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ABSTRACT As communication technology advances with 5G, the amount of data accumulated online is
explosively increasing. From these data, valuable results are being created through data analysis technolo-
gies. Among them, artificial intelligence (AI) has shown remarkable performances in various fields and is
emerging as an innovative technology. In particular, machine learning and deep learning models are evolving
rapidly and are being widely deployed in practical applications. Meanwhile, behind the widespread use of
these models, privacy concerns have been continuously raised. In addition, as substantial privacy invasion
attacks against machine learning and deep learning models have been proposed, the importance of research
on privacy-preserving AI is being emphasized. Accordingly, in the field of differential privacy, which has
become a de facto standard for preserving privacy, various mechanisms have been proposed to preserve the
privacy of AI models. However, it is unclear how to calibrate appropriate privacy parameters, taking into
account the trade-off between a model’s utility and data privacy. Moreover, there is a lack of research that
analyzes the relationship between the degree of differential privacy guarantee and privacy invasion attacks.
In this paper, we investigate the resistance of differentially private AI models to substantial privacy invasion
attacks according to the degree of privacy guarantee, and analyze how privacy parameters should be set to
prevent the attacks while preserving the utility of the models. Specifically, we focus on generative adversarial
networks (GAN), which is one of the most sophisticated AI models, and on the membership inference attack,
which is the most fundamental privacy invasion attack. In the experimental evaluation, by quantifying the
effectiveness of the attack based on the degree of privacy guarantee, we show that differential privacy can
simultaneously preserve data privacy and the utility of models with moderate privacy budgets.

INDEX TERMS Differential privacy, artificial intelligence, deep learning, generative adversarial networks,
privacy-preserving deep learning, membership inference attack.

I. INTRODUCTION
With the development of 5G communication technology
that diversifies the access environment and materializes dis-
tributed networks, various types and vast amounts of data
are being accumulated online. From these data, valuable
results are being created through data analysis technologies.

The associate editor coordinating the review of this manuscript and

approving it for publication was S. K. Hafizul Islam .

In particular, machine learning and deep learning technolo-
gies have been widely used and have shown remarkable
performances in various areas such as classification, lan-
guage representation, recommendations, synthetic data gen-
eration, etc. (e.g., [1]–[3]). Moreover, with the introduction
of machine learning as a service (MLaaS), which is a range
of machine learning functionality offered by cloud service
providers, the use of artificial intelligence (AI) models is
becoming more active. Typically, these models are generated
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by learning massive amounts of raw data, and this can lead to
revealing sensitive individual information.

Indeed, along with the widespread deployment of artifi-
cial intelligence models, concerns about privacy violations
have been raised. In addition, as substantial privacy invasion
attacks on AI models have been proposed recently [4]–[10],
the importance of research on privacy-preserving AI has been
emphasized. Accordingly, various approaches have been
introduced to preserve the privacy of AI models. Among
them, differential privacy [11], [12], which has become a de
facto privacy standard, provides a rigorous privacy guarantee,
and various mechanisms that satisfy the properties of dif-
ferential privacy have been proposed for designing privacy-
preserving AI.

Generally, differentially private mechanisms return noisy
outputs that obscure statistical differences between adjacent
databases, and the magnitude of the noise that will be added
to the actual output for a specific query is highly dependent
on the privacy parameter ε, called the privacy budget. In other
words, the lower the privacy budget, the larger the noise, and
vice versa. Obviously, from the perspective of utility as well
as privacy, the choice of ε is one of themost important factors,
and ε should be calibrated with in-depth consideration of the
trade-off between privacy and utility. However, the criterion
for how to set an appropriate privacy budget has not been
clearly established in practice, and then differentially private
AI models have often set the privacy budget ε as a tendency
to ensure acceptable utility. As a result, the utility of the
models may be able to be guaranteed, but privacy may not
be preserved at all. This ambiguity is a well-known problem
in the field of differential privacy, and we aim to address
this problem by analyzing the relationship between differ-
ential privacy and substantial privacy invasion attacks for AI
models.

In this paper, we evaluate the resistance of differentially
private AI models to substantial privacy invasion attacks by
varying the privacy budget ε, and analyze how privacy param-
eters should be set to prevent the attacks while preserving the
utility of the models. Furthermore, we study the efficacy of
privacy invasion attacks under the relaxed notions of differen-
tial privacy (i.e., concentrated differential privacy [13], zero
concentrated differential privacy [14], and Rényi differential
privacy [15]), and analyze how much of a privacy breach
occurs by relaxing the definition of differential privacy on
AI models. In particular, we focus on the generative model,
especially generative adversarial networks (GAN), which is
one of the most sophisticated models for generating syn-
thetic datasets and has attracted great interest recently. In the
case of attack scenario, we focus on the membership infer-
ence attack, which is the most fundamental privacy invasion
attack.

Currently, several results have been reported for eval-
uating differentially private AI models under substantial
privacy invasion attacks [16]–[20]. However, these results
have mainly focused on neural network-based models or

FIGURE 1. Architecture of generative adversarial networks.

regression models, and there are no results for models with
the objective of generating synthetic dataset. In this respect,
we aim to contribute to the evaluation of differentially private
mechanisms for generative models by analyzing the relation-
ship between the degree of differential privacy guarantee and
the privacy invasion attack.

The rest of this paper is organized as follows. First, there
is a background review in section 2. Then, we present dif-
ferentially private mechanisms and the membership infer-
ence attack for GAN models in section 3. In section 4,
we describe our evaluation framework, and demonstrate
experiment and evaluation results in detail. Finally, we dis-
cuss related studies in section 5, and then conclude our work
in section 6.

