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ABSTRACT A CNN-based interactive contrast enhancement algorithm, called IceNet, is proposed in this
paper, which enables a user to adjust image contrast easily according to his or her preference. Specifically,
a user provides a parameter for controlling the global brightness and two types of scribbles to darken or
brighten local regions in an image. Then, given these annotations, IceNet estimates a gamma map for the
pixel-wise gamma correction. Finally, through color restoration, an enhanced image is obtained. The user
may provide annotations iteratively to obtain a satisfactory image. IceNet is also capable of producing
a personalized enhanced image automatically, which can serve as a basis for further adjustment if so
desired. Moreover, to train IceNet effectively and reliably, we propose three differentiable losses. Extensive
experiments demonstrate that IceNet can provide users with satisfactorily enhanced images.

INDEX TERMS Interactive contrast enhancement, personalized contrast enhancement, convolutional neural
network, adaptive gamma correction.

I. INTRODUCTION
Despite recent advances in imaging technology, photographs
often fail to represent scene details faithfully due to challeng-
ing factors, which include non-uniform exposure, short shut-
ter cycle, and weak ambient light. Such photographs exhibit
contrast distortions, color fading, and low intensity; espe-
cially, abnormal light conditions would distort colors, texture,
and objects considerably, thereby degrading the visual expe-
rience. Contrast enhancement (CE) techniques can alleviate
these problems.

Many attempts have been made to develop effective CE
techniques [1]–[6]. A simple but efficient approach is to use
parametric curves for transformation functions from input to
output pixel values [2], [6]–[9]. For example, a power law is
a well-known parametric curve for gamma correction [10].
These parametric curves produce promising results, but it is
challenging to find reliable parameters, which are effective
for diverse images. Recently, with the success of convo-
lutional neural networks (CNNs) in the field of low-level
vision [11]–[14], CNN-based CE methods also have been
proposed, yielding outstanding performance [15].

Many researches have been carried out to performCE auto-
matically. However, CE is a subjective process because peo-
ple have different preferences for contrast. Note that contrast
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plays different roles in image interpretation. For example,
a viewer uses contrast to attract attention; an artist conveys
emphasis through contrast; a graphic designer employs con-
trast to tell the eyes where to go [16]. Thus, there is no single
definite way for enhancing contrast. Figure 1 illustrates that
there can be many ways to enhance the contrast of the same
image. Professional software, such as Photoshop, provides
many tools to adjust contrast according to personal prefer-
ence, but using such tools takes much effort. In this paper,
we propose the first CNN-based interactive CE algorithm to
enable a user to adjust image contrast easily and adaptively.

For interactive CE, we propose IceNet, which can enhance
contrast in both under- and over-exposed regions of an image
after accepting annotations from a user. Specifically, a user
provides a parameter for controlling the global brightness and
two types of scribbles to darken or brighten local regions
in an input image. Then, we feed the input image and the
annotations to IceNet, which generates a gamma map for the
pixel-wise gamma correction. More specifically, as shown in
Figure 2, we feed the scribbles, as well as the input image,
to a feature extractor, yielding a feature map. Simultane-
ously, we produce a driving vector from the parameter for
the global brightness. Then, using the feature map and the
driving vector, we obtain a gamma map, which is gener-
ated adaptively according to the user annotations. Finally,
we restore an enhanced image through color restoration,
in which we adjust only the luminance component of the
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FIGURE 1. Four different CE results of the same image using IceNet. Each result can be interpreted differently: (a) a warm hallway with a high exposure
level, (b) a cool hallway with a medium exposure level, and (c) and (d) dark hallways with the same low exposure level. In (d), the foreground table and
ceramic are highlighted with local brightening.

input image while preserving the chrominance components.
Also, for user’s convenience, we provide an initially enhanced
image and allow the user to further enhance it interactively.
Moreover, to train IceNet effectively and reliably, we pro-
pose three differentiable losses. Experimental results demon-
strate that IceNet not only provides users with satisfactory
images but also outperforms the state-of-the-art algorithms
qualitatively and quantitatively. It is strongly recommended
to watch the supplemental video for a real-time demo
of IceNet.

To summarize, this work has the following main
contributions:
• We propose the first CNN-based interactive CE algo-
rithm, called IceNet, which is capable of yielding
enhanced images either adaptively according to user
preference or automatically without interaction.

• We train IceNet with the proposed three differentiable
loss functions, thereby enabling interaction with users
and yielding pleasingly enhanced images.

