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ABSTRACT In this paper, we propose a cloud-based big data processing approach to evaluate the flexibility
potential of commercial buildings by type and benefits for the owners. The pandemic times changed
electricity consumption patterns with a substantial impact on energy markets. Many activities moved
from large commercial offices and schools to residential buildings. With machine learning algorithms, the
flexibility forecast can be improved to help energy suppliers, grid operators, and traders better calculate the
flexibility potential of commercial buildings. With better forecasts, grid operators can identify and mitigate
risks, prevent malfunctions, and schedule maintenance works in advance. Using flexibility forecast as input
and results from previous studies regarding flexibility coefficient by state and demand response programs,
we propose an original method to assess load flexibility of commercial buildings and calculate the benefits for
their owner. The exemplification is done with an extensive hourly dataset from the U.S.A. of 14,976 comma-
separated values files with a total of 131.18 million records showcasing the electricity and gas consumptions
and their breakdown for one year.

INDEX TERMS Electricity, load management, power generation economics, clouds, databases, environ-
mental economics.

I. INTRODUCTION
In July 2019, the European Union (EU) introduced Citizen
Energy Communities (CECs), including residential con-
sumers, prosumers, and local entities such as distributed
energy resources, storage facilities, and industrial and com-
mercial buildings. Such communities generate large volumes
of smart meter data that can be analyzed to extract useful
insights related to flexibility potential and assess the ben-
efits and Enabling Technology Costs (ETCs) for Demand
Response (DR) programs. Load flexibility helps CECs to
handle the fluctuations and high volatility of load, wind
speed, and solar radiation. Smart metering data has multi-
ple applications such as billing, cluster identification, tariff
setting, load forecast, optimization, market simulation via
blockchain, and flexibility assessment especially when data
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is provided at the appliance or group of appliances level.
While some studies discuss the applications of smart meter
data [1] and load forecasting based on Big Data [2], many
challenges [3] still need to be addressed as the large volume
of data does not provide directly useful insights and hints
regarding future trends. Thus, the EU policy envisions an
energy transition that allows prosumers and CECs to share,
trade, aggregate, and sell the electricity surplus [4], [5] and
even own and manage the grid. These activities are accompa-
nied by large volumes of data that can offer useful feedback
for energy suppliers, grid operators, traders, consumers, pro-
sumers, and aggregators [6]. DR programs target to extract
and reward flexibilities and use them to manage the variation
output of Renewable Energy Sources (RES) and the load
of the Electric Vehicle (EV) charging stations [7]. Flexibil-
ities are defined in terms of type, size (quantity), duration,
control technology considering the specific sector [8]. For
instance, [9] defined residential, commercial, and industrial
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sectors enabling technologies for DR. Furthermore, they
define DR service types (shift, shed, and shimmy). Thus,
commercial buildings data can be grouped types, Independent
System Operator (ISO) affiliation, correlated with several
DR services, flexibility coefficient by state, and ETCs to
assess the flexibility potential and benefits [10]. Further-
more, COVID-19 pandemic times influenced the load pattern,
shifting the load from commercial buildings such as large
offices and schools to residential consumption [11]–[14],
so improved data-driven architecture for buildings data
exchange is needed [15]. Big data technologies and IoT are
frequently used in consumer-oriented energy optimization
and prediction, including the day-ahead forecast for build-
ings [16] or total energy consumption [17].

This paper stems from the research underlined in [18] that
focused simple data analytics performed with large volumes
of data. It also takes into account our previous research in
terms of data models for flexibility and DR assessment [19].
Comparing with the method proposed in [19], we identify
and emphasize the similarities and differences described
in section II. Flexibilities and Direct Load Control (DLC)
are also studied in [20]. The novelty of the current study
consists in:
• data centers (DCs) are usually the primary choice for
storing large quantities of data. Some studies considered
DCs as computing facilities of interest for exploiting
their energy flexibility and have proposed an Energy
Marketplace to allow DCs to act as active energy play-
ers integrated into the smart grid [21]. But the study
mentioned above and other papers on energy flexibil-
ity [22], [23] lack comprehensive analyses of data lake
solutions as powerful backends for running DR assess-
ment. To address this gap, we compared two data lake
architectures (Hadoop based vs AWS), and different
approaches within these architectures as far as costs
and speed are concerned. The cost-wise and speed-wise
comparisons are conducted to identify the pluses and
minuses of the two solutions to store and prepare the
data (e.g., to perform data reduction) for running the
algorithms;

• a different approach to DR assessment, considering not
only shift DR service but also the combination shed &
shift. Furthermore, when estimating the DR, we updated
the analyses by rethinking the implementation of DR
programs. The analyses take into account the results
of previous studies [9], [10]. It includes the flexibil-
ity forecast performed with Machine Learning - LSTM
(Long Short-Term Memory) recurrent neural networks
and Regression Analysis aiming to determine future
consumption values to evaluate the flexible potential
better and estimate the efficiency of DR programs.

