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ABSTRACT To fulfil the tight area and memory constraints in IoT applications, the design of efficient
Convolutional Neural Network (CNN) hardware becomes crucial. Quantization of CNN is one of the
promising approach that allows the compression of large CNN into amuch smaller one, which is very suitable
for IoT applications. Among various proposed quantization schemes, Power-of-two (PoT) quantization
enables efficient hardware implementation and small memory consumption for CNN accelerators, but
requires retraining of CNN to retain its accuracy. This paper proposes a two-level post-training static
quantization technique (DoubleQ) that combines the 8-bit and PoT weight quantization. The CNN weight is
first quantized to 8-bit (level one), then further quantized to PoT (level two). This allows multiplication to be
carried out using shifters, by expressing the weights in their PoT exponent form. DoubleQ also reduces
the memory storage requirement for CNN, as only the exponent of the weights is needed for storage.
However, DoubleQ trades the accuracy of the network for reduced memory storage. To recover the accuracy,
a selection process (DoubleQExt) was proposed to strategically select some of the less informative layers in
the network to be quantized with PoT at the second level. On ResNet-20, the proposed DoubleQ can reduce
the memory consumption by 37.50% with 7.28% accuracy degradation compared to 8-bit quantization.
By applying DoubleQExt, the accuracy is only degraded by 1.19% compared to 8-bit version while achieving
a memory reduction of 23.05%. This result is also 1%more accurate than the state-of-the-art work (SegLog).
The proposed DoubleQExt also allows flexible configuration to trade off the memory consumption with
better accuracy, which is not found in the other state-of-the-art works. With the proposed two-level weight
quantization, one can achieve a more efficient hardware architecture for CNN with minimal impact to the
accuracy, which is crucial for IoT applications.

INDEX TERMS Convolutional neural network, quantization, Internet of Things, deep learning, field
programmable gate array.

I. INTRODUCTION
Recently, the use of convolutional neural network (CNN)
in IoT applications is becoming popular, which were
demonstrated through a series of recent works ( [1]–[5]). IoT
sensors are battery operated, placed at remote area and are
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expected to operate over a long duration without replacing
the battery. This implies that low energy consumption is
a critical design factor. Conventional CNN computation
using Graphical Processing Unit (GPU) is not ideal in
such scenario, as it leads to high power consumption.
As such, efforts have beenmade to implement dedicatedCNN
accelerators using Field Programmable Gate Array (FPGA)
to achieve a more energy efficient solution. However, CNN
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computation involves floating-point operations that are slow
and complex when implemented on FPGA. Due to this
reason, techniques to quantize the CNN network into integer
values are being researched recently. This allows the CNN
computation to be performed in integer domain, which is
faster and more area efficient for FPGA implementation.

In general, quantization of CNN can be performed through
retraining (e.g., [8]–[11]) or post-training static quantization
(e.g., [12], [13]). The retraining methods are known to
recover most of the accuracy caused by quantization, but
requires retraining of CNN. However, retraining activities
involve additional cost (infrastructures with GPU) and time.
Moreover, due to privacy issues, we may not always able
to access the original training dataset to perform retraining.
This is especially true for training data of medical related
applications [6], [7] and user data for recommendation
system. Hence, the retraining method only suitable for
scenario where the training dataset is available.

Post-training static quantization directly quantize a pre-
trained 32-bit floating-point CNN and does not require
retraining; our work follows this direction. Post-training
quantization is a more practical and generic solution as it
does not involve the training process with original dataset.
This technique is able to reduce the model size, retain the
accuracy to an acceptable level ( [12], [13]). For instance,
Wu et al. [13] proposed to quantize ResNet-50 to 7-bit
integer, which reduces the classification accuracy only by
0.16%. These proposed techniques achieve low degradation
in accuracy, but they require integer multipliers, which is
usually mapped to Digital Signal Processing (DSP) units that
are limited in number in FPGA.

In recent years, several works ( [14], [15]) were shown to
perform log2 (a.k.a power-of-two (PoT)) weight quantization,
whereby the CNNmodelmemory size can be greatly reduced.
At the same time, the PoT weight quantization technique
allows integer multipliers to be replaced by shifters to
lower the complexity for CNN hardware implementation.
This is because when the multiplicand is in PoT form,
the multiplication can be performed in simple shift process
without using a costly multiplier. However, their technique
involves retraining in order to retain a suitable accuracy level.