II. BACKGROUND
In this section, we briefly illustrate generative adversar-
ial networks (GAN), and review the definition of differ-
ential privacy and its relaxations. Then, we demonstrate
mechanisms that can make GAN models differentially
private.

A. GENERATIVE ADVERSARIAL NETWORKS
Generative models are designed for learning the probability
distribution of a given training data, and have the purpose of
generating synthetic data close to the real data. Among the
various generative models, great interest has been focused on
generative adversarial networks (GAN) [21], and numerous
studies have been conducted to advance their performance
and functionality. As shown in Figure 1, the basic architecture
of GAN consists of two neural network-based components: a
generatorG and discriminatorD. The generatorG takes noise
z (latent code) as an input and generates synthetic data x′ with
the objective of generating data that approximates the real
data x while the discriminator D takes a dataset consisting
of the synthetic data and real data with the objective of
discriminating the difference between real (training data x)
and fake (synthetic data x′). Therefore, these two compo-
nents always play a game to beat each other, and are trained
alternately.

More formally, let pz be the probability distribution of the
latent code and pdata be the probability distribution of the
real data. Then the objective function V (D,G) of the GAN
model that consists of G and D is a minimax game, and can

VOLUME 9, 2021 167413



C. Park et al.: Evaluating Differentially Private Generative Adversarial Networks Over Membership Inference Attack

be formulated as follows.

min
G

max
D

Ex∼pdata[log (DθD (x))]

+Ez∼pz [log (1− DθD (GθG (z)))],

where θD and θG denote the parameters of the discriminator
and generator, respectively. Therefore, the discriminator is
trained to return a high score in a given training samples (real
data), and the generator is trained to produce synthetic data
that can maximize the discriminator’s output. After sufficient
training, if a Nash equilibrium is achieved, both the discrimi-
nator and generator settle at a point where there is no further
improvement.

Since the basic concept of GAN was introduced, numer-
ous variants have been proposed with the aim of evolv-
ing the original model by adjusting the objective function
or by modifying the architecture (e.g., [22]–[27]). Among
these variants, we target several significant models that have
shown noticeable improvement: 1) deep convolutional GAN
(DCGAN) [23], a model that combines the basic GAN
architecture with a convolutional neural network. 2) Wasser-
stein GAN (WGAN) [25], a model that improves train-
ing stability by using the Wasserstein distance (instead of
Jensen–Shannon divergence in the original GAN model) as
an approximation metric between probability distributions.
3) boundary equilibrium GAN (BEGAN) [26], a model that
can approximate the convergence of the training process by
combining with the concept of Autoencoder.

B. PRIVACY INVASION ATTACKS ON AI MODELS
Along with the advancement of AI technology, privacy
concerns have been raised simultaneously, and various
attacks that can substantially invade privacy on machine
learning and deep learning models have been proposed.
Ateniese et al. [28] showed that it is possible to infer the
general statistical information about a training dataset by
exploiting the internal parameters of specific models (such as
Support Vector Machines and Hidden Markov Models). For
a collaborative recommender system, Calandrino et al. [29]
reported that, by capturing changes between outputs,
an attacker can infer specific inputs that triggered those
changes. As an attack that can directly invade the privacy of
training data, Fredrickson et al. [4], [5] proposed the model
inversion attack, where an attacker can reconstruct parts of
information in the training dataset by exploiting confidence
vectors returned along with predictions from a target model.
Tramèr et al. [7] introduced the model extraction attack that
can extract parameters of the target model, and showed that
sensitive information of the training dataset can be exposed.
As a fundamental privacy invasion attack, Shokri et al. [6]
proposed the membership inference attack, where an attacker
can infer whether or not specific input data were included in
the training dataset. The underlying intuition of the attack is
that a machine learning model (trained model) will behave
differently between the data that the model has learned
(i.e., training data) and unseen data, and these differences

become more severe when the model is overfitted to the
training data. In order to construct a (membership inference)
attack model, an adversary has to build multiple shadow
models that mimic the target model, and these shadowmodels
can be built by learning the confidence vectors obtained from
the target model (by querying the target model with arbitrary
inputs). Then, the attack model can be constructed by learn-
ing the results (confidence vectors) output from the shadow
models for both data with andwithoutmembership. Note that,
in the case of the shadowmodel, an attacker can know exactly
whether a given data was included in the training dataset of
the shadow model.

Since the concept of membership inference attack against
general machine learning models was introduced, various
studies have been conducted to analyze and advance the
attack [8]–[10], [30]. In particular, attack methods have been
proposed that focus on generative models with a different
aspect from previous studies that targeted general machine
learning models. Since the outputs of a generative model
are synthetic data rather than predictions, it is necessary to
consider a different approach from the previous methods.
By capturing these points, Hayes et al. [8] proposed an
attack method with the goal of membership inference against
GAN models. Subsequently, inspired by Hayes et al.’s study,
several attack methods have been proposed with different
assumptions and attack scenarios [9], [10] in terms of distance
metric. We focus on these attacks as our goal is to analyze the
relationship between substantial privacy invasion attacks and
privacy-preserving techniques over GAN models (a detailed
analysis of each membership inference attack against GAN is
covered in section 3).

C. DIFFERENTIAL PRIVACY
Differential privacy [11], [12] has become a de facto privacy
standard and ensures strong privacy preservation. Intuitively,
a mechanism that satisfies differential privacy returns similar
outputs on adjacent datasets for a given query. It means that
differentially private mechanisms provide plausible deniabil-
ity against adversaries.

