
three stages: fusion, feedback and refusion. First, the outputs
of the two branches are concatenated to predict a rough
saliency map through a 1 × 1 convolution layer. Second,
this rough saliency map is fed back to each block using
bilinear upsampling. Then, through a 3×3 convolution layer
and a 1 × 1 convolution layer, feedback feature maps are
generated with the same dimension of each block. Finally,
all the feature maps are fused by concatenating the outputs
of the two branches again. A fine saliency map is ultimately
predicted by these three stages. To balance efficiency and
accuracy, our method modifies the FFM in different ways.
To achieve accurate edges, the fine saliency map is accepted
as the final detection result. To achieve fast test speeds, the
rough saliency map is accepted. In the latter situation, only
the first stage of the FFM is retained. In Sec. IV.C, the rough
version can achieve a speed of 73 FPS, which is higher than
that of the fine version.

E. LOSS FUNCTION
As our method can generate a rough saliency map and a fine
saliency map, there are two kinds of loss functions. For the
rough prediction map, the loss can be calculated as:

LR = `re + `
r
b + l

r
iou, (4)

where `re, `
r
b and lriou denote the edge loss, body loss and

structural loss for rough saliency maps. We utilize binary
cross entropy (BCE) to calculate `re and `

r
b, which is defined

as:

`i = −
∑
(x,y)

[gi(x, y) log (pi(x, y))

+ (1− gi(x, y)) log (1− pi(x, y))] i = b, e, (5)

where gb(x, y) ∈ B and ge(x, y) ∈ E , which are defined in
Sec.III.A, and pb(x, y) ∈ [0, 1] and pe(x, y) ∈ [0, 1] are the
predicted probabilities of the body and the edge, respectively,
of the rough salient object. However, BCE calculates the loss
for each pixel independently and ignores the global structure
of the image. To remedy this problem, we utilize the IoU
loss to calculate liou, which can measure the similarity of two
images overall rather than with respect to a single pixel. It can
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be expressed as follows:

liou = 1−

∑
(x,y)[p(x, y) ∗ g(x, y)]∑

(x,y)[g(x, y)+ p(x, y)− p(x, y) ∗ g(x, y)]
, (6)

where g(x, y) ∈ M and p(x, y) is the predicted probability
of the saliency map. For the fine prediction map, the loss
function is defined as:

LF = `fe + `
f
b + l

f
iou. (7)

where `fe, `
f
b and l fiou denote the edge loss, body loss and

structural loss for fine saliency maps. The calculation method
is the same as in Eq. (5) and Eq. (6), but the values
(pe, pe and p) are optimized by adding the FFM.

F. TRAINING PROCESS
The training process of our method involves two versions,
as presented in Algorithm 1. In the rough version, the body
branch network, edge branch network, Conv2_ 3 and Conv1
are initialized. The image, mask, edge mask and body mask
are inputted for training progress. In every epoch, the loss
is calculated by Eq. (4). And the rough version weights
(including the Body branch network, Edge branch network,
Conv2_3 and Conv1) are updated. The rough saliency maps
are then generated. In the fine version, the FFM are initialized
and the rough version weights are loaded. In every epoch, the
loss is calculated by Eq. (7). And the fine version weights
(including the FFM, Body branch network, Edge branch
network, Conv2_3 and Conv1) are updated. The fine saliency
maps are finally generated.

Algorithm 1 Training
Rough version
Input: image, mask, edge mask, body mask
initialize (Body branch network, Edge branch network,
Conv2_3 and Conv1);
for epoch i ∈ [1, 50] do
LR = `re + `

r
b + l

r
iou,

update (Body branch network, Edge branch network,
Conv2_3 and Conv1)

end for
Output: Rough saliency map
Fine version
Input: image, mask, edge mask, body mask
initialize FFM and load Rough version weights
for epoch i ∈ [1, 50] do
LF = `

f
e + `

f
b + l

f
iou,

update(FFM, Body branch network, Edge branch
network, Conv2_3 and Conv1)

end for
Output: Fine saliency map

IV. EXPERIMENT
A. IMPLEMENTATION DETAILS
We select ResNet-50 as the backbone network and use a
GTX 1080Ti GPU for training and testing. Our model is

implemented in PyTorch. The hyperparameters are set as
follows: batch size = (48), epoch = (50), momentum =
(0.9), weight decay = (0.0005), and maximum learning
rate = (0.08). The warm-up and linear decay strategies are
used for the learning rate. During training and testing, each
image is resized to 352 × 352.

TABLE 1. Benchmark datasets that are used in this study.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
We adopt 5 widely applied and standard metrics to evaluate
our model: the precision-recall (PR) curve, mean F-measure
(mF), E-measure (Em), S-measure (Sm) and mean absolute
error (MAE). In addition, we carry out experiments on
9 datasets: RGBD135, NLPR, ECSSD, STEREO, HKU-
IS, DUT-RGBD, DUTS-TE, DUT-COMPLEX and DUT-
OMRON. These datasets are described in Tab. 1. To ensure
a fair comparison, only the original images and masks are
utilized. To evaluate the performance of our method in
the detection of objects with complex shapes, we select
the images of objects with complex shapes automatically.
We define the salient object complexity as follows:

C =
P× P
A

, (8)

where P is the number of edge pixels of the ground truth, and
A is the number of pixels in the object.