• flexibility assessment method that relies on a step-by-
step approach consisting in a) Dividing appliances into
programmable and non-programmable to separate flexi-
ble and fixed consumption; b) Calculate total forecasted
consumption of programmable appliances at hour h;

c) Calculate daily mean consumption using the load pro-
file; d) Extract peak hours for the analyzed interval: one
month, year, etc. e) Identify the start and stop peak hour;
f) Apply flexibility coefficient to obtain the shiftable
consumption; g) Obtain total consumption to shift from
peak to off-peak hours; h) Calculate the gain or benefit
that can be obtained by shifting and shifting/shedding
programmable appliances; i) Compare the gains and
choose the DR program.

The large-scale rollout of smart metering systems that
takes place in most European countries generates numer-
ous datasets. Therefore, we propose to extract meaningful
insights from this data and raise the awareness of the con-
sumers regarding DR programs potential to bring savings
and increase a pro-environmental behavior by assessing the
flexibilities in terms of quantities and monetary benefits. The
input data comes from numerous smart meters in CSV files
grouped by state and building type. Our objective is to store
it in S3 (AWS) and HDFS, and reduce it with Athena and
Sagemaker or Hive, to be further processed in Python obtain-
ing the flexibility forecast. Then, the flexibility potential is
assessed by implementing the method proposed in section II.
The input data flow and processes proposed in this paper are
graphically described in Figure 1.

FIGURE 1. Input data flow, analyses, and processes.

The paper is structured as follows: In Section II, we start
with the Big Data processing approach, describing and ana-
lyzing the dataset, continuing with comparing the data lake
architectures, proposing a flexibility assessmentmethod, with
the final subsection comparing two forecast methods; In
section III, the simulations using the forecast methods on the
dataset are conducted and the results of flexibility method
implementation are presented; In section IV, the conclusions
are drawn.

II. BIG DATA PROCESSING APPROACH
A. CLOUD VS. HADOOP DISTRIBUTED FILE
SYSTEM (HDFS) STORAGE
To store and process the data needed for analyses, we needed
a solution that can reliably offer access to various ser-
vices to multiple types of users, as shown in Figure 2.
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Different applications (including IoT devices) can usually
interact directly with the data lake by writing semi-structured
data. Application developers access the data lake directly
or through query engines that offer different views on the
data (e.g., by providing SQL functionality). Data scientists
prefer Jupyter notebooks [24] to interact with the data through
various libraries, using SQL-enabled query engines, data
dictionaries, or reading the files directly (e.g., in Pandas
DataFrames). Some data scientists prefer the flexibility and
standardization of SQL to query their data. Consequently,
some schema can be applied (on-read/on-write) to the data,
which might lead to the loss of certain nuances of the raw
data. Because of this loss of nuances, it is often advisable to
work with the initial raw data.

FIGURE 2. The interactions between the actors and the applications.

Standard databases usually employ a schema-on-write
approach. That means that the schema of the data is defined
before the data is stored (i.e., CREATE TABLE before
INSERT rows). This is more rigid but works well for dense
and structured data and where constraints or indexes are
necessary. Big Data oriented solutions enable a more flexible
schema-on-read approach where semi-structured or unstruc-
tured data is stored as it is and the schema is applied (i.e.,
the data is parsed) later when the data is being consumed.
Sometimes, after the schema is applied and the data analyzed,
the resulting output is loaded into a schema-enabled database
for future use. By combining all these types of data to store,
govern and process at scale, we consider a data lake [25].
Many times, such lakes are supplied with data from ingesting
real-time flows. Data lakes are being used in many domains,
including smart grids [26], and can provide data scientists a
plethora of inputs to train better models. Of course, as always,
having access to lots of data doesn’t tackle by itself the bad
or inaccurate data issues [27].

Our dataset is, as previously discussed, is made of multiple
CSV files. Useful data comes from the payload of the file,
but also from the name of the file and of the folder. The file
and folder names contain useful information such as country,
state, city, location type, and date (the payload contains the
day, month, and hour and the filename, the year). Columnar
storage formats such as Parquet [28] or ORC (Optimized
Row Column) can greatly decrease query time and costs [29],

especially for aggregations (AVG, COUNT, SUM), as some
cloud services such as Amazon Athena or Spectrum charge
by the queried data size. Therefore, if the CSVs are scanned
multiple times, it makes sense to convert them into Parquet.

In this section, we identified and compared two data lake
solutions, as shown in Table 1 to see how they work as a
backbone to handle the needs of our dataset aggregations and
summarizations.

TABLE 1. Data lake architectures.