This work proposes a two-level weight quantization
schemewhich achieves several advantages compared to state-
of-the-art works: no-retraining, low accuracy degradation,
low memory consumption and low hardware complexity.
Experiments on quantized network accuracy of ResNet-20
and ResNet-56 were performed for CIFAR10 dataset classifi-
cation. To cater for real-world application, ImageNet dataset
classification accuracy were assessed for the quantized
ResNet-18 and ResNet-34 using our proposed quantization
scheme. Hardware resource utilization were also assessed by
implementing the hardware design for our proposed scheme
on Artix-7 and ZCU102 Xilinx FPGA. The contributions of
this paper are summarized as follows:
1) DoubleQ, a two-level post-training static weight quan-

tization technique, is proposed. DoubleQfirst quantizes

the CNN weights into 8-bit, and then further quantizes
it into the PoT form. This allows the processing ele-
ment (PE) to be implemented using lower complexity
shifters rather than the costly DSP units.

2) Since DoubleQ quantizes the CNN weights into PoT,
allowing them to be multiplied using shifter, only
their PoT exponents are needed for the hardware. This
allows a more compact storage for the PoT weights
as the exponents can be encoded using lesser bitwidth
(Refer to Section II-B).

3) To recover the accuracy, DoubleQExt, a mixed 8-bit
and PoT weight quantization scheme, is proposed to
perform PoT quantization only on less informative
layers. In return, it requires a heterogenous core for
hardware implementation to support 8-bit multipli-
cation and shifting operation. This approach slightly
trades-off the hardware area for a better accuracy
compared to DoubleQ, but still consumes lesser
memory for storage as compare to 8-bit quantization.
It can be controlled to quantize lesser or more layers
in PoT quantization; flexible trade-off between lower
memory consumption and better accuracy of the target
CNN. This is a feature which is not found in existing
PoT weight quantization schemes.

4) For ResNet-20, DoubleQ saves 37.50% of memory
compared to a single level of 8-bit weight quantization,
with 7.28% accuracy degradation. With DoubleQExt,
the accuracy degradation is reduced to only 1.19%
and 23.05% memory reduction achieved compared to
a single level 8-bit weight quantization.

5) Experimental result shows that our proposed scheme
achieves 1% less degradation than the state-of-the-art
PoT scheme [16] with comparable memory compres-
sion rate.

Table 1 summarizes the brief description on some of the
frequently used quantization schemes in this paper.

Our paper is organized as follows: Section II presents
the background on quantization and the motivation of this
work. Section III presents our methodology on DoubleQ.
Section IV discusses our experimental result and comparison
with related work. Lastly, we conclude our work in Section V.

II. BACKGROUND AND MOTIVATION OF DoubleQ
A. QUANTIZATION OF CONVOLUTIONAL NEURAL
NETWORKS (CNN)
Quantization refers to the transformation process that con-
verts the 32-bit floating-point into low precision integer
values. In general, it scales down the storage size for the
input feature maps and kernel maps required to perform
convolution, reduces overall memory transaction required
between on-chip and off-chip memory storage, and further
resolves the exponential growth in size of the computation
data for CNN as the network goes deeper. At least 4×
of memory reduction is expected when 32-bit values are
quantized into 8-bit. At the same time, inference speed can
also be improved. For instance, an 8-bit integer multiplier
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TABLE 1. Important quantization scheme and terminologies in this paper.

is much faster than its 32-bit floating-point counterpart.
Some existing quantization techniques require retraining of
the network (LQ-Nets [9], [17]), which is not flexible in
many occasions. Hence, this work only focuses on post-
training static quantization that does not require retraining.
The quantization of weights is described below [18], [19]:

qint = round(float ÷ scale+ offset) (1)

scale = (floatmax − floatmin)÷ (qmax − qmin) (2)

offset = qmin − (floatmin ÷ scale) (3)

In Eq. 1, floating-point (float) values are quantized into
integers (qint ) by dividing it with a scale, and adding the offset
in the respective layer. Eq. 2 shows how scale is calculated
using the maximum and minimum values from the original
floating-point parameter distribution in the respective layer.
qmax and qmin is the maximum and minimum value of
the desired precision in integer (e.g., qmax = 127 and
qmin = −128 for signed 8-bit quantization). Eq. 3 shows the
equation to calculate offset, an integer value that represents
the value zero of floating-point before quantization with
respect to the targeted quantized range. By employing these
three equations, 32-bit floating-point can be quantized into
8-bit integer with little to no accuracy degradation. This
enables floating-point multipliers to be replaced with integer
multipliers, which are much faster and smaller in chip area.