If two datasets d, d ′ ∈ D differ in one entry, we say that the
datasets are adjacent (or neighboring). Then, the definition of
differential privacy is as follows.
Definition 1 ((ε, δ)-Differential Privacy ((ε, δ)-DP)

[11], [12]): A randomized mechanism M satisfies
(ε, δ)-differential privacy, for all output S ⊆ Range(M) for
any two adjacent datasets d, d ′, if we have:

Pr[M(d) ∈ S] ≤ eε · Pr[M(d ′) ∈ S]+ δ.

Obviously, a smaller value of privacy cost (privacy budget)
ε leads to a better privacy guarantee, and the value of δ is
generally set to be smaller than the inverse of any polynomial
in the size of database. When the additive term δ is zero, it is
called ε-differential privacy (pure differential privacy).

In general, differential privacy can be achieved by adding
noise to the actual output for a query function, and the
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magnitude of noise is estimated depending on the sensitivity
of the query function.
Definition 2 (l2-Sensitivity): For any two adjacent datasets

d, d ′, the sensitivity of query function f is defined as follows:

1f = max
d,d ′
‖f (d)− f (d ′)‖2.

There are several basic mechanisms that ensure differential
privacy, including Laplace mechanism and Gaussian mecha-
nism, and we focus on the Gaussian mechanism, which has
been widely leveraged to achieve differential privacy for AI
models.
Definition 3 (Gaussian Mechanism): For any dataset d and

query function f (·), the Gaussian mechanism MG is defined
as follows:

MG(d) = f (d)+N (0, σ 2),

whereN (0, σ 2) is the Gaussian distribution with mean 0 and
standard deviation σ .
Note that a single execution of the Gaussian mechanism

satisfies (ε, δ)-DP if σ > 2 ln 1.25/δ · 1f /ε and ε < 1.
Basically, in terms of running multiple times, differential pri-
vacy provides the composition property. If two mechanisms
M1 andM2 satisfy ε1 and ε2-DP respectively, then a family
of the mechanismsM = (M1,M2) satisfies (ε1 + ε2)-DP.
Since the definition of differential privacy was introduced,

several notions that can relax the original definition of differ-
ential privacy have been proposed to analyze a tighter bound
in terms of cumulative privacy loss over multiple executions
by considering the fact that the privacy loss random variable
is tightly concentrated around its expectation. There are three
commonly used relaxed definitions of differential privacy:
concentrated differential privacy [13], zero concentrated dif-
ferential privacy [14], Rényi differential privacy [15].1

In a subsequent study of pure and (ε, δ)-differential pri-
vacy, Dwork et al. [13] introduced concentrated differential
privacy (CDP) by focusing on the case where the privacy loss
follows a sub-Gaussian distribution. The intuition embedded
in the notion of CDP is that the privacy loss is strictly centered
around its expectation and the tail is managed by the variance
of the sub-Gaussian distribution.
Definition 4 (Concentrated Differential Privacy (CDP)

[13]): A randomized algorithm M is (µ, τ )-concentrated
differentially private if, for all pairs of adjacent databases
d, d ′, we have:

DsubG(M(d)‖M(d ′)) � (µ, τ ),

where DsubG denotes the sub-Gaussian divergence.
The definition means that the expected privacy loss is

bounded byµ and the distribution of the centered privacy loss
(by abstracting µ) is sub-Gaussian with standard deviation
τ . In terms of relevance to the previous notion, the authors

1Note that (ε, δ)-differential privacy is the most well-known relaxed
notion of pure-differential privacy, where it allows the failure of differential
privacy with probability δ (typically, the value of δ is taken to be crypto-
graphically small)

showed that if a mechanismM satisfies ε-DP algorithm, then
M ensures (ε ·(eε−1)/2, ε))-CDP (but the converse does not
hold). In addition, they showed that the Gaussian mechanism
defined above satisfies (τ 2/2, τ )-CDP with τ = 1f /σ .
In a subsequent study on CDP, Bun et al. [14] proposed

the notion of zero-concentrated differential privacy (zCDP).
By reformulating the concept of CDP through the Rényi
divergence, they analyzed a tighter bound on the cumulative
privacy loss over multiple computations.
Definition 5 (Zero-Concentrated Differential Privacy

(zCDP) [14]): A randomized mechanism M is
(ξ, ρ)-zero-concentrated differentially private if, for all adja-
cent databases d, d ′ and all α ∈ (1,∞), we have:

Dα(M(d)‖M(d ′)) ≤ ξ + ρα,

where Dα(M(d)‖M(d ′)) denotes the α-th moment’s Rényi
divergence between the distribution M(d) and the distribu-
tionM(d ′).2

zCDP can be directly related to previous definitions of
differential privacy through the Rényi divergence. In [14],
the authors showed that if a mechanism M satisfies
ε-DP, then M is ( 12ε

2)-zCDP, and moreover proved that
if a mechanism M ensures ρ-zCDP, then M satisfies
(ρ+2

√
ρ log(1/δ), δ)-DP. Furthermore, they showed that the

definition of CDP and zCDP can be interpreted mutually.
In the case of the Gaussian mechanism, they proved that the
mechanism (in Definition 3) satisfies (1f 2/2σ 2)-zCDP.
Based on the Rényi divergence, the notion of Rényi dif-

ferential privacy was introduced as a natural relaxation of
differential privacy [15], where the definition of differential
privacy is relaxed by bounding the Rényi divergence of the
privacy loss random variable for any individual moment.
Definition 6 (Rényi Differential Privacy (RDP) [15]): A

randomized mechanism M is said to have ε-Rényi differen-
tial privacy of order α (or (α, ε)-RDP for short), if for any
adjacent databases d, d ′ it holds that:

Dα(M(d)‖M(d ′)) ≤ ε.