The first architecture is comprised of open source which
can be used free of charge. HDFS is the Distributed File
System of Hadoop that can reliably store files on a cluster of
commodity computers (write-once-read-many access). Every
file block is stored on more than one node (usually on 3).
If one copy is compromised, one of the copies is replicated
someplace else. Hive is a data warehouse solution that can
apply a schema on HDFS stored flat files. The Hive meta-
data (e.g., the table definitions) can be stored in the Derby
embedded store, a local data store (e.g., MySQL, MS SQL,
Oracle), or on a remote metastore (i.e., the metastore is on a
distinct JVM). When an embedded store is used concurrent
access is not possible because only one Hive session can be
opened at once. This problem is mitigated by using the local
data store or the remote one. To construct a table based on a
folder containing files from our dataset we use a DDL (Data
Definition Language) statement:
CREATE EXTERNAL TABLE IF NOT EXISTS csv_dataset

(Date_time string, Electricity double, Fans double, Cooling
double, HeatingElectricity double, InteriorLights double,
InteriorEquipmentElectricity double, Gas double, Heating-
Gas double, InteriorEquipmentGas double, WaterHeater
double)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ‘,’
LINES TERMINATED BY ‘\n′

STORED AS TEXTFILE
LOCATION ‘/user/root/energy_csv’
tblproperties (‘‘skip.header.line.count’’ = ‘‘1’’);
If we need more flexibility, we can define a single column

(e.g., Record string) instead of eleven columns and do the
parsing through the SELECT statement. Based on this table
we evaluate several relevant SQL expressions on a subset
of 1.46 GB of the full dataset and a subset almost double
in size, 2.9GB (Table 2). The two subsets were chosen to
evaluate the increase in query time as the data size increases.
The information from the filename is extracted using the
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TABLE 2. Full table scans and data reduction for a subset of the full dataset (HDFS + Hive).

INPUT__FILE__NAME pseudo column and regex expres-
sions as shown in HiveQL1 from Table 2. Hive offers ORC
(Optimized Row Columnar), a file format somewhat similar
to Parquet. In HiveQL2, we converted from the external table,
built on the CSV files, to an ORC table. After the conversion
to ORC, the data size went down from 1.46 GB to 0.385 GB
and from 2.9GB to 0.772 GB.

A full data scan on the CSV data took 192 seconds
(HiveQL1) while a similar one on the ORC table took
about 14 seconds (HiveQL3). The aggregating functions
also performed considerably better on the ORC table com-
pared to the CSV one (HiveQL4 vs. HiveQL6, HiveQL5 vs.
HiveQL7).

Even though converting to ORC will make the queries run
faster, still, even with an engine like Tez which is much faster
than legacy MapReduce, they run rather slow for real-time
requirements where such queries usually need to run in
under 1 second. To address this problem, the data needed
for real-time queries can be exported to HBase, a NoSQL
database that stores data into HDFS and manages to provide
random access functionalities. Even though HBase has its
own language, SQL capabilities can be added using Apache

Phoenix. DML (Data Manipulation Language) statements
can be used on HBase tables or even for joining SQL tables
with Hive tables.

The second stack from Table 1 is comprised of Amazon
Web Services cloud solutions. Even though similar solu-
tions exist from other Cloud providers, AWS tends to be
the standard for heavy lifting machine learning engineer-
ing. For comparison, an Azure Studio-centered solution from
Microsoft ismore suited for business users whowant to train a
model in a drag-and-drop manner without using much, if any,
code. Cloud solutions are far from free but benefit from the
advantages of running on a mature platform offering various
services. Using the cloud for data science projects enables
easy transitioning from testing and prototyping to production
on top of data durability guarantees. It can also help accel-
erate the training phase (easy access to GPUs, to multiple
machines for horizontal scaling) and handle almost unlimited
concurrent connections. S3 is the object storage service from
AWS. While you can’t run an operating system or a database
management system on S3 (you would need EBS – Elastic
Block Storage), it is the standard solution for hosting a
data lake. It offers multiple tiers each with its advantages,
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disadvantages, and pricing. Storing 1TB will roughly cost
$23/month on S3 classic, $12.5 on S3 Infrequently Accessed,
$10 on S3 IA One Zone, $4 on Glacier, and $0.99 on Glacier
Deep Archive (long retrieval time, up to 12h). There are also
costs related to data access (for PUT, COPY, POST, LIST,
GET, SELECT – $0.005/1000 requests), monitoring (for
Intelligent Tier), data transfer, transfer acceleration, or cross-
region replication.WithAmazonAthena, we run SQL queries
directly on the S3 data and uses AWS Glue Data Catalog
to store the metadata (table definitions). It is interesting
to note that Amazon Athena uses Apache Hive DDL to
define tables.1 So, it doesn’t require any data movement, like
EXTERNAL TABLES in Hive. For Athena, the LOCATION
changes from an HDFS folder to an S3 folder in a bucket. The
payment is made by the amount of scanned data per query.

Redshift is the main AWS OLAP solution that easily
integrates with S3 and Glue Data Catalog whereas Aurora
is the AWS-built OLTP solution for the cloud. Both use
SQL natively. Still, Redshift Spectrum can spread queries
across multiple stores such as Redshift and S3 similar to how
Phoenix can query across HDFS, Hive, and HBase. AWS
offers Sagemaker, a Jupyter environment that makes available
the libraries and the infrastructure to make use of the data
lake. For example, to run a 5 note Spark cluster from a
Sagemaker Notebook (e.g., to assess data quality) we use:
p = PySparkProcessor(base_job_name = ‘summarize_

data’,
role = role,
framework_version = ‘2.4’,
instance_count = 5,
instance_type = ‘ml.m5.xlarge’,
max_runtime_in_seconds = 500).
To evaluate the AWS solution, we loaded the CSV files in