B. MOTIVATION: WHY ANOTHER LEVEL OF
QUANTIZATION?
Power-of-Two (PoT) quantization has been explored in
several previous weight quantization works ( [14]–[16])
and the quantized results on floating point weights are
widely reported. Central to this idea is the observation
that PoT multiplication can be easily achieved through

bit-shifting whereby the costly multipliers are replaced by
simple shifting hardware. However, recent work on PoT
quantization is performed directly on floating-point weights
([14], [15]) and typically requires retraining of the network
to recover the accuracy. We aim to achieve retrain-less
PoT weight quantization, without degrading the accuracy
severely. As such, this work aims to explore PoT weight
quantization from integer domain, instead of floating-point
domain.

Trained network weights are real numbers that typically lie
within the range [−1,1] and exhibit normal distribution [15].
Performing PoT weight quantization on these floating-
point numbers would result in power-of-two number with
negative exponents (see Table 2). In base-2, multiplication
between activation and PoT weight with negative expo-
nent due to recent year PoT weight quantization scheme
[14]–[16] is essentially a division operation, which is
performed through right shift. Designing a hardware module
to handle this truncation incurs more hardware consumption,
which defeats the original purpose of replacing multipliers
with shifters.

TABLE 2. Comparison of PoT quantization on floating-point weights vs
8-bit quantized weights.

By leveraging the retrain-less benefit of post-training static
weight quantization, this paper proposes DoubleQ, a two-
level weight quantization scheme. It first performs post-
training static 8-bit quantization on the network weight,
followed by another level of PoT weight quantization. After
two levels of quantization, the resulting PoT values are in
positive exponents, enabling multiplication in base-2 using
left-shifting, which is very efficient for hardware implemen-
tation. This also greatly improves the speed performance
and reduces the memory consumption (network weights
size). To implement this in hardware using shifters, the
PoT weights can be converted to their exponent form to
further reduce the storage space. Since weight is available
offline, the PoT weight quantization and its conversion to
encoded 5-bit format can be performed before executing
the model. Hence, no weight quantization overhead will be
incurred during hardware execution. Figure 1 shows a sample
PoT quantization from 8-bit integer and its storage in 5-bit
encoded format. However, since 5-bit is not a conventional
datatype in existing computer system, we propose to store
the encoded 5-bit weight using datatype unsigned short int.
At each 16-bit location, 5-bit encoded weight will be stored in
a pack of three. This allows amore compact storage compared
to storing 8-bit weight. The comparison of 8-bit and 5-bit
weight storage is illustrated in Fig 2.
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FIGURE 1. Example of PoT quantization on 8-bit integer to 5-bit PoT
weight. The PoT weight is converted to encoded format for compact
storage.

FIGURE 2. Comparison between 8-bit integer weight and 5-bit PoT weight
storage using unsigned short int datatype. ‘‘X’’ is a 1-bit don’t-care, and
will be discarded during computation.

C. RELATED WORKS
Efficient CNN hardware implementation has been actively
research, to exploit useful applications of CNN on embedded
devices. However, CNN in general involves heavy com-
putation of floating-point multiplication and accumulation
(MAC), which requires the use of GPU. Due to this reason,
Li et al. [20] introduced a high throughput and low power
hardware architecture on FPGA, which is more energy effi-
cient compared to GPU. In terms of FPGA implementation,
floating-point number multiplication is usually mapped to
Digital Signal Processing (DSP) units, which are limited
on FPGA. Hence, the previous works that proposed CNN
architecture implementations on FPGA, usually focuses
on how to reduce hardware resource consumption for the
floating-point MAC operations.

In the work by Wang et al. [21], the authors proposed
to compute CNN convolution using parallel Fast Finite
Impulse Response Algorithm (FFA), an algorithm for digital
signal processing. Their approach involves expressing the
floating-point input feature map and weight parameter as
time domain term, and computed efficiently using the
proposed FFA algorithm. As reported in [21], the FFA
algorithm was able to reduce 33% multiplications from total
computation in CNN layers with 3 × 3 kernels. Another
approach in work by Zhang et al. [22] however, instead
of reducing number of multiplications, they proposed to

overlap multiplication operations using lesser DSP units.
Zhang et al. [22] proposed customized 9-bit floating-point
format, as opposed to conventional 32-bit floating-point
format. The reduced floating-point format enables them to
overlap four floating-point multiplications using only 2.25
DSP slices, as opposed to a single conventional 32-bit
floating-point multiplier that requires at least 18 DSP slices.
While these work ( [21], [22]) has shown that it is possible to
efficiently implement floating-point operations for CNN in
FPGA, it is still relatively less efficient to be implemented as
opposed to integer hardware.