• With various experimental results, we demonstrate that
IceNet can provide satisfactory results to users, outper-
forming conventional algorithms meaningfully.

II. RELATED WORK
The objectives of enhancement are closely related but differ-
ent between CE [15], [17], color enhancement [18], dehaz-
ing [19]–[21], and detail enhancement [22]. This section
briefly reviews CE techniques.

A. TRADITIONAL METHODS
Traditional CE techniques can be classified into three cate-
gories: histogram methods, parametric curve methods, and
retinex methods. First, histogram equalization [10] attempts

to make the output histogram as uniform as possible.
It increases contrast effectively at low computational com-
plexity, but it may over-enhance an image, resulting in
contrast over-stretching, noise amplification, and contour
artifacts. Various histogram methods [1], [3], [4], [23], [24]
have been developed to overcome these problems. Second,
parametric curve methods, such as gamma correction and
logarithm mapping, use parametric curves as transformation
functions between input and output pixel values. Many para-
metric curves are available for CE [2], [6]–[9]. Among them,
gamma correction has been extensively used not only for CE
but also to match different dynamic ranges between imaging
devices. Third, assuming that an image can be decomposed
into reflection and illumination, some CE algorithms [5],
[25]–[27] have been developed based on retinex theory [28].
These conventional methods produce promising results in
some cases. However, their performance usually depends
on careful parameter tuning; it is difficult to find reliable
parameters effective for diverse input images.

B. CNN-BASED METHODS
Recently, many CNNs have been designed for CE. Most
CNN-based methods [29]–[36] are trained on paired datasets,
composed of pairs of low and high contrast images. Each
pair is captured from the same scene, or a low contrast image
is synthesized from a high contrast one. However, it is hard
to capture the same scene twice because of moving objects.
On the other hand, synthesized low contrast images may not
be photo-realistic. Because of these difficulties, some meth-
ods [37]–[39] adopt generative adversarial networks [11] and
train their networks using unpaired datasets, consisting of
low and high contrast images captured from different scenes.
They, however, should select unpaired images carefully.
To avoid this cumbersome process, Guo et al. [40] proposed
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FIGURE 2. Illustration of the proposed algorithm. A user provides an exposure level η and a scribble map S, where red or blue scribbles
are for darkening or brightening local regions in an input image I, respectively. Then, IceNet generates an enhanced image J. The user may
provide annotations iteratively, until a satisfactory image is obtained. Please see the supplemental video for a real-time demo of the
interactive enhancement.

a self-supervised learning scheme, which needs only low
contrast images for training. However, all these CNN-based
methods are not adaptive and cannot satisfy diverse user
preferences.

C. INTERACTIVE METHODS
For interactive CE, professional software provides tools, but
using these tools takes a lot of effort and training. To reduce
such effort, simple interactive methods have been proposed.
Stoel et al. [41] proposed an interactive histogram equaliza-
tion scheme to enhance details of medical images. Their
method allows a user to specify a region of interest (RoI)
and applies the equalization to the region. Grundland and
Dodgson [16] proposed an interactive tone adjustment
method. When a user selects key tones on an image,
it preserves those tones but adjusts the other tones, while
maintaining the overall tonal balance. Lischinski et al. [42]
and Dodgson et al. [43] also proposed interactive methods,
in which a user specifies RoIs for local CE. These interac-
tive methods [16], [41]–[43] are based on traditional image
processing. In contrast, to the best of our knowledge, the pro-
posed IceNet is the first CNN-based interactive CE algorithm.

III. PROPOSED ALGORITHM
To enable a user to adjust image contrast easily, we develop
IceNet that accepts simple annotations and yields an
enhanced image according to his or her preference.

A. INTERACTIVE CONTRAST ENHANCEMENT
Figure 2 illustrates the proposed algorithm. By inspecting an
input image I, a user provides an exposure level η ∈ [0, 1] for
controlling the global brightness and two types of scribbles.
Red and blue scribbles, respectively, mean that the user wants
to darken and brighten the corresponding local regions. They
are recorded as −1 and 1 in the scribble map S, respectively,
while the other pixels are assigned 0. We convert the RGB
color image I into the YCbCr space and adjust the luminance

component Y only, while preserving the chrominance com-
ponents [4]. Then, we estimate a gamma map 0 for the
pixel-wise gamma correction of Y . Finally, through the color
restoration, we obtain an enhanced image J.