Different from the other definitions, RDP bounds the Rényi
divergence of privacy loss random variable only for a single
moment at a time, as shown in the definition, which allows
the analysis of a tighter bound on the cumulative privacy
loss. In [15], the authors showed that if a mechanism M
satisfies (α, ε)-RDP, it also satisfies (ε+ log 1/δ

α−1 , δ)-DP for any
0 < δ < 1. Furthermore, they showed that the Gaussian
mechanismMG satisfies (α, α1f

2

2σ 2
)-RDP.

III. MEMBERSHIP INFERENCE ATTACK AGAINST
DIFFERENTIALLY PRIVATE GENERATIVE MODEL
In this section, we describe each major part in detail. First,
we analyze membership inference attacks and explain how
to achieve differential privacy for the GAN model. Then we

2When ξ = 0, the definition is characterized as ρ-zCDP.
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present our evaluation framework for analyzing the relation-
ship between the privacy invasion attacks and differentially
private GAN models.

A. MEMBERSHIP INFERENCE ATTACK AGAINST
GENERATIVE MODEL
As mentioned above, previous membership inference attacks
(e.g., [6], [30]) targeted general machine learning models and
aimed to infer whether specific data were included in the
training dataset by exploiting the confidence vectors returned
from the target model. Unlike general machine learning mod-
els consisting only of discriminative components, GAN con-
sists of two distinct components (discriminator and generator)
with opposite objectives, and it is regarded that the final
result of training GAN is the generative part. Therefore, since
the outputs of GAN for arbitrary inputs (latent codes) are
synthetic data rather than confidence values, it makes no
sense to apply previous membership inference attacks against
GAN model.

By capturing these differences, Hayes et al. [8] showed
that it is feasible to implement membership inference attacks
against generative models. The intuition involved in this
approach is that since the discriminator tends to output (even
slightly) higher probability in training data than in others
(synthetic data and testing data), the discriminator can be
exploited as a distinguisher formembership inference attacks.
Therefore, as long as an attacker builds a shadow discrimina-
tor that mimics the discriminator of the target model, he/she
can execute membership inference attacks without building
an additional attack model. Note that from the attacker’s
point of view, it is not allowed to access the discriminator of
the target model,3 and we assume that the white-box attack
where an attacker is allowed to access the discriminator is the
ideal scenario.

To build a shadow discriminator, an attacker first collects
enough data (synthetic data) via queries to the target gen-
erative model, and then trains a new GAN model using the
data obtained. At this point, the discriminator of the GAN
model constructed by the attacker becomes an attack engine
(shadow discriminator) that drives membership inference.
After building a shadow discriminator, the attacker can con-
duct membership inference on data that the attacker holds and
wants to know about membership (not the data obtained by
querying the target model) by feeding the data to the shadow
discriminator. The final inferences for specific data are made
by arranging the data according to the results of the shadow
discriminator. That is, the attacker can determine that data
was included in the training dataset of the target generative
model if the data is ranked at the upper position (relatively
high probability) in the results of the shadow discriminator.
In [8], the authors showed that the ideal white-box attacker
who can access the discriminator of the target model can per-
fectly infer membership (100% attack accuracy). In the case

3In general, it is considered that GANmodel is a generative model, and the
discriminator that was operated when training GAN is not publicly exposed.

FIGURE 2. Attacker’s abilities in our adversarial scenarios.

of a black-box scenario, they showed that a general attacker
can achieve up to 63% attack accuracy, and an informed
attacker who has auxiliary knowledge of the training dataset
can improve the attack success rate (these outcomes are the
experimental results on a facial dataset, and we deal with the
same dataset as our experimental data in section 5).

As an extended approach of the attack against the gen-
erative model, Hilprecht et al. [9] proposed a Monte Carlo
integration-based membership inference attack in terms of
distance metric between training and generated data. The
intuition of this approach is that the overfitted generator tends
to output synthetic data close to the training data that the
target model has learned. In [9], the authors considered black-
box scenarios and showed that an attacker can conduct mem-
bership inference on specific data in the Monte Carlo method
by comparing the distance with synthetic data obtained from
the target model.

From the perspective of distance metric, Chen et al. [10]
proposed a more sophisticated method of attack by subdi-
viding the attacker’s knowledge about the generator of the
target GAN model. They assumed black-box and white-box
scenarios for the generator, and considered that the adversary
can access the latent code that is the input of the model.
With these assumptions, they realized a more sophisticated
distance-based membership inference attack by reconstruct-
ing the synthetic data as close as possible to the target data
that the attacker wants to know about membership. Note
that in the case of the white-box scenario for the generator,
an attacker can obtain data closer to the target data through
an optimization process on the input space of the generator
(e.g., gradient descent).

From the perspective of analyzing the relationship between
privacy and utility for the GAN model, we deploy these
membership inference attacks as privacy violation scenarios.
In particular, we consider two specific attack scenarios (see
Figure 2): ideal white-box (i.e., accessible to the discrimina-
tor) and realistic white-box (i.e., white-box for the generator
with latent code) scenarios. For the ideal white-box scenario,
the discriminator of the target model will be operated as the
attack engine. In the case of the realistic white-box scenario,
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TABLE 1. Comparison of differentially private GAN models in the gradient perturbation approach.

we assume that an adversary can access the parameters of the
generator as well as latent code.

B. DIFFERENTIAL PRIVACY FOR GENERATIVE
ADVERSARIAL NETWORKS
Since the notion of differential privacy emerged, extensive
studies have been conducted in various fields requiring pri-
vacy preservation. Obviously, in the field of artificial intel-
ligence, research on differentially private mechanisms has
been actively conducted to preserve the privacy of AI models.
Initially, the results were mainly focused on convex optimiza-
tion problems and general machine learning models such as
ERM [31], [32], decision tree [33], [34], regression [35], [36]
etc., and progressed toward satisfying differential privacy
for complex models with non-convex optimization problems
such as deep learning and autoencoder (e.g., [37]–[39]).