It is worth noticing, however, in recent years, various
quantization solution have been proposed, specifically,
post-training static quantization [23]–[25] that does not
involve retraining of the neural network. In the work by
Fang et al. [23], the authors proposed to split the weight
distribution into multiple regions. For each region, the
weights are then quantized with their respective scaling
factors to convert to their respective integer ranges. However,
owing to the requirement of the proposed scheme, each region
of the weight distribution represents a separate computation
path, due to the differences in their scaling factors. This
requirement, as commented by the authors [23], specified that
at least three or more accumulators are required based on
the number of regions the weight distribution is split into.
The number of accumulators (at least three) tied to each
multiply and accumulate (MAC) processing element (PE)
might require more hardware resource for implementation,
not to mention that existing CNN accelerators usually
implements large number of PE in parallel to achieve high
performance computation. In the work by Kim et al. [24] and
Cai et al. [25], they proposed efficient search algorithm to
find the optimal bitwidth for each of the layer weights. This
scheme results in mixed precision for the network weights,
where each layer might be represented using a different
bitwidth.While themixed-precision scheme is good to reduce
overall network memory size for storage, the mixed data
bitwidth could cause overhead during hardware access to
decode from its compacted storage format. Furthermore, due
to multiple bitwidth requirements between layers, a universal
PE would be needed to support efficient computation of
various bitwidth. Thismight not reduce the hardware resource
implementation even though the data bitwidth has been
reduced.

As such, supported by breakthrough of integer quantization
for CNN, integer implementation for CNN in FPGA can
also be seen in recent years work. While integer quantization
reduces hardware implementation complexity for CNN,
it does not reduce the computation load as compared to FP
domain. To maintain performance with limited number of
DSP, Lee et al. [26] performs algorithmic improvement on
CNN convolution computation to optimize DSP utilization.
In the work by Lee et al. [26], the Double MAC architecture
was proposed and implemented on the off-the shelf DSP
unit in FPGA. A typical DSP unit on FPGA performs a
single multiplication between 2 input operands at every cycle.
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The Double MAC technique proposed trades-off extra logic
to be designed on top of theDSP, but enables 2multiplications
to take place between 3 operands. Their approach enables 2x
throughput improvement for the convolutional layer.

All works ( [21], [22], [26]) mentioned above proposes
efficient techniques that emphasizes on reducing resource
requirement for MAC operations, but they are still highly
dependent on DSP units. On FPGA, not only the DSP
are limited, they also consume large area, which can be a
limitation to some applications that need small hardware area.

While multiplication operation is inevitable in CNN, it is
worth noticing that, multiplier-less solution can be seen in
several work, by replacing multiplications using shifters.
This was made possible due to quantization to base-2
domain [16] or algorithmic modification [28]. In the work by
Xu et al. [16], their proposed scheme quantizes weights into a
mix of base-2 and base-

√
2. However, their proposed scheme

quantizes weight directly from the floating-point domain.
As discussed in Section II.B, the resultant weight will be
in PoT with negative exponents, which can be achieved as
through right shifting in base-2 domain. While efficient to
be implemented as hardware, there is no guarantee that the
division in PoT would not yield any remainder and could
cause value truncation. This effect might add another level of
quantization error, on-top of the already induced quantization
error due to constraining full precision 32-bit to narrower
precision floating-point value, so that it is representable in
base-2 domain.

Besides quantization, there are some other recent works
that focus on developing efficient hardware architecture
through hardware/software co-design approach. One of the
representative works along this direction is from You and
Wu [27], wherein a framework was proposed to optimize the
sparse CNN and implemented on FPGAs.

Another interesting work was presented by Parmar and
Sridharan [28], their proposed technique modifies the
underlying CNN MAC operation between input feature
map and weight parameters. The weight parameters are
substituted with trigonometric functions, which enables the
CNN MAC operation to be performed using CORDIC
algorithm. When translated into hardware, the CORDIC
algorithm requires only adders, shifters and multiplexers,
as opposed to multipliers in conventional MAC operation.
However, the proposed CORDIC algorithm when executing
in hardware, requires a minimum of 3 clock cycle to produce
one product term, as opposed to conventional shifting or
multiplication operation that can be achieved within 1 clock
cycle. The proposed scheme [28] trades off computation
speed for efficient CNN FPGA implementation.