S3, including the folders. Then, we defined the SCHEMA on
top of those files (observation: the SQL statements can be run
from Sagemaker or Athena query editor):
CREATE EXTERNAL TABLE IF NOT EXISTS
energy.energy_csv(
Date_time string, Electricity double, Fans double,
Cooling double, HeatingElectricity double, InteriorLights

double,
InteriorEquipmentElectricity double, Gas double, Heat-

ingGas double,
InteriorEquipmentGas double, WaterHeater double)
ROW FORMAT DELIMITED FIELDS TERMINATED BY

‘,’ LINES TERMINATEDBY ‘\n’LOCATION‘s3://sagemaker-
eu-west-2-537954404244/energy’
TBLPROPERTIES (‘skip.header.line.count’ = ‘1’).
The files can now be queried using standard SQL.

To extract information from the file and folder names,
we use split_part and regexp_extract on $PATH (similar
to INPUT__FILE__NAME from HiveQL1), part of a view
based on a query. The information can be retrieved by
querying the view as shown in SQL1 from Table 3. As in

1 https://aws.amazon.com/athena/faqs/

HDFS, no pre-processing of the files is needed (e.g., con-
catenating files, adding columns, etc.) and when new files
are added to the S3 folder, the view will see the new
information.

Whereas Hive offers easy conversion between TEXTFILE
tables and ORC, AWS offers, among others, easy conversion
from Redshift, Aurora, or Athena to Parquet. This can be
done using SQL statements as shown in SQL2 from Table 3.
SQL2 moves and compresses the data from one S3 folder
to another, creating subfolders for each distinct value of the
partitioned_by clause (e.g., if there is data for 40 states, 40
subfolders will be created in /energy_parquet). As shown in
SQL3, we can do a full query of energy_parquet and get
the same result as in SQL1. This improves query time and
lowers costs by reducing the data scanned. One problem here
is that as CSV files are added or updated so has to be the
parquet table (e.g., by using INSERT+SELECT) as it doesn’t
automatically see the new data.

The run times from the tables are for comparison reasons
(speed increments when adding more data or switching
from one format to another). They can easily vary by up
to 10% depending on many factors, including the gen-
eral AWS load. We notice that the SQL implementation of
Athena is similar to the one from Hive (there are some
differences in the functions and the accepted regex expres-
sions). By studying Table 3, it is interesting to notice that
the conversion from CSV to PARQUET was done in less
than 15 seconds and the size of the dataset was reduced by
a factor of 3.5 (due to compression). If new CSV files are
added to the S3, the Parquet table can be easily updated
by using a Lambda function [30] and a CloudWatch Events
rule.

The results are similar to the ones when converting from
CSV to ORC from Table 2 in respect to size reductions
and improved query time. Even though the full scan from
SQL3 took almost the same amount of time as SQL1, the
amount of data scanned was much less, so the costs will
be more than three times smaller (on Athena you pay by
the amount of scanned data per query). The results suggest
that it makes sense to convert to Parquet if you have to do
more than one full table query on the CSV data. To fur-
ther our research, we also conducted aggregation queries on
the view constructed directly on CSV data and the parquet
table (SQL4-SQL7).

We can observe that when using the CSV-based view, all
the data gets scanned for the group by while when using the
Parquet table, a lot less data is scanned thus lower costs. Using
a limit clause to get only a subset of the rows has little impact
on query time or the amount of scanned data for both cases.
If we add to the SQL4-SQL7 queries a sum function on a
different column (e.g., sum(cooling)), the amount of scanned
data remains the same for the first 2 queries and increases by
55% for the latter two.

In this section, we have shown that the two architectures
described in Table 1 are similar in many ways. The conver-
sion from CSV to a columnar format brings important speed
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TABLE 3. Full table scans for two subsets of the full dataset, one of 1.46 GB and another of 2.9 GB (S3+Athena).

benefits, but the comparable queries will run considerably
faster on AWS (see HiveQL6 vs. SQL6 and HiveQL7 vs.
SQL7). We chose the AWS solution because of the speed
benefits and better integration with Sagemaker for building
the models discussed in the next section. On the other hand,

the AWS solution incurs monthly costs which are reasonable
for our data preparation needs, but will get higher as the
volumes increase (e.g., running 30 queries/day in Athena,
each query scanning 500 GB, the monthly cost would be
$2299, not including the tier dependent S3 costs).
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B. LOAD FLEXIBILITY FORECAST AND
ASSESSMENT METHOD
The flexible energy consumption forecasting can play a very
important role at a global level for DR program event creators,
such as energy suppliers, grid and system operators, aggre-
gators [31], [32]. The flexibility potential can be improved
by performing the forecast for programmable appliances
which allows suppliers and grid operators to make the right
decisions at the right time. Thus, the prediction of future
consumption allows a better assessment of the flexibility and
efficiency of the DR programs.