There are three main approaches to achieve differen-
tial privacy for complex AI models: output perturbation,
objective perturbation, and gradient perturbation. Among
these approaches, most mechanisms that satisfy differential
privacy for the GAN model have leveraged the gradient
perturbation approach because of its flexibility and adapt-
ability. Note that output perturbation can introduce a huge
amount of noise in the parameters of the final model as differ-
ential privacy pursues the worst-case scenario, and objective
perturbation is not generally applicable as it depends on
the architecture of the model. The gradient perturbation
method satisfies differential privacy by adding noise in the
learning process of the model that performs gradient-based

optimization. That is, at each iteration of the training, noise
is added to the gradients calculated by referring to the dataset
that contains sensitive information so that differential privacy
can be held. The main issue with this approach is how to cal-
culate tighter bounds on privacy loss in terms of composition.
In this respect, Abadi et al.[37] recently proposed an efficient
differentially private learning algorithm. In [37], the authors
presented the moments accountant mechanism that can effi-
ciently bound the cumulative privacy loss of the algorithm,
and showed that differential privacy can be achieved with a
modest privacy budget while preserving the utility of model.
Most of the differentially private GAN algorithms leverage
the moments accountant to calculate the cumulative privacy
loss. Table 1 presents the characteristics for each differen-
tially private GAN algorithm.

Xie et al. [40] proposed a differentially private GAN algo-
rithm at first. They focused on the Wasserstein GAN model,
and showed that differential privacy can be achieved via
the same gradient-based training process as deep learning
models. In principle, since GAN models consist of a dis-
criminator and generator, unlike deep learning models that
consist only of discriminative ones, it should be considered
that differential privacy has to be applied to two distinct
sub-models. However, Xie et al. [40] showed that if differ-
ential privacy is involved in the training of the discrimina-
tive model that directly references the training dataset, the
generative model also satisfies differential privacy naturally
due to the post-processing immunity of differential privacy.
In the case of composition, they leveraged the moments
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Algorithm 1 Differentially Private GAN Training
Input: data samples {x1, . . . , xn}, loss function of discriminator LD, loss function of generator LG,
batch sizem, learning rates ηD and ηG, gradient norm bound c, noise scale σ .
1: Initialize w0 and θ0
2: for t = 1, . . . ,T do
3: Random sampling
4: sample a batch Bt = {x(i)} ∼ Px of data point with probability q = m

n
5: sample a batch {z(i)}i=1,...,m ∼ Pz of latent code
6: Compute gradient for discriminator
7: gwt ,real(x

(i))← ∇wtLD(wt , x(i)) for each x(i) ∈ Bt
8: gwt ,fake(z

(i))← ∇wtLD(wt ,G(z(i))) for each i ∈ [1,m]
9: Clip gradient

10: ḡwt ,real(x
(i))← gwt ,real(x

(i))/max (1, ||gwt ,real (x
(i))||2

c ) for each x(i) ∈ Bt

11: ḡwt ,fake(z
(i))← gwt ,fake(z

(i))/max (1, ||gwt ,fake(z
(i))||2

c ) for each i ∈ [1,m]
12: Add noise
13: g̃wt ←

1
m (6iḡwt ,real(x

(i))+N (0, σ 2c2I))− 1
m6iḡwt ,fake(z

(i))
14: Optimize discriminator
15: wt+1← OPT(wt , g̃wt , ηD)
16: Train generator G
17: sample a batch {z(i)}i=1,...,m ∼ Pz of latent code
18: gθt (z

(i))← ∇θtLG(θt , z(i)) for i ∈ [1,m]
19: θt+1← OPT(θt , gθt , ηG)
20: end for
Output: model parameters of discriminatorwT and generator θT , and compute the overall privacy cost
(ε, δ)

accountant theorem. At around the same time, Srivastava
and Alzantot [41] proposed a differentially private WGAN
algorithm for the purpose of privacy-preserving synthetic data
generation. The difference from the previous algorithm is
that they simply bounded the sensitivity of gradients with the
gradient clipping method. Although Xie et al. [40] approxi-
mated the upper bound of gradients, it can cause greater noise
levels than the simple clipping approach as the approxima-
tion depends on the size of the model. Subsequently, several
results have been reported that extend the previous algorithms
to the improved WGAN model (WGAN-GP [42]) [43]–[45].
As another result on the differentially private GAN model,
Torkzadehmahani et al. [46] proposed a differentially private
conditional GAN algorithm that can generate both differ-
entially private synthetic data and corresponding labels by
utilizing the characteristics of the conditional GAN model.
In particular, by applying Rényi differential privacy, they
showed that the algorithm can improve the quality of syn-
thetic data in the same privacy budget compared to algo-
rithms involving the basic notion of differential privacy. For
the purpose of privacy-preserving data sharing for clinical
data, Beaulieu-Jones et al. [47] applied differential privacy
to the auxiliary classifier GAN (AC-GAN [48]). As with the
previous algorithms, they leveraged the differentially private
SGD algorithm and calculated the overall privacy loss with
the moments accountant.