III. THE PROPOSED DoubleQ SCHEME
This section describes the proposed post-training static
quantization that does not require any form of retraining.
We first introduce the proposed DoubleQ and discuss its
limitations. Then, we present a technique to improve the
accuracy of DoubleQ, which is named as DoubleQExt.

FIGURE 3. DoubleQ and DoubleQExt quantization process.

A. OVERVIEW OF DoubleQ: TWO LEVELS OF
QUANTIZATION
The proposed DoubleQ scheme (Refer to Figure 3) goes
through two levels of quantization. A pretrained 32-bit
floating-point CNN is first quantized into an 8-bit integer
CNN. The 8-bit quantization is applied to both weight and
activation. However, unlike weight that can be quantized
offline, quantization parameter for the activation is obtained
by inferencing on a small set of calibration data (extracted
from the test dataset). Then, activation is quantized to 8-bit
on the fly using these precomputed quantization parameters.
For the weight, another level of quantization using the
log2 function is applied to the 8-bit integer weights to obtain
PoT quantization. The resultingweights from these two levels
of quantization are then used in the inference process.

To evaluate the effect of DoubleQ, a preliminary exper-
iment was conducted on MNIST and CIFAR10 dataset for
classification tasks. For MNIST dataset, we used a pretrained
network adopted from [29]; for CIFAR10, ResNet-20 and
ResNet-56 networks from [30] were used. All networks are
pretrained in 32-bit floating-point (Float). These networks
are first quantized into 8-bit (Quant8), followed by PoT
quantization on the convolutional layers. The results are
shown in Table 3.

TABLE 3. Top-1 accuracy and memory requirement comparison between
each scheme.
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From Table 3, we can see that DoubleQ does not degrade
the accuracy of MNIST dataset classification. However, its
memory consumption is reduced by 84.4%when compared to
Float. Thismemory reduction is achieved by storingDoubleQ
weights in exponent format, which is representable within
5-bit range. For CIFAR10, classification using ResNet-20
with DoubleQ suffers 7.28% accuracy degradation compared
to Quant8. However, the larger ResNet-56 network accuracy
degradation is only at 3.67%. Similar to MNIST dataset
classification, 84.4% memory reduction is achieved as well
for both ResNet-20 and ResNet-56 when compared to
Quant8. These results show that DoubleQ is a promising
solution to reduce the memory consumption at the expense
of accuracy degradation. This technique does not require any
retraining compared to existing works [14], [15]. DoubleQ
simplifies the implementation of CNN accelerator, as it only
requires shifter, which is much resource efficient for hard-
ware implementation compared to 32-bit floating-point and
8-bit multiplier. However, this level of accuracy degradation
might be undesirable for some critical applications that could
only tolerate minimal classification error. To cater for such
requirement, we propose another strategy to improve the
accuracy of DoubleQ, which is presented subsequently.

B. DoubleQExt: RECOVERING THE ACCURACY
To recover accuracy degradation introduced in DoubleQ,
DoubleQExt (Refer to Figure 3) is proposed. DoubleQExt
only performs two-level quantization on selected convolu-
tional layers, in contrast to DoubleQ that affects all layers.
The selection criteria in DoubleQExt are based on aMinimum
Recovery Threshold (M.R.T), which is the targeted recovery
percentage from the accuracy degradation experienced by
applying DoubleQ.

Algorithm 1 Pseudocode of DoubleQExt
1: Set all layers to double quantization (DoubleQConv)
2: Evaluate initial accuracy
3: Initialize critical layer to 0
4: do
5: for j in layer list do
6: Convert layer[j] to Quant8Conv
7: Evaluate latest accuracy
8: Compare latest accuracy with initial accurracy
9: if recovered accuracy is highest then
10: Revert previous critical layer to DoubleQ-

Conv
11: Record j as critical layer
12: end if
13: end for
14: Remove critical layer from layer list
15: while accuracy recovery < M.R.T

Algorithm 1 shows detailed steps to select the best com-
bination of convolutional layers to apply double quantization
(DoubleQConv), which eventually incurs the least accuracy

degradation. Hence, its main purpose is to find the critical
layers that should be remained in 8-bit precision.