In Eq. (8), the Complexity C is a ratio between the
square of the perimeter and the area. In the calculation, the
number of edge pixels is represented for the perimeter of
the object, and the number of pixels is represented for the
area. It means that the complexity coefficient is independent
to the number of pixels. We define that when the C> 100, the
object is a complex shape object. From this definition, DUT-
COMPLEX is established, containing 293 complex shape
object images.

Most metrics cannot be used to evaluate the edge accuracy.
Therefore, we use MAEe to evaluate the accuracy of the
salient object boundary. MAEe is introduced in [25] to
measure the average difference between the predicted edge
and the ground-truth edge. The metric is defined as follows:

MAEe =
1

H ×W

H∑
x=1

M∑
y=1

∣∣Pedge(x, y)− Gedge(x, y)∣∣ , (9)
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TABLE 2. Performance evaluation metrics: mF , Em, Sme , Sm, MAEe and MAE . In the table, ‘-’ indicates results that are not publicly available, ↑ and ↓

denote that larger and smaller values are better. Values in red indicate the best result, and values in blue indicate the second best. Size indicates the
model size, and speed indicates the test efficiency.

where H and W are the height and width of the picture
and Pedge(x, y) and Gedge(x, y) are the predicted and mask
values, respectively, for the salient object edge profile.
In addition, inspired by the definition of Sm, we propose

Sme for computing the boundary-aware structural similarities
between the prediction edge E and the ground-truth edge G.
The metric is defined as follows:

Sme = α × So(E,G)+ (1− α)× Sr (E,G). (10)
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FIGURE 4. Visual comparison of the results obtained using each algorithm.

where So and Sr denote the object-edge-aware and region-
edge-aware structural similarities and α is set to 0.5.

1) VISUAL COMPARISON
In Fig. 4, we compare our method with 7 state-of-the-art
methods: EGNet [18], R2Net [21], DFI [22], RAS [26],
LDF [41], F3Net [43] and PoolNet [44]. Each row presents
the detection result on a dataset. The original image is
displayed in the first column, the mask is shown in the
second column, and each subsequent column represents a
detection method. The visual comparison results show that
the proposed method is more accurate than the compared
methods, especially for the examples with complex shapes.
From the example in RGBD135, our method can detect
each leaf accurately. From the example in DUT-RGBD, it is
found that when the foreground and background are similar,
most methods cannot clearly distinguish the foreground and
background. From the example in DUTS-TE, our method
can detect the edge profiles of the microscopic object. From
the example in DUT-COMPLEX, we find that when the
contour of the object contains minor details, most methods
can only detect the fuzzy contour but cannot accurately detect

the minor details. By comparing the detection results of the
above methods on various datasets, we find that the detection
accuracies of the double-branch networks (such as ours,
DFI, LDF and F3Net) are better than those of single-branch
networks (such as EGNet, R2Net and RAS). As the EPEM
can extract multi-scale features, our results are more accurate
than LDF and DFI. Compared with the rough version, the fine
version showsmore detailed information for adding the FFM.
We believe our method is superior because of the following
two aspects: (1) In the rough version, although we reduce the
number of model parameters as much as possible, we obtain
better results because we use the double-branch network
mode and the edge enhancement module to focus on edge
information detection. (2) In the fine version, we give fine
feedback based on the rough version, hence, we can obtain
better results.

2) QUANTITATIVE ANALYSIS
In Fig. 5, we show the standard PR curves for 9 datasets. The
red line in each figure represents the PR curve of fine version,
and the blue line represents the PR curve of rough version.
The proposed method yields better results than EGNet [18],
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FIGURE 5. Precision-recall curves on 9 public benchmark datasets. It can be seen that the proposed method performs favorably against
state-of-the-art methods.

R2Net [21], DFI [22], RAS [26], LDF [41], F3Net [43]
and PoolNet [44] according to their PR curves. Especially
on the NLPR, STEREO, HKU-IS, DUT-RGBD and DUT-
COMPLEX, when the recall score is close to 1, our accuracy
is much higher than those of other methods, which shows that
the false-alarm rate of our saliency map is much lower.