There are many methods to predict consumption[33]–[35]
and most of them depend on historical data. Historical data
series can be used to create prediction patterns with the aim
of predicting future consumption. Machine learning - Long
Short-Term Memory (LSTM) is a type of recurrent neural
network used in deep learning that can be used to fore-
cast consumption. Another method by which future flexible
consumption can be forecasted is regression analysis [36].
Regression analysis is a set of statistical processes for esti-
mating the relationships between a dependent variable and
one or more independent variables. Both methods are suitable
for time series forecasting. The linear regression algorithm
attempts to minimize the sum of the squares of the differences
between the observed value and the predicted one, whereas
recurrent neural networks hold a hidden layer that acts as a
memory function that considers previous time stepswhile cal-
culatingwhat the next value in the sequence should be. Unlike
regression that deals especially with linear dependencies,
recurrent neural networks can also cope with nonlinearities.
Also, regarding the dataset, recurrent neural network, being a
method of deep learning, requires a large set of data to train
the model compared to the regression model that needs at
least a little bit more data than the number of its parameters.
In Table 4, the most important steps for building the forecast
models are briefly described.

One flexibility assessment method is envisioned starting
from the results of previous studies that identify the flexibility
coefficient by state [37] and propose and fully describe the
DR enabling costs and DR programs such as SHIFT, SHED,
and SHIMMY to control appliances and flatten the load
curve [9]. The most important aspect of this method is to
update the load profile at least monthly because the load
can suffer from seasonal changes and unexpected phenom-
ena such as the pandemic leading to significant changes in
consumption patterns from offices to residents.

The main steps of the proposed method are presented
in Table 5. First, the appliances are classified into pro-
grammable (PA) and non-programmable (NPA) to separate
the flexible consumption from fixed one. Then, the hourly
total consumption of forecasted PA is summed up. Using a
valid load profile, the average consumption is calculated to
identify the start hPEAK−STA and stop peak hours hPEAK−STO.
By comparing the consumption of each hour with the aver-
age, one or more peak intervals will be extracted. Then, the

flexibility coefficient (gamma flex) will be applied to the
total hourly consumption of the forecasted PA indicating
the consumption that is available for DR programs or the
reliable flexibility potential that can be summed up to get the
total. By multiplying the peak and off-peak rate difference
with the total, we will obtain the gain from shifting PA. The
same approach is carried out for the SHED DR program,
but usually not all PAs are appropriate for shedding, thus a
combination of SHED and SHIFT is proposed instead. In the
case of shedding, the gain is obtained by multiplying the
total with the peak rate as that consumption is shifted but
not canceled. The proposed method is implemented with the
consumption data of commercial buildings from the U.S.
in the next section Simulation and Results.

Comparing with the method proposed in [19], we identify
the similarities and differences described in Table 6:

Thus, the current method is structured in 9 steps, providing
more precision, and the results are more accurate as it starts
from the proposed flexibility forecast using one of the regres-
sors or LSTM.

III. SIMULATION AND RESULTS
A. ANALYSIS OF THE DATASETS AND EXTRACTING
INSIGHTS FROM BIG DATA
As discussed in the previous section, the files have been
stored in S3, the object storage service from Amazon Web
Services (AWS), and the data preparation, model training,
and deployment have been done mainly in Amazon Sage-
maker (a Jupyter environment). We used the AWS Data
Wrangler library to seamlessly connect to the S3 stored data
files and read them into Pandas DataFrames. To analyze
the data and extract valuable insights, we used Athena to
query data and to build a table-to-S3 dictionary in Amazon
Glue. For the current study, the preliminary analysis data
coming in.csv format. The dataset contains 14,976 .csv files
with a total of 131.18 million records.2 The files contain
both electricity and gas consumption and their corresponding
breakdown, but as our study is related to flexibility poten-
tial in terms of electricity consumption, we will focus on
electricity. The programmable load consists of fans, cooling,
and heating appliances, whereas the non-programmable
load consists of interior lighting and equipment. Compar-
ing programmable (flexible) and non-programmable loads
in Table 7, we notice that at some intervals the flexibil-
ity is zero (Minimum = 0) and the total consumption of
programmable appliances is smaller than interior lights and
equipment meaning that there is more room for flexibility in
case lighting and interior equipment become more flexible
in the future. This aspect could be considered for buildings
depending on their type.

The dataset we are studying consists of 16 types of
buildings: Full-Service Restaurant, Hospital, Large Hotel,
Large Office, Medium Office, Midrise Apartment, Outpatient

2https://openei.org/datasets/dataset/commercial-and-residential-hourly-
load-profiles-for-all-tmy3-locations-in-the-united-states
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TABLE 4. Forecasting model.

Healthcare, Primary School, Quick Service Restaurant, Sec-
ondary School, Small Hotel, Small Office, Stand-Alone
Retail, Strip Mall, Supermarket, Warehouse. Thus, more
sensitive buildings in terms of load variation such as hospi-
tals and outpatient healthcare could be excluded or treated
separately.

Furthermore, in Table 8, we analyze the statistic indicators
for peak and off-peak hours since their particularities are
significant for DR programs. However, peak hours could be
split into mild-peak and critical-peak hours depending on
the season, schedules, and working shifts, aiming to ana-
lyze load flexibility potential. Thus, we calculate the statis-
tics indicators splitting the appliances into programmable
and non-programmable ones operating at peak and off-peak
hours.