1) GAMMA ESTIMATION
Gamma correction is widely used for CE [10]. It is important
to select an appropriate gamma value: a small gamma less
than 1 brightens an under-exposed region, whereas a large
gamma bigger than 1 darkens an over-exposed region. The
gamma value also should be selected by considering personal
preference.

We determine a gamma value for each pixel in an image,
based on user preference, through the feature extractor and
the adaptive gamma estimation block (AGEB) in Figure 2.
The feature extractor consists of seven convolutional lay-
ers with concatenated skip connections, which improve the
information flow between layers. We concatenate Y and S to
form the input to the feature extractor, which yields a feature
map F. Then, given the exposure level η and the feature
map F, AGEB generates a gamma map 0. More specifically,
from η, AGEB produces a driving vector w via two fully-
connected layers. Then, for each pixel x, it predicts the
pixel-wise gamma value 0(x) by

0(x) = 10ϕ(〈F(x),w〉) (1)

where 〈·,·〉 is the inner product and ϕ(·) is the sigmoid func-
tion. Hence, we have 0 < 0(x) < 10. This is repeated for all
pixels.

2) COLOR RESTORATION
For color restoration, we first obtain the gamma-corrected
luminance image Z by transforming each pixel in Y using
its gamma value, given by

Z (x) = Ymax

(
Y (x)
Ymax

)0(x)
(2)
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FIGURE 3. Impacts of the exposure level η: (a) transformation functions and (b)∼(e) enhanced images J.

where Ymax is the maximum luminance value (typically 255).
Then, to generate the enhanced RGB color image J, we adopt
the simple color restoration approach [44],

J(x) =
Z (x)
Y (x)

I(x), (3)

which preserves the color ratios.

3) PERSONALIZED INITIAL η
For user’s convenience, we provide an initially enhanced
image and allow the user to further enhance it interactively.
To this end, we estimate an initial exposure level ηinit using a
quadratic polynomial by

ηinit = ay2 + by+ c (4)

where y = 1
N

∑
x Y (x) is the average luminance of the input

image and N is the number of pixels. The coefficients a, b,
and c are obtained from the observations {(yi, ηi)}Mi=1 using
the method of least squares, where ηi is the exposure level
selected by the user to enhance the ith input image with
the average luminance yi. We perform this personalization
when M > 3.

B. LOSS FUNCTION
To train IceNet, we use three differentiable losses: interactive
brightness control loss Libc, entropy loss Lent, and smooth-
ness loss Lsmo. Let us describe these losses subsequently.

1) INTERACTIVE BRIGHTNESS CONTROL LOSS
Given an exposure level η and a scribble map S, we construct
a target brightnessmap T and define the interactive brightness
control loss Libc as

Libc =
1
N

∑
x

(Z (x)− T (x))2 (5)

so that the enhanced luminance image Z in Eq. (2) suits the
user preference.

To obtain the target brightness T , we first add the scribble
S to the input luminance Y ,

Ỹ = Y + λS (6)

where λ is a parameter controlling the impacts of scribbles,
which is fixed to 5. By adding S, we control local brightness

levels. Next, we normalize Ỹ to the range of [0, 1], yielding
Ȳ . Then, we use the bilateral gamma adjustment scheme [45]
to improve the visibility of details in dark and bright regions,
which performs

Gdark = Ȳ 1/γ , (7)

Gbright = 1− (1− Ȳ )1/γ , (8)

G = ηGdark + (1− η)Gbright, (9)

where γ = 5. Note that dark and bright regions are enhanced
mainly via Eq. (7) and (8), respectively. To preserve the
details in both dark and bright regions, Eq. (9) combines the
two results. The user can control the overall brightness of G
with the exposure level η. Figure 3 illustrates the impacts
of η. Figure 3(a) shows the transformation functions from
Ȳ (x) to G(x), when α = 0.2, 0.4, 0.6, and 0.8. The proposed
transformation functions have steep slopes near the minimum
and maximum levels, so they enable IceNet to enhance both
under- and over-exposed regions effectively. Figure 3(b)∼(e)
are examples of enhanced images. We see that, as η gets
bigger, the enhanced image J becomes brighter.
Next, for each pixel x, we compute a local maximum value

and scale it by

T (x) = Ymax × max
y∈�(x)

G(y) (10)

where �(x) is the 15 × 15 window around x. In Eq. (5),
we use T instead of Ymax×G to suppress too different target
values between adjacent pixels and achieve more reliable
enhancement.