In Tab. 2, we compare our method with 8 methods. In order
to ensure the fairness of the process evaluation, we compared
references [18], [21], [22], [26], [41], [43], [44] and our
method on the same experimental platform. As reference [40]
doesn’t provide the code, the experiment results are directly
from the original paper. It can be seen that our model
performs favorably against the state-of-the-art methods
under all evaluation metrics on the datasets RGBD135,
NLPR, ECSSD, STEREO, HKU-IS, DUT-RGBD and DUT-
COMPLEX. Although our method does not perform the best
on DUTS-TE and DUT-OMRON, it is still closed to the best
performance. In addition, the fine version achieves the best
results on MAEe and Sme on all datasets except the DUTS-
OMRON, which shows that our method realizes a significant
improvement in detecting object edge. Although the accuracy

of the rough version is not the best, it achieves the best
detection speed of 73 FPS. And the size of the rough version
model is only 98 Mb, which is smaller than all compared
methods except the RAS [26] model.

C. ABLATION ANALYSIS
In this section, we explore the effectiveness of various com-
ponents of the proposed network using the DUT-OMRON
and the DUT-COMPLEX. Through an ablation analysis on
these two datasets, we compare the speed and accuracy
performances of the EPEM, CAM and FFM. In Fig. 6,
we present visualization results with and without these
modules. Through comparison, we evaluate the improvement
that is realized by each module in detecting complex shapes.

1) THE EFFECTIVENESS OF DIFFERENT BACKBONES
As shown in Tab. 3, we compared the results with ResNet-18,
ResNet-50 and ResNet-101 as the backbone. The ResNet-18
gets the best efficiency and worst accuracy. On the contrary,
the ResNet-101 gets the worst efficiency and best accuracy.
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FIGURE 6. Visual examples with or without various modules.

TABLE 3. The effectiveness of different backbone.

TABLE 4. Effects of various convolutional layer kernel sizes of the EPEM.

Therefore, considering the advantage and disadvantage of the
three backbones, we choose the ResNet-50.

2) THE EFFECTIVENESS OF THE EDGE PROFILE
ENHANCEMENT MODULE
To evaluate the effectiveness of the EPEM, we compare the
results with and without EPEM. As shown in Fig. 6, before
adding the EPEM, most of our detection results have some
false detections or detection loss. After adding the EPEM,
our detection results are greatly improved. We select four
metrics, namely, MAEe, MAE , Sme and Sm, to compare the
accuracy of the test results. As shown in Tab. 5 and Fig. 6, the
proposed method achieves higher accuracy with the EPEM.
On the DUT-COMPLEX, the performance on all four metrics
is clearly improved with the EPEM. These results prove

that the salient edge information is very useful for the SOD
task and that multiscale dilated convolutions can improve
the accuracy of object detection. In addition, we compared
the experimental results of the EPEM in two ways: different
dilation rates (the same kernel size 3 × 3 with different
dilation rates 1, 3, 5 and 7) and different kernel sizes(the
different kernel sizes 1 × 1, 3 × 3, 5 × 5 and 7 × 7 without
dilation rates). As shown in Tab. 4, the EPEM can get better
results in the same kernel size with different dilation rates.

3) THE EFFECTIVENESS OF THE CHANNEL
ATTENTION MODULE
To evaluate the effectiveness of the CAM, we compare our
method with and without the CAM. By comparing the test
results on theDUT-OMRONandDUT-COMPLEX, as shown
in Tab. 5 and Fig. 6, we find that the CAM improves the
efficiency with little reduction in accuracy. As the CAM
reduces the amount of redundant information, it improves the
detection speed.

4) THE EFFECTIVENESS OF THE FUSION FEEDBACK MODULE
The FFM is used to combine the edge branch and the
body branch. To evaluate the effectiveness of the FFM,
we compared the results that are obtained with and without
the FFM. As shown in Fig. 6, after adding the FFM, our
results are further improved compared with adding a module
alone and are more complete in terms of edge detail detection.
As shown in Tab. 5, the FFM results in a slower detection
speed, but the speed is still higher than those of othermethods.
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TABLE 5. Ablation analyses on DUT-COMPLEX and DUT-OMRON. B denotes the backbone, EPEM denotes the edge contour enhancement module, CAM
denotes the channel attention module, FFM denotes the fusion feedback module, and red indicates the best result.

The FFM feeds back the rough saliency maps to extract more
accurate results. However, during the test, the FFM increases
the number of calculations that are required.

V. CONCLUSION
In this paper, we propose a double-branch network for SOD.
To improve the detection accuracy and efficiency, we propose
the inclusion of EPEM, CAM and FFM components. The
EPEM provides multiscale edge features for edge branch
to improve the accuracy. Experimental results show that
the EPEM yields more accurate results for complex objects
than single-scale methods. Extracting features from two
branches may cause information redundancy and require
expensive computations. The CAM can suppress redundant
information and raise the detection efficiency. The FFM can
combine the information of the two branches and improve
the accuracy through feedback. In this paper, we propose
a fine version and a rough version. The fine version can
greatly improve the detection accuracy. The rough version
can greatly improve the detection speed with little reduction
in accuracy. In addition, our method obtains better results in
detecting objects with complex shapes. Using 9 datasets to
evaluate the performance of the proposed method, we find
that our method outperforms 8 state-of-the-art methods under
a variety of evaluation metrics and has a real-time speed
of 73 FPS.
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