Therefore, we target to apply DR programs to pro-
grammable appliances that operate at peak, whereas
non-programmable appliances will remain unchanged.

Using the reduced data approach proposed in section II.A,
we can extract valuable insights regarding commercial build-
ing operation and flexibility potential. Considering the
state and ISO affiliation (the nine regional Independent

System Operators that control the load in the U.S. are
depicted in Figure 3(a) as CAISO, ERCOT, ISO-NE, MISO,
NORTHWEST, NYISO, SOUTHEAST, SOUTHWEST, and
SPP) and DR [37], we calculate the average flexibility poten-
tial in percentage for our dataset of commercial buildings at
the ISO level (as in Figure 3(b)). ISO affiliation is added to
the initial dataset grouping the states to corresponding ISOs
since it is important for control areas to know the flexibility
potential and envision strategies to use it.

There is a quite significant difference between ISO-NE,
NORTHWEST with around 2%, and MISO with over 13%.
Thus, the flexibility of buildings is not uniformly distributed
among ISOs. In Figure 4, the breakdown of electricity con-
sumption is showed for each ISO. The appliances that can
provide flexibility are heating, cooling, and fans, whereas
interior equipment and lights are considered less flexible.

The electricity consumption by appliance type is provided
in Figure 5. Cooling systems and fans are the most numerous
programmable appliances. They represent 76% of the total
programmable appliances.

The electricity load curves for the 16 types of buildings
are provided in Figure 6. These curves are interesting as they
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TABLE 5. Flexibility assessment method.

reveal the buildings with the highest consumption at peak
hours and in general. For instance, hospitals, large offices,
secondary schools, and large hotels are buildings with the
highest consumption. However, some complementarity could
be identified in terms of consumption hours among buildings
with the highest consumption. Large hotels have two peaks:
late evening and morning peaks, whereas the others reflect
more activity during 6 and 18.

However, gas load curves are much different (as in
Figure 7) and they can be considered in additional analyses
to reflect the possible transfer to release the grid stress from
electricity to gas and vice-versa.

Load profiles are drawn for total electricity and gas con-
sumption of all buildings as in Figure 8 and breakdown by
appliance type as in Figures 9 and 10.

Most of the heating is done by gas, probably because the
gas pricewasmore convenient. Therefore, it is reasonable that
heating by electricity is small. Furthermore, the load profile
for electrical appliances is very relevant for strategy makers
as some rules have to be taken into account. For instance,
cooling even it is the highest programmable load, cannot be
shifted entirely to the night hours. Thus, a mix of strategies
in terms of DR programs should be considered.

Moreover, very relevant is Figure 11, showing the poten-
tial of each building type. It seems that hospitals have the

highest potential, with the highest flexibility, but it is sensitive
in terms of patients’ comfort and safety so the DR pro-
gram should be adjusted accordingly considering the building
type.

Thus, large offices and secondary schools could be more
targeted in terms of DR programs penetration as they will
allow scholars and employees shifts of even working from
home that will somehow transfer the consumption from com-
mercial to residential buildings, especially during pandemic
times.

B. ANALYSIS OF THE DATASETS AND EXTRACTING
INSIGHTS FROM BIG DATA
Using the reduced dataset according to section II.A, we intend
to perform the flexibility forecast that will be the input data
for the proposed flexibility assessment method to evaluate
the flexibility potential and the efficiency of DR programs.
From the analysis of the data, we discovered that states such
as Texas and California have the highest consumption values
on the flexible component (fans, cooling, and heating) and
states such as Delaware and Alaska, the lowest ones (as
in Figure 12).

For forecast exemplification and analysis, we used the
consumption data recorded in Texas, as it is one of the most
representative state, aggregated at the hourly level, as follows:
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TABLE 6. Similarities and differences between the current method and
the method proposed in [19].

TABLE 7. Statistic indicators for programmable and non-programmable
appliances.

• combined with weather data from NOAA (National
Center for Environmental Information/ https://www.
ncdc.noaa.gov/crn/qcdatasets.html) for regression anal-
ysis using PyCaret;

TABLE 8. Statistic indicators for programmable and non-programmable
appliances at peak and off-peak hours.

FIGURE 3. Flexibility potential at ISO level.

• without enhancing the data (no adding information about
the weather) for the LSTM model.

The weather values taken from NOAA are values at the
hourly level and contain information such as air temperature,

3https://www.ferc.gov/electric-power-markets
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FIGURE 4. Electricity consumption on average by appliance type and ISO.

precipitation, global solar radiation, relative humidity, surface
infrared temperature, soil moisture, and soil temperature.
They are forecasting variables used as input data in the regres-
sion model.

As proof of concept, we aim to predict future consumption
on one of the flexible components namely ‘‘Fans: Electricity
[kW](Hourly)’’. Of course, the models can be applied to any
component in the dataset.

For regression analysis (using different regressors), we fol-
low several steps:

1) Data Preparation: The first step in performing the
analysis was to prepare the data. From the initial dataset
of 131 million records, 8.5 million related to con-
sumption in the state of Texas were extracted using
aggregation queries as in section II.A. The new dataset
obtained was then aggregated at the hourly level to be
combined with the weather dataset. Because weather
data is provided for specific time slots (hours: 2, 6,
8, 11, 13, 14, 15, 17, 19, 21, 23), the combination of
the two, the consumption records and the weather time
slots, resulted in a final set of 7,270 records.