Firstly,DoubleQConv is applied on all convolutional layers
to find the initial accuracy (line 1∼2) before starting the
selection process (line 4∼15). Applying DoubleQConv on
all layer’s results in a drop in accuracy. The following
steps recover some of the accuracy loss by identifying the
critical layers to be reverted to a less aggressive single
quantization (Quant8Conv). During the selection process,
all existing convolutional layer (line 5) will be assessed,
wherein Quant8Conv (line 6) is applied. Following this, its
classification accuracy is evaluated (line 7) and compared
with the initial accuracy (line 8), to calculate the recovered
accuracy. If the currently recovered accuracy is the highest
(line 9), the current layer will be selected as the new critical
layer (line 11) and the previously selected layer will be
reverted back to DoubleQConv (line 10). After all existing
layers have been assessed, the selected critical layer is
removed from the existing layer list (line 14) to prevent
it from being assessed again in subsequent iteration. The
process stops when the algorithm achieves the desired M.R.T
(line 15).

TABLE 4. Performance recovered for ResNet-20 using DoubleQExt.

IV. RESULT AND DISCUSSION
A. NETWORK PERFORMANCE ASSESSMENT
Table 4 shows the performance recovered by applying
Algorithm 1 (DoubleQExt) to ResNet-20 and evaluated on
CIFAR10 for different values of M.R.T. ‘‘Critical Layers’’
are layers that are sensitive to DoubleQ and should be
remained as 8-bit, to achieve better classification accuracy.
‘‘0% M.R.T’’ refers to DoubleQ ResNet-20 without the
improvement fromDoubleQExt algorithm. By only removing
three layers (0, 5 and 8), at least 50% of accuracy was
recovered. When DoubleQExt is applied with higher M.R.T,
most of the accuracy can be recovered at the expense of lesser
memory reduction. In other words, by mixing 8-bit and PoT
quantization at different layers, the accuracy degradation is
much lesser compared to applying DoubleQ at all layers.

Note that M.R.T can be used as a metric to select the
desired accuracy and memory trade-off. Referring to ResNet-
20, applications that requires high accuracy may choose
minimum accuracy degradation (i.e.,≤ 2%) by settingM.R.T
to 70% ∼ 90% with a higher memory consumption. On the
other hand, one can sacrifice accuracy to achieve lowmemory
consumption by choosing an M.R.T value of 50% ∼ 60%.
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TABLE 5. Performance on ImageNet DAtaset using DoubleQExt.

This flexible trade-off feature has been shown to be very
useful, which is not found in other state-of-the-art works.

To further assess the effectiveness of DoubleQExt, we per-
formed experiment on two representative networks (ResNet-
18 and 34 from [31]) for ImageNet classification task. From
Table 4, it can be seen that, the DoubleQExt reduces the
top-5 accuracy of ResNet-18 by 1.04% only, while achieving
82.0% of memory reduction. Similarly, in ResNet-34, the
accuracy is degraded only by 1.12%, while achieving 83.2%
of memory reduction. The memory size of ResNet-18 and
34 after DoubleQExt quantization is relatively small, which
is suitable for FPGA implementations.

FIGURE 4. Top-level view of proposed hardware architecture.

B. HARDWARE IMPLEMENTATION ASSESSMENT
Figure 4 illustrates the top-level view of the proposed
hardware architecture. Multiple multiply-and-accumulate
(MAC) array slices are implemented in parallel to increase
computation throughput. In each slice, processing ele-
ments (PE) performs multiplication and the resultant product
is accumulated using adder tree. Each PE is implemented
using only LUT and FF, or only DSP. Three hardware
schemes are implemented: conventional 8-bit quantization
(Quant8); double quantize all layer (DoubleQ), mixed 8-bit
and double quantization (DoubleQExt) with 80% M.R.T
(Refer to Section IV-A). The PE internals differ between
three hardware schemes: conventional 8-bit quantization
(Quant8); double quantize all layer (DoubleQ), mixed 8-bit
and double quantization (DoubleQExt) with 80% M.R.T
(Refer to Section IV-A). Their respective PE implementation
are shown in Figure 5.