2) ENTROPY LOSS
An image has a bigger entropy and conveys more information
when its pixel values are more widely distributed [46]. In par-
ticular, the maximum entropy is achieved by the uniform
distribution. Thus, we adopt the entropy loss to increase
the global contrast by equalizing the histogram of an out-
put image. However, the histogram cannot be directly used
because of its non-differentiability. To overcome this issue,
we design a soft-histogram. While one pixel contributes to
only a single bin of the ordinary histogram, it does to multiple
bins in the soft-histogram in a differentiable manner.

For the soft-histogram, we represent the contribution of
pixel x to the ith bin using the mapping function in [47],
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FIGURE 4. (a) Soft mapping functions. (b)∼(e) Comparison of results of IceNet trained with different combinations of the three loss terms. The
corresponding histograms are at the bottom row.

given by

κ(x, i)=
1
1

(
ϕ
(
σ
(
i− Z (x)+

1

2

))
− ϕ

(
σ
(
i− Z (x)−

1

2

)))
(11)

where ϕ(·) is the sigmoid function, 1 = 1 is the bin width,
and σ is the hyper-parameter for the slope. Figure 4(a) shows
the soft mapping functions when σ = 5, 10, or 20. Note
that σ controls the tradeoff between the width and height of
the mapping function. As σ increases, the mapping function
gets narrower but taller. In this work, we set σ = 10. Next,
we make the soft-histogram h by summing the contributions
of all pixels,

h(i) =
∑
x

κ(x, i). (12)

Then, we define Lent as the inverse of the entropy given by

Lent =

(
−

Ymax∑
i=0

h(i)
N

log
h(i)
N

)−1
. (13)

3) SMOOTHNESS LOSS
To encourage smooth variations between neighboring values
in the gamma map 0 in Eq. (1), we introduce the smoothness
loss

Lsmo = ‖∇h0‖
2
F + ‖∇v0‖

2
F (14)

where ‖ · ‖F denotes the Frobenius norm, and ∇h and ∇v are
the horizontal and vertical difference operators, respectively.

4) TOTAL LOSS
The overall loss is defined as a weighted sum of the three
losses, given by

L = Libc + wentLent + wsmoLsmo (15)

where went and wsmo are weights. Thus, the proposed
IceNet is trained to minimize the three loss functions. First,
Libc enables IceNet to control global and local brightness.
Second, Lent encourages a flat histogram, which can increase
the global contrast. Third, Lsmo smooths the gamma map.

FIGURE 5. Qualitative comparison of IceNet with the conventional
interactive algorithm [43]. Especially, within the red rectangles, the
conventional algorithm fails to improve the contrast.

Figure 4(b)∼(e) illustrate the efficacy of each loss, as will
be discussed in detail in Section IV-B4.

C. IMPLEMENTATION DETAILS
The number of output channels of every convolutional or
fully-connected layer is 32. In every convolutional layer, the
zero padding and the ReLU activation are performed. The
batch normalization is not applied, since a small mini-batch
size of 8 is used. We initialize all parameters in IceNet with
Gaussian random numbers. Then, we update the parameters
via the Adam optimizer [48] with an initial learning rate of
10−3. We employ the same 2,002 training images as [40].
The training images are randomly selected in the Part1 subset
of SICE [49], including under-, normal-, and over-exposed
images. The training is iterated for 50 epochs with an RTX
2080Ti GPU, which takes about 30 minutes only. All training
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FIGURE 6. Qualitative comparison of IceNet with conventional algorithms. Traditional enhancement methods are in the odd rows, while CNN-based
methods are in the even rows.

images are resized to 512×512. To emulate user annotations,
an exposure level η is randomly selected from [0.2, 0.8]
and red and blue scribbles, respectively, are generated 0∼5
times at random positions. For this emulation, each scribble
is a circle of a radius of 10 pixels. In Eq. (15), went =

10 and wsmo = 20.

IV. EXPERIMENTS
We compare the proposed algorithm with an interactive
enhancement algorithm (CB [43]) and seven conventional
ones (LDR [4], SRIE [26], LIME [5], Li et al. [27],
RetinexNet [32], Zero-DCE [40], EnlightenGAN [39]). Next,

we conduct an analysis of preference for contrast. All exper-
iments are conducted in Python with an RTX 2080Ti GPU
and a Ryzen 9 3900X CPU.

A. COMPARATIVE ASSESSMENT
In this section, we obtain enhanced images of the conven-
tional algorithms using the source codes and parameters pro-
vided by the authors, unless otherwise specified.