2) Setting up the model: Unseen Data. From the
obtained dataset, a 10% sample was retained from the
initial dataset to be used for prediction.

3) Model implementation and comparison: After the
environment was initialized, all the regression models
available in the library were run and compared. Out of
them, we chose to further analyze and plot the results
of Random Forest Regressor, Linear Regression, and
AdaBoost Regressor to determine the accuracy of
different regressors. The forecast results with 14 regres-
sors are presented in Table 9.

A model was created for regressors that were used to
predict consumption for 24 hours. From the dataset, the day
of July, 15th, a summer day in which flexible consumption
usually registers significant increases, is selected and to that
day we apply the above-mentioned models. The results are
shown in Figures 13-15.

After checking the results, we’ve noticed that for Ran-
dom Forest Regressor and Linear Regression, the forecasted
consumption represents 96% of the actual consumption (in

FIGURE 5. Electricity consumption on average by electricity appliance
type.

FIGURE 6. Electricity load curves for 16 building types.

FIGURE 7. Gas load curves for 16 building types.

total, prediction is lower with 4% than actual consumption).
In contrast, with AdaBoost Regressor, prediction is higher
with 9% than actual consumption. For the LSTM model,
we use the data with the initial variables, without weather
data, representing the consumption in Texas aggregated at
date level. The number of observations in the dataset is
8,395. Unlike the regression simulation, where we considered
variables related to the weather conditions, for this model
we intend to determine the future consumption based on the
previous consumptions recorded for the other components
(flexible or not).

The difference between the two models consists in
dividing the dataset into two: a training and a test set, fol-
lowed by the transformation of the data from time series to
supervised learning, respectively into scales for the LSTM
model. To build themodel, the following parameters are used:
train data - 6000; loss function - ‘‘mean_squared_error’’;
optimization algorithm - ADAM; neurons in the first visible
layer - 100; epochs - 100; batch size - 70. As in the case
of regression, we intended to forecast the consumption for
24 hours. The results are presented in Figures 16 and 17.

It can be observed from Figure 17 that the train and test
performances are pretty close, and we can infer that the

VOLUME 9, 2021 168725



S. V. Oprea et al.: Big Data Processing for Commercial Buildings and Assessing Flexibility

FIGURE 8. Electricity and gas load profile in total.

FIGURE 9. Gas load profile breakdown by appliance type.

model converges quite quickly. Starting from this obser-
vation, we can say that LSTM is a better choice for our
model.

If we compare with the results depicted in Table 10,
it can be noticed that LSTM performs better, considering
that RMSE is 1,234.40. While performing the analysis, after
several iterations, we discovered that the larger the training
set, the better the result obtained. For LSTM models using
increasingly larger datasets ensures a better training of the
model. Thus, we can infer that this model is more suitable
for solving time series problems which don’t require addi-
tional calculation efforts, considering that the initial dataset
(without weather variables) is used. Of course, the comput-
ing power available when using large sets of data must be
considered.

FIGURE 10. Electricity load profile breakdown by appliance type.

C. DR PROGRAMS AND FLEXIBILITY
ASSESSMENT IMPLEMENTATION
The current much higher variety of energy sources, compared
with the more predictable large power plants and global load
leads to the necessity of more back-ups from the genera-
tion and load side. The generation reserve consists of rapid
generating units (gas and hydro) that can rapidly change
the output or even consume at night (pump-hydro power
plants). The Demand Side Management (DSM) includes the

FIGURE 11. Programmable appliances breakdown by building type.

DR concept that targets the load flexibility to balance gen-
eration and consumption. This concept is progressing a lot
due to the advancement of Information and Communications
Technology (ICT) and increasing awareness and motivation
from demand. As mentioned, the flexible loads in our dataset
are heating, cooling, and fans that could be engaged in at
least one of the DR services: shift, shed, or shimmy with
specific enabling technology. Shift DR services consist in
rearranging the loads and involve shifting the operation of
flexible loads (programmable appliances) from high-rate to
low-rate hours (using a Time-of-Use (ToU) tariff), with the
benefits of the price difference (peak rate could be 0.38 Euro
cents/kWh and off-peak rate 0.09 Euro cents/kWh). Shed DR
services rely on the capacity of some appliances to temporally
reduce the load at peak intervals. For instance, the consump-
tion of cooling, fans, or heating systems will be reduced for
short intervals without disturbing the consumers’ comfort for
the residential sector or commercial activities. Even if the
reduction is just for short intervals such as 5 or 10 up to 15
minutes, the system will benefit from multiple loads simul-
taneously reduced that will lower the consumption curve.
The perception of DR services is very important because if
the consumers perceive the DR program as negative, altering
their commercial activities, they will not participate in DR.
Shimmy DR services are more complex, remotely control-
lable, and usually imply enabling technologies that allow the
appliance to follow a precise dispatch signal increasing and
decreasing (more often) the load. They also vary in terms