For Quant8 scheme, the multipliers are implemented using
DSP units. Whereas for DoubleQ and DoubleQExt scheme,
their implementation mainly uses Look-Up Tables (LUT) and
Flip-Flops (FF) only. The DoubleQ consists of a shifter that

FIGURE 5. Comparison of PE implementation based for different
quantization scheme.

takes in 8-bit inputs and 5-bit shift amount (PoT weight) and
computes a 16-bit output. For DoubleQExt PE, it consists of
8-bit multiplier, a shifter and a multiplexer to select outputs
between the shifter and multiplier. The multiplexer selects
output based on configuration obtained from DoubleQExt
algorithm as discussed in Section IV-A. While the number of
components is more as compared to Quant8 and DoubleQ,
DoubleQExt needs lesser hardware resources compared to
Quant8, and achieved better accuracy compared to DoubleQ.
These comparisons are further shown in Table 6.

TABLE 6. Implementation result for ResNet-20 on Artix-7
(xc7a100tcsg324).

Table 6 shows the comparison between each scheme when
implemented for ResNet-20 on Artix-7 (xc7a100tcsg324),
synthesized using Vivado 2017.2. As mentioned in Section I,
the 8-bit integer multiplier in Quant8 was mapped into DSP
by the synthesizer. This limits the design to only able to
implement 240 PE, which is the maximum number of DSP
available on Artix-7. This shows that, DSP limitation on
an FPGA is a crucial design consideration for conventional
8-bit quantized CNN hardware implementation. To further
compare Quant8 with DoubleQ and DoubleQExt, we calcu-
lated the equivalent Look-Up Tables (LUT) and Flip-Flops
(FF) count used by the total number of DSP by Quant8. The
equivalent LUT and FF count are obtained from synthesis
report of Vivado IP generator by generating an equivalent
multiplier size that follows the setting of a single DSP unit
on Xilinx FPGA, which is a 25 x 18 multiplier.

For DoubleQ and DoubleQExt, we constrained the syn-
thesizer to map into purely LUT and FF. This allows us
to implement more PE as compared to Quant8 design.
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However, DoubleQExt requires both 8-bit multiplier and
shifter PE for mixed layer computation. Hence, DoubleQExt
consumes more LUT compared to DoubleQ that only uses
shifter-based PE. Similarly, DoubleQExt also consumes
more memory compared to DoubleQ. However, DoubleQExt
requires 57.2% LUT and 82.9% FF lesser than Quant8; it can
also achieve a higher accuracy (91.09% vs 85.00%) compared
to DoubleQ and lower memory consumption compared to
Quant8.

TABLE 7. Comparison with existing mixed precision scheme [25] and
hardware design requirement.

C. COMPARISON WITH RELATED WORKS
Table 7 compares the existing mixed precision scheme
with DoubleQExt. The work by Cai et al. [25] proposed a
mixed precision of 2, 4, 6 and 8-bit solution. Their scheme
requires a PE design that supports 4 different bit-widths
computations. This introduces a more complicated design
requirement, as the data path and control circuitry need to be
able to perform scalable multiplication operation, on the fly.
Such requirement would introduce more hardware resources
during FPGA implementation. In contrast, our DoubleQExt
scheme only needs to switch between two modes, which
is multiplication or shifting. In comparison, DoubleQExt
has a simpler requirement which is much more hardware
efficient to be implemented in FPGA. It should be noted
however, DoubleQExt is much more suitable for error-
tolerant applications.

TABLE 8. Comparison with floating point [22] and 8-bit integer [28]
system.

In Table 8, DoubleQExt is compared with the floating-
point system [22] and 8-bit integer system [28]. To ensure
fair comparison, we synthesize our proposed DoubleQExt
with the layout of nine PE, which is identical to [22]
and [28]. Zhang et al. [22] proposed a 9-bit floating point
system, which has lower hardware area than conventional
32-bit floating point system. Their implementation not

only requires DSP unit, but also requires a lot of LUT
and FF. The proposed DoubleQExt consumes 56.7% and
91.2% lesser LUT and FF respectively compared to [22].
Since DoubleQExt does not consume any DSP, it is much
smaller in terms of hardware. Parmar and Sridharan [28]
proposed a CORDIC based algorithm to replace the multiply
and accumulate (MAC) required in CNN computation.
DoubleQExt consumes 30.0% and 76.9% lesser LUT and FF
respectively compared to [28]. Although they do not require
DSP, unlike DoubleQExt, their technique needs retraining.
In terms of memory consumption, [22] stores the network
weights in 9-bit, while [28] stores them in 8-bit. DoubleQExt
requires lesser memory consumption as the network weights
are stored in a mixture of 8-bit and 5-bit size. This shows
that DoubleQExt is more hardware and memory efficient
compared to state-of-the-art works.