1) USER STUDIES FOR IceNet
Source codes of the interactive methods [16], [42], [43]
are not available. Thus, we implemented CB ourselves and
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FIGURE 7. Qualitative comparison of IceNet with conventional algorithms. Traditional enhancement methods are in the odd rows, while CNN-based
methods are in the even rows.

compared it with the proposed IceNet on the test set of
MEF [50]. We asked 11 participants to provide annotations
to the two interactive methods and vote for better results.
187 votes in total (17 images × 11 participants) were cast
for the preferred interactive methods. The proposed IceNet
won significantly more votes: IceNet was preferred in 80.2%
of the tests, while CB was in only 19.8%. Figure 5 compares
qualitative results, in which the results were obtained by the

same participant. While CB does not improve the contrast
sufficiently, IceNet does it successfully.

For more subjective assessment, we collected 50 images by
choosing the first 10 indexed images from each of the test sets
of NPE [25] (85 images), LIME [5] (10 images), MEF [50]
(17 images), DICM [4], [23] (69 images), and VV [51] (23
images). Then, we conducted another user study with the 11
participants. It was designed as follows:
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FIGURE 8. Qualitative comparison of IceNet with conventional algorithms. Traditional enhancement methods are in the odd rows, while CNN-based
methods are in the even rows.

TABLE 1. User study results. 550 votes in total (50 images × 11 participants) were cast for the most preferred methods. IceNet won the most votes of 314.
It was the most preferred in 57%, while the second-best SRIE was in only 11%.

1) A participant provides annotations to IceNet, which
then yields an enhanced image.

2) The eight enhanced images obtained by IceNet and
the seven conventional algorithms are presented to the
participant in a random order.

3) The participant votes for the most pleasing result.

It is recommended to watch the supplemental video for a
demo of this user study. Note that a participant may prefer
an automatically enhanced image of a conventional algo-
rithm to the result of IceNet. This study was conducted
to check whether the participants were sufficiently satis-
fied with their interactive enhancement results using IceNet.
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FIGURE 9. Qualitative comparison of IceNet with conventional algorithms. Note that all enhanced images are obtained automatically without
per-image interaction.

TABLE 2. Two user studies for personalized initial η. (a) Satisfaction
survey results for personalized initial η. (b) 220 votes in total (20
images × 11 participants) were cast for the most preferred method.

Table 1 summarizes the results. The proposed IceNet won the
most votes; it was themost preferred in 57%of the tests, while
the second-best SRIE was in only 11%.

Figures 6, 7, and 8 compare qualitative results, in which
the results of IceNet were obtained by a participant. IceNet
provides more pleasing results with fewer artifacts than the
conventional algorithms do. Note that LDR and SRIE do
not improve the contrast sufficiently, and Li et al. yield
blurred images. The other conventional algorithms tend
to generate noise or do over-enhancement with contour
artifacts.

2) USER STUDIES FOR PERSONALIZED INITIAL η
We asked the 11 participants how satisfied they were with
initially enhanced images. For this test, the coefficients in
Eq. (4) were personalized by the pairs of (yi, ηi), which had
been selected by each participant during the previous user
study. Then, we collected 20 new test images, by selecting
five low contrast images from each of NPE,MEF, DICM, and
VV. These new images did not overlap with the images used
for the test in Table 1. On average, each user was satisfied
by 16.5 initial images out of those 20 cases. In the other
word, 82.5 percent of initially enhanced images satisfied the
users. Also, the mean absolute error (MAE) between the
personalized initial η and the fine-tuned one was only 0.068.
Table 2(a) shows the results in this test. These results con-
firm that initially enhanced images are satisfactory in most
cases.

For more subjective assessment, we asked the 11 partic-
ipants to select the preferred image between the initially
enhanced image and automatically enhanced ones obtained
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FIGURE 10. The odd rows show that three participants enhanced the same input image differently, which indicates that people have diverse
preferences for contrast. The even rows are the annotations provided by the participants.

TABLE 3. Full-reference image quality assessment on the Part2 subset of SICE [49]. The best results are boldfaced, and the second-best ones are
underlined.

by SRIE [26] and EnlightenGAN [39]. Note that SRIE
and EnlightenGAN were the two most preferred algorithms
among the conventional methods in the previous user study.
Table 2(b) summarizes the voting results. The proposed algo-
rithm won the most votes. Figure 9 compares qualitative
results, in which the results of IceNet were obtained using the
personalized exposure levels of a participant. The proposed
IceNet provides more pleasing results without per-image
interaction.