FIGURE 12. Flexible consumption (fans, cooling, and heating) per state.
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TABLE 9. Model comparison result.

of time horizon implementation; shift DR service is applied
on long and medium-term, shed on medium and short-term,
shimmy on short and ultra-short-term. However, the DR ser-
vices implementation depends on the building type, physical
infrastructure, or the existence of the enabling technologies
that involve considerable costs. According to [37], [38], for
controlling Heat Ventilation Air Conditioning (HVAC) with
shed & shift, the ETC or cost is around 242$, with shed
only is 169$, whereas with shimmy is considerable: 2376$.
The cost includes control technology, communication, and
hardware. There are different costs for lighting, refrigerators
warehouse, and water heaters, but they are not included in our
dataset. Thus, when estimating the benefits fromDR services,
we have to subtract the ETCs. As the DR capability estima-
tion is usually below 10%, we assumed these percentages
from programmable appliances consumption as flexible with
the results of 4 scenarios multiplied by the DR services for
which the ETCs are available. However, it is not possible
to simulate shimmy DR service as it implies fine up/down
tunning depending on the system real-time balancing require-
ments that can be paid at a fixed price as in Florida Power &
Light4 or variable as in auctions. Therefore, we analyze
shed & shift DR service, shedding cooling systems at peak
and partially shifting the heating and fans systems that totalize
24% of the programmable appliances as in Figure 18.

For simulation, we start identifying programable appli-
ances or the flexibility potential of the commercial buildings,
peak (6-21) and off-peak hours, and possible DR programs
or their efficient combination that can be implemented for
our dataset. Reasonable DR capability percentage – flexibil-
ity coefficients (between 1 and 10%) of the programmable
appliances are considered according to previous studies.
The results of the DR programs simulation are provided in
Table 11 and Figure 19 using the flexibility forecast results
described in the previous section.

4https://www.fpl.com/

FIGURE 13. Random forest regressor.

FIGURE 14. Linear regression.

FIGURE 15. AdaBoost regressor.

Benefits are calculated considering the price difference.
Thus, we consider that the peak rate is 0.38$ and the off-peak
rate is 0.09$. When shedding the colling systems, the entire
shed energy is saved.
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TABLE 10. LSTM data sample.

FIGURE 16. LSTM model loss (mean_squared_error over epochs).

FIGURE 17. LSTM prediction for 24 hours.

Comparing the two main DR programs that rely on 5%
of the programmable appliances, the combination SHED &
SHIFT is better than ALLSHIFT by 19%. Also, the advan-
tage of the combination SHED & SHIFT is given by the
different time horizons of implementation. For ALLSHIFT,
the shifted energy is proportional to the benefits, the more
energy is shifted the benefits are higher as they depend on
the difference of peak and off-peak rates. But shedding also
implies load reduction without rescheduling the appliances
that represent not only money savings, but energy savings
with social implications in terms of CO2, deforestation reduc-
tion, standard coal avoidance, etc.

FIGURE 18. Share of the programmable appliances.

TABLE 11. Results of the DR programs simulation – per year.

FIGURE 19. Results of the DR programs simulation per year.

IV. CONCLUSION
Starting from a large consumption dataset of commercial
buildings of different types, we tested two approaches to
store and reduce the data. We chose the AWS approach over
the Hadoop one, because of lower processing time and a
more mature and ready-to-use environment centered around
SageMaker and S3.

After choosing the data lake architecture for big data,
we applied two machine learning methods to forecast the
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flexibility: Long Short-Term Memory (LSTM) and regres-
sion analysis using the PyCaret library. Both methods pro-
vided promising results since roughly both estimations were
pretty close to the actual consumption values. However, it can
be concluded that the LSTM model is more suitable for the
time series analysis as it provides a better RMSE score than
the regressors. An additional insight that stems from the anal-
ysis is that for the LSTM model, a larger dataset is required
to train the model and thus obtain a high accuracy forecast.
Compared to LSTM, the regression model also offers good
results on aggregated datasets, so it does not depend on
having big datasets available to be able to return relevant
forecasts.

With the reduced dataset and a reliable forecast, we pro-
posed a flexibility assessment method to identify the flexi-
bility potential of commercial buildings and the efficiency of
several DR programs. The merit of our method is twofold:
first, it uses the results from previous studies regarding the
flexibility coefficients and DR programs; second, it is a
novel contribution as it provides an approach to evaluate
the flexibility that can be used by the grid operators to
balance the systems and suppliers to enhance their market
acquiring strategies. The results are better when combining
the DR services SHIFT & SHED. As future work, we con-
sider enhancing the triplet: big data - forecast - flexibility
assessment approach. Furthermore, we aim to improve the
forecasting models featured in this study to obtain an even
more accurate forecast. To do this, the scope will be broad-
ened, and we plan to use an extended period. The benefit
of this extension is that it will allow the models to train
better and, as a consequence, we will have increased accu-
racy. Additional enhancements are to be investigated, such as
trying to find the best parameters for the models, as well as
identifying and selecting the most relevant variables for the
newly created context.
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