TABLE 9. Comparison with Xu et al. [16].

Table 9 compares the proposed solutions with SegLog,
a state-of-the-art PoT scheme by Xu et al. [16]. SegLog
performs a mix of log2 and log√2 quantization on the
CNN weights. To ensure a fair comparison, we performed
the DoubleQ and DoubleQExt experiment following the
same experiment settings as performed by Xu et al. [16].
We use the same network, ResNet-34, to perform the same
task, image classification, on the same dataset, which is
ImageNet to ensure the validity of our comparison. While
not mentioned, we believed their [16] quantized accuracy
is measured against the benchmarking result of original
ResNet-34 (fp32) on ImageNet classification. We performed
our DoubleQ and DoubleQExt experiment and compare
with the original fp32 ResNet-34 to calculate the accuracy
degradation. We then compare the accuracy degradation from
our experiment against the result of Xu et al. [16]. With
the same experimental setting and benchmarking target, the
relative difference between Xu et al. [16] and our accuracy
degradation serves to prove the significance of our proposed
scheme. DoubleQExt can achieve x6.0 memory reduction
with 1.12% accuracy degradation, compared with the 32-bit
floating-point ResNet-34. Compared to SegLog [16], Dou-
bleQExt achieved 1% lesser degradation, but consumes
6.25% more memory. In terms of hardware implementation,
the LUT consumption of DoubleQExt is similar to SegLog
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(∼113k). However, if high accuracy is not mandatory,
the proposed DoubleQ can save 38.8% LUT compared to
SegLog. Furthermore, the memory size and accuracy can be
trade-off flexibly in DoubleQExt; this is a useful feature not
found in SegLog.

The use of FPGA based CNN accelerator is becoming a
trend recently. This is also in line with the emerging trend
in using FPGA based processor [32] for IoT applications.
The proposed DoubleQExt technique is useful for IoT
applications, in which the memory size and accuracy can be
trade-off according to the requirements (i.e., high accuracy or
low memory consumption).

V. CONCLUSION AND FUTURE WORK
A. CONCLUSION
This paper proposes DoubleQ, a post-training static quanti-
zation scheme for reduced CNN hardware implementation.
DoubleQ performs two levels of quantization (8-bit and PoT
quantization) on the CNN network to significantly reduce
the memory consumption (37.50% further reduction from
8-bit quantization), in the expense of reduced accuracy. This
enables the hardware implementation to replace multipliers
with low complexity shifters. DoubleQExt, a strategic layer
selection algorithm is also proposed to improve the accuracy
of DoubleQ. As a result, the original DoubleQ ResNet-20
with 7.28% accuracy degradation (compare to 8-bit network)
is at 1.19% only, while achieving 23.05% memory reduction
after applying DoubleQExt. Comparison with the state-of-
the-art CNN accelerator [16] further shows that DoubleQExt
achieve 1% lesser degradation (with x6.0 times memory
compression compared to 32-bit floating-point network) on
ImageNet classification. DoubleQExt also allows flexible
trade-off in memory size and accuracy, which is a distinctive
feature that is not commonly found in existing works. This
can be a promising solution for IoT applications, wherein
sensor nodes implemented on FPGA may have different
memory constraints and accuracy requirements.

B. FUTURE WORK
The use of deep learning in IoT systems is limited
due to the large memory consumption. A typical sensor
node implemented using microcontroller, may only have
a few megabytes (MB) of RAM storage. For instance,
STM32F743 [33] is a high-end microcontroller used to build
IoT sensor nodes, it only has 2MB of flash memory and 1MB
of RAM storage to store all the firmware and data. Due to
this reason, popular deep learning networks like ResNet-20
(1.08MB) and ResNet-56 (3.40MB) are almost impossible to
be stored in such constrained devices. However, by applying
the proposed DoubleQ (see Table 2), the networks are
compressed down to less than 600 kilobytes (KB) only.
This allows the use of such deep learning networks in IoT
applications, in the expense of some accuracy lost, which
is within the tolerance. Considering an FPGA-based sensor
node, DoubleQExt does not utilize any DSP, hence it can be

a more lightweight solution compared to the previous works
(see Table 7). A practical implementation and evaluation of
such system under actual IoT application scenario would be
an interesting future direction.
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