By extending the capacity of these algorithms, we evalu-
ate the impact of differential privacy regarding the privacy
budget and its relaxed definitions over the substantial pri-
vacy violation scenario.4 Algorithm 1 presents a systematic
algorithm for achieving differential privacy in the training
of GAN models. First, the algorithm samples a mini-batch
with the sampling probability q = m

n from the (training)
dataset, and a mini-batch of size m from the latent space
randomly. Then the gradients of the loss function LD for
the discriminator are computed with respect to the current
parameters wt of discriminator in both mini-batches, and
the computed gradients are clipped by l2-clipping with the
clipping parameter c. At this point, Gaussian noise is added
to the summed gradient to ensure differential privacy, and
the magnitude of the noise is derived by considering only
the gradient associated with the real data. After the gradient
is averaged and aggregated, the parameter wt of the dis-
criminator is updated with the calculated gradient g̃wt and
learning rate ηD in a gradient-based optimization method,
such as SGD, Adam, or RMSProp. Note that the optimization
process may include adjustments to model parameters, such

4We do not cover strategic approaches [49]–[51] (for example, clipping
decay to reduce the magnitude of noise) because we focus on analyzing
the relationship between differential privacy and the privacy invasion attack
according to the privacy budget and the relaxed definitions of differential
privacy
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TABLE 2. Comparison of relaxed definitions of differential privacy. The DP interpretation of Concentrated DP is derived indirectly via zCDP [14].

as weight clipping to ensure Lipschitz continuity in WGAN.
This discriminator training procedure (lines 3 ∼ 15 in the
algorithm) can be iterated in several steps internally, as in the
case of WGAN. Obviously, in this case, privacy costs arise
in every sub-iteration. After completing the training of the
discriminator in an iteration step t , the algorithm trains the
generator G, and this procedure is the same as regular gener-
ator training in the non-private scenario. Since the procedure
for training G (lines 16 ∼ 19 in the algorithm) is a post-
processing of a differentially private discriminator and does
not access the training dataset, there is no need to force this
procedure to ensure differential privacy. When the algorithm
is finished, it outputs the final model parameters wT and θT ,
and computes the overall privacy cost spent. We consider
differential privacy and its relaxations, and Table 2 compares
the noise scale in a single execution of the Gaussian mech-
anism according to the definitions of differential privacy.
Although Algorithm 1 computes the overall privacy cost as
an output process, it can be calculated during the running of
the algorithm (right after optimizing the discriminator each
time). In this case, a predefined entire privacy budget can be
specified as termination criteria (i.e., as a threshold for spent
privacy costs).

To evaluate differentially private GAN models, we first
generate models via Algorithm 1, and then analyze their
resistance over the membership inference attack scenarios
according to the degree of the privacy guarantee and the
definitions of differential privacy. Note that, the algorithm
presents the process of training GAN models to satisfy dif-
ferential privacy, and makes no assumptions about specific
attack scenarios.

IV. EVALUATION
In this section, we conduct experiments to quantify howmuch
privacy is leaked from differentially private GAN models.
As mentioned in the previous section, we measure privacy
leakage via membership inference attack in ideal and realistic
adversarial scenarios.

A. EXPERIMENTAL SETUP
We first train target GAN models using Algorithm 1 with
different relaxed notions of differential privacy, and compare

them in terms of privacy leakage. The notions that we con-
sider are (ε, δ)-DP, zero-concentrated DP (zCDP), and Rényi
DP (RDP). Since concentrated DP (CDP) has the same com-
position property and noise scale as zCDP, as shown in
Table 2, we do not include CDP in the experiments. For zCDP,
we convert privacy budgets to (ε, δ)-DP, and use them as
termination thresholds. In the case of RDP, we leveraged the
RDP accountant [52], [53].

As described above, relaxing the definition of differential
privacy results in a smaller noise scale for a given privacy
budget. Alternatively, in terms of composition, the relaxed
notions enable more differentially private operations for a
given privacy budget and fixed noise scale. In this respect,
we considered the latter case and set the noise scale σ = 2.
With respect to the sensitivity in terms of differential privacy,
we set the gradient clipping parameter c = 2. Note that, since
the parameters c and σ are directly involved in the standard
deviation of the Gaussian distribution in the Gaussian mech-
anism, large c and σ can cause large noise, and in this case,
the training of GAN models may not proceed at all even with
a large number of iterations.

1) TARGET MODEL
We experiment and evaluate three GAN models: 1) deep
convolutional GAN (DCGAN), a model that combines the
basic GAN architecture with a convolutional neural network,
2) Wasserstein GAN (WGAN), a model that improves train-
ing stability by using the Wasserstein distance as an approxi-
mation metric between probability distributions, 3) boundary
equilibrium GAN (BEGAN), a model that can approximate
the convergence of the training process by combining it with
the concept of Autoencoder.

For DCGAN and WGAN, we built both models with the
same architecture. In particular, we constructed the discrim-
inator as three convolutional layers and a fully connected
layer sequentially. Note that, since the differentially private
learning algorithm computes the gradient for each single data
point, we did not include the batch normalization process due
to compatibility concerns. For the generator, we consisted
of a fully connected layer and three de-convolutional layers
(upsampling-convolutional layer) sequentially. In the case of
BEGAN, we constructed the encoder as three convolutional
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layers and a fully connected layer, and the decoder as a fully
connected layer and three de-convolutional layers (the dis-
criminator is constructed by encoder-decoder and the archi-
tecture of the generator is the same as that of the decoder).
Unlike the other models, WGAN internally iterates discrimi-
nator training before proceeding with generator training, and
we set the number of internal iterations to 5.

2) DATASET
We use two datasets to evaluate differentially private GAN
models: theMNIST handwritten dataset containing 60k train-
ing samples and 10k testing samples of size 28× 28 in
grayscale, and the Labeled Faces in the Wild (LFW)
dataset [54] containing 13,233 images of faces. In the case of
LFW datset, we aligned each data to a size of 62 × 47 and
converted it to grayscale. For both datasets, we randomly
sample 10% of the data points as the training dataset. To mea-
sure the privacy leakage, we also prepare a test dataset (for
attack scenario) with the samemanner and size as the training
dataset. From the perspective of the attack scenario, the data
points in the training dataset are members, and the others
are non-members. Therefore, the attack success rate of the
baseline attacker can be 50%.