3) QUANTITATIVE COMPARISON
To assess enhanced images quantitatively, we use 767 pairs
of under- and normal-exposed images in the Part2 subset of
the SICE dataset [49], which was also adopted as the test set

in [40]. Table 3 compares the average PSNRs and SSIMs on
the Part2 subset. The scores of the conventional algorithms
are excerpted from [40], excluding LDR [4].Wemeasured the
average running times using 100 images of size 1200× 900.
For the conventional algorithms in [4], [5], [27], we measured
the times with a CPU because only the codes in the CPU
versions were available. For IceNet∗, we obtained the best
score by controlling the exposure level η for each image
but without providing scribbles. For IceNet, we use initially
enhanced images, described in Section III-A. To determine
the coefficients in Eq. (4) using the method of least squares,
70 pairs of (yi, ηi) were sampled during the test of IceNet∗.
In Table 3, we see that the proposed algorithm outperforms
the conventional algorithms with large margins. Furthermore,
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FIGURE 11. Impacts of parameter settings. Here, (L, C , N) represents IceNet with L convolutional layers, C output channels, and N parameters. Note
that the default setting is (7, 32, 85K). The results are obtained at η = 0.95 without scribbles. The differences can be more easily observed in red
rectangles, which can be best viewed by zooming in.

FIGURE 12. Impacts of the skip connection in the feature extractor. The
images are enhanced at η = 0.6 without scribbles.

IceNet provides outstanding performances even without per-
image interaction.

B. ABLATION AND ANALYSIS
1) PREFERENCES FOR CONTRAST
In Figure 10, the odd rows show how three participants
enhanced the same input images differently during the user
study and the even rows show that participants provided a
variety of annotations to obtain satisfactory images. We see
that the people have diverse preferences for contrast through
the enhanced images. The proposed interactive algorithm can
be used to satisfy these preferences adaptively.

2) IMPACTS OF PARAMETER SETTINGS
Figure 11 compares the results of the proposed IceNet with
different parameter settings. In this test, we change the num-
ber of convolutional layers and output channels. Note that the
default setting of the proposed IceNet employs 7 convolu-
tional layers with 32 output channels. As shown in Figure 11,

when the amount of parameters is smaller than the default
setting, the output images are over-enhanced. On the other
hand, when the amount of parameters is larger than the default
setting, the output images are similar to those of the default
setting. This indicates that the default setting is both effective
and efficient.

3) SKIP CONNECTION
Figure 12 compares the results of IceNet with and without the
skip connection. In this test, the output images are generated
at η = 0.6 without scribbles. It is observed that IceNet
without the skip connection fails to bring out hidden details.

4) LOSS FUNCTION
Finally, we analyze the efficacy of each loss term in Eq. (15).
Figures 4(b)∼(e) show the results of IceNet trained with
various combinations of the three losses. In this test, IceNet
generates output images at η = 0.65 without scribbles. First,
we train IceNet without the interactive brightness control
loss Libc in Figure 4(c). By comparing it with Figure 4(b),
we see that removing Libc fails to enhance under-exposed
regions. Second, we train IceNet without the entropy lossLent
in Figure 4(d). Compared to Figure 4(b), the histogram is
more concentrated, which indicates that the contrast is not
improved sufficiently. Finally, Figure 4(e) shows the result of
IceNet trained without the smoothness loss Lsmo. Removing
Lsmo results in an over-enhanced image.

V. CONCLUSION
We proposed IceNet for interactive CE, which is composed
of several convolutional and fully-connected layers. IceNet
enables a user to adjust image contrast easily. Specifically,
a user provides an exposure level for controlling global
brightness and a scribble map to darken or brighten local
regions. Then, IceNet generates an enhanced image. The user
may provide annotations iteratively until a satisfactory image
is obtained. Also, IceNet produced a personalized enhanced
image automatically, which can serve as a basis for further
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adjustment. Moreover, to train IceNet effectively and reliably,
we developed the three differentiable loss functions. Exten-
sive experiments on various datasets demonstrated outstand-
ing CE performance of IceNet. Although IceNet is capable
of providing a user with satisfactory results, the user should
provide detailed scribbles. In the future, wewill design amore
user-friendly interactive CE method, which enable the user to
control local brightness of desired regions more easily with
simpler scribbles.
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