B. MODEL ACCURACY
Before evaluating the resistance of differentially private GAN
models to themembership inference attack, we investigate the
accuracy of themodels according to the notions of differential
privacy as well as privacy budgets in terms of the quality of
generated synthetic data. Figure 3 presents generated samples
from trained differentially private GAN models. Obviously,
it can be seen that the quality of the generated data improves
as the privacy budget increases. Likewise, in the same privacy
budget, the quality of the generated data is improved as the
notion of differential privacy is relaxed. To show the results
from a broader perspective, we further present the outputs
of differentially private GAN models trained on the CelebA
dataset [55] (under the same conditions as the experiments
in the MNIST and LFW datasets), which is an RGB three-
color (celebrity) face dataset. Compared to other models,
(differentially private) BEGAN seems to outperform even
with relatively small privacy budgets.

In addition to these visual comparisons, we conduct a
classification task on the generated data to evaluate the
models’ accuracy numerically. Although there are several
metrics that can evaluate the quality of synthetic data gen-
erated from GAN models, such as inception score and SSIM
(structural similarity), we adopted the classification accuracy
to intuitively represent the quality of synthetic data. Note
that, this approach has been applied in previous studies on
differentially private GANs (e.g., [46], [49]). The process
of this experiment is as follows: we first build a classifi-
cation model that acts as an evaluator for model accuracy
using the original training dataset, and generate synthetic
datasets from the trained differentially private GAN models
with the same proportion and size as the original test dataset.

Then we present the classification accuracy of the evaluator
on these synthetic datasets as the accuracy of differentially
private GAN models. In order to label the generated data,
we trained GAN models by including the class attribute as
with the conditional GAN architecture [22]. In the case of
the classifier, we build a general two-layer neural network
model. Figure 4 shows the experimental results on theMNIST
dataset. As shown in the results, we found that not only
was the visual quality improved, but also the classification
accuracy of the generated data, and it can be interpreted
that the differentially private GAN models generate clearer
data as the privacy budget is increased and the definition
of differential privacy is relaxed.5 In the case of the non-
private scenario, the accuracy was measured as 0.931 and
0.952 for DCGAN and BEGAN, respectively. In the case of
the differentially private scenario, we confirmed that the RDP
models converge very closely to the non-private scenario at
ε ≥ 10 compared to the other notions. When ε = 10, the
accuracy loss in the experiments on DCGAN was measured
as 12%, 8%, and 5% in DP, zCDP, and RDP, respectively.
Similarly, in the experiments on BEGAN, the accuracy loss
was measured as 10%, 7%, and 4%.

C. IDEAL WHITE-BOX ATTACK SCENARIO
As described above, we assume that the attacker in the ideal
white-box scenario has access to the discriminator of the
trained GAN model, and exploits the discriminator as the
attack engine (i.e., the attacker model) for membership infer-
ence. Figure 5 and 6 show the privacy leakage due to the
membership inference attack on GAN models in the ideal
white-box attack. In the case of the inference, we sorted the
outputs of the discriminator for the suspect data and summa-
rized the top ranked data, and we set 1/2 as the minimum
value of the attack accuracy since the attack success rate of
the baseline attacker is equal to the probability of flipping a
coin. This means that there is no privacy leakage when the
attack accuracy is 1/2.

Figure 5 shows the experimental results on the MNIST
dataset. In the non-private scenario, the attacker achieved
93%, 93%, and 57% in DCGAN, WGAN, and BEGAN,
respectively. As shown in the figure, we found that differ-
ential privacy can significantly reduce privacy leakages even
with relatively large privacy budgets. In the case of DCGAN
and WGAN, it was measured that the higher the privacy
budget and the more relaxed the definition of differential pri-
vacy, the more vulnerable to attack (see Figure 5 (a) and (b)).
As expected, (ε, δ)-DP showed the strongest resistance com-
pared to the other notions, and attack accuracy was mea-
sured close to the baseline attacker. In the case of zCDP
and RDP, the attack resistance was measured to be strong
at ε < 10, but the attack success rate increased at ε ≥ 10.
In the case of BEGAN (Figure 5 (c)), different results
from the experiments with the other models were measured.

5We do not present the results on WGAN because they are very similar to
those in the results on DCGAN.
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FIGURE 3. Generated samples from trained differentially private GAN models.

FIGURE 4. Classification accuracy on synthetic datasets generated from differentially private GAN models.

As the privacy budget grows, the attack probability seems
to increase slightly. However, the attack success rate was
measured with a very low probability even with large privacy
budgets (themaximum attack success rate wasmeasured to be
0.53 when 10 < ε < 15), and it was observed to have a strong
resistance to the membership inference attack compared to
other models.

Figure 6 shows the experimental results on the LFW
dataset. In the non-private scenario, the attacker achieved
99%, 99%, and 62% in DCGAN, WGAN, and BEGAN,
respectively. Compared with the experiments on the MNIST
dataset, the attacker in the non-private scenario achieved
higher attack success rates. Overall, the results showed a
pattern similar to that of the MNIST experiments. In the case

of DCGAN and WGAN, it was measured that the attacker’s
advantage slightly increased compared to the experiment with
the MNIST dataset. However, in the case of BEGAN, the
attack success rate was measured with a very low probability
as in the previous experiments (the maximum attack success
rate was measured to be 0.53).

D. REALISTIC WHITE-BOX ATTACK SCENARIO
As described in the previous section, we assume that the
attacker in the realistic white-box scenario has access to
the generative model of the trained GAN model and latent
code, and exploits them as the reconstruction engine of data
for membership inference. Therefore, the attacker model in
the realistic white-box attack scenario can be regarded as
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FIGURE 5. Ideal white-box attack performance on MNIST dataset.

FIGURE 6. Ideal white-box attack performance on LFW dataset.

FIGURE 7. Realistic white-box attack performance on MNIST dataset.

a reconstruction process through optimization (optimization
process on latent codes to generate data as close as possible to
the suspicious data in terms of the distance). Figure 7 and 8
show the privacy leakage due to the membership inference
attack on GAN models in the realistic white-box attack.
As in the previous experiment, we sorted and summarized
the distance results between synthetic and suspect data, and
we set 1/2 as the minimum value of the attack accuracy
and assume that there is no privacy leakage when the attack
accuracy is 1/2. In addition, we excluded the experiment with
BEGAN from the realistic white-box attack experiment since
it showed strong resistance to the attack even in the ideal
white-box scenario.

Figure 7 shows the experimental results on the MNIST
dataset. In the non-private scenario, the attacker achieved
56% and 61% in DCGAN and WGAN, respectively.
As shown in the figure, we found that differential privacy can
reduce privacy leakages, and attack accuracy was measured
very close to the baseline attacker. In both models, differ-
ential privacy showed strong resistance to the attack even
with large privacy budgets and relaxed definitions, unlike the
experimental results in the ideal white-box scenario. Overall,
the attack success rate was measured to be less than 0.53 in
both experiments. Figure 8 shows the experimental results
on the LFW dataset. In the non-private scenario, the attacker
achieved 57% and 63% in DCGAN andWGAN, respectively.
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FIGURE 8. Realistic white-box attack performance on LFW dataset.

As expected, the measured experimental results were very
similar to the experiment with the MNIST dataset.

E. DISCUSSION
From the perspective of model utility, the tighter bounds
on the cumulative privacy loss by the relaxed definition of
differential privacy improve the quality of synthetic data for a
given privacy budget. However, in the ideal white-box attack
scenario, we found that differentially private models with
relaxed definitions are more vulnerable to the membership
inference attack because they reduce the noise magnitude or
allow more training iterations on a given dataset. Therefore,
we can conclude that relaxing the definition of differential
privacy comes with additional privacy risks. Nevertheless,
we confirmed that differential privacy can significantly miti-
gate the privacy leakage compared to the non-private scenario
even with relatively large privacy budgets. In particular, this
advantage is more evident in the realistic white-box attack
scenario. Furthermore, by experimenting with various GAN
models, we found that privacy leakage is dependent on the
model architecture, and applying differential privacy can
amplify resistance to the membership inference attack.

In our experiment, we trained and built GAN models on
subsets, which are datasets sampled with a probability of 10%
from the original training datasets. In other words, GANmod-
els can easily overfit as they are trained on very small datasets,
and this can make the models very vulnerable to membership
inference attacks. In [8]–[10], it has been reported that the
sampling probability significantly affects the accuracy of
membership inference attack, and the smaller the sampling
set (i.e., the more severe the overfitting), the more vulnerable
to attack. Considering these points, since differential privacy
should consider the worst-case scenario, we focused on the
sampling probability of 10%, which was the most reasonably
vulnerable case in non-private scenarios.6

V. RELATED WORK
Recently, various studies have been conducted to analyzed
the relationship between differential privacy and privacy

6In experiments with relatively large sampling sizes (roughly 30% or
more), we found that differentially private GAN models have strong resis-
tance to membership inference attacks even at relatively large epsilon values.

invasion attacks on machine learning and deep learning mod-
els. Rahman et al. [16] investigated the relationship between
differential privacy and the membership inference attack,
focusing on neural network-based models. In particular, they
analyzed the trade-off between utility and privacy by varying
the privacy budget. Focusing on the model inversion attack
for regression models, Wang et al. [17] proposed a differen-
tially private regression model. In [17], the authors leveraged
the functional mechanism to ensure differential privacy, and
showed that the proposed differentially private regression
model can provide resistance to the model inversion attack
while preserving utility. Zhang et al. [18] considered an
obfuscation method that injects noise into the input dataset
before training the machine learning model, and showed that
the data reconstructed by the model inversion attack (from
the model with the obfuscation applied) is more blurred
compared to the non-private scenario. Park et al. [20] studied
the relationship between differential privacy and the model
inversion attack. In particular, they focused on face recog-
nition systems based on neural network-based models, and
analyzed the trade-off between utility and privacy according
to the degree of privacy guarantee in the model inversion
attack scenario. Jayaraman and Evans [19] investigated the
relationship beetween definitions of differential privacy and
privacy invasion attacks. By focusing on the membership
inference and attribute inference attack [6], [30], they ana-
lyzed the resistance of differential privacy to the attacks for
logistic regression and neural network models. In contrast to
previous studies that targeted neural network and regression
models, we focus on generative adversarial networks, which
are the most sophisticated generative models, and analyze
the relationship between differential privacy and membership
inference attack on GAN models.

VI. CONCLUSION
In this paper, we investigated the resistance of differentially
private GAN models to the membership inference attack
according to the degree of privacy guarantee. In the exper-
imental evaluation, by quantifying the effectiveness of the
attack based on the degree of privacy guarantee, we showed
that differential privacy can reduce the attack success rates
of membership inference while preserving the quality of
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synthetic data. However, by investigating several notions of
differential privacy, we found that relaxing the definition
of differential privacy comes with additional privacy risks.
Nevertheless, we confirmed that differential privacy can sig-
nificantly mitigate privacy leakage compared to the non-
private scenario. As a future study, it would be interesting to
investigate the privacy leakage on the differentially private
algorithms with strategic approaches (e.g., clipping decay).
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