
Received December 10, 2021, accepted December 17, 2021, date of publication December 21, 2021,
date of current version December 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3137209

SpaRec: Sparse Systematic RLNC Recoding
in Multi-Hop Networks
ELIF TASDEMIR 1, MÁTÉ TÖMÖSKÖZI 1,2, JUAN A. CABRERA 1, FRANK GABRIEL 1,
DONGHO YOU 3, FRANK H. P. FITZEK 1,2, (Senior Member, IEEE),
AND MARTIN REISSLEIN 4, (Fellow, IEEE)
15G Lab Germany, Deutsche Telekom Chair, Technische Universität Dresden, 01062 Dresden, Germany
2Centre for Tactile Internet With Human-in-the-Loop (CeTI), Technische Universität Dresden, 01062 Dresden, Germany
3Department of Information and Communication Engineering, Hannam University, Daejeon 34430, Republic of Korea
4School of Electrical, Computing, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA

Corresponding author: Martin Reisslein (reisslein@asu.edu)

This work was supported in part by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s
Excellence Strategy—EXC 2050/1—Cluster of Excellence ‘‘Centre for Tactile Internet with Human-in-the-Loop’’ (CeTI) of Technische
Universität Dresden under Project 390696704, and in part by the Ministry of National Education Turkey.

ABSTRACT Sparse Random Linear Network Coding (RLNC) reduces the computational complexity of the
RLNC decoding through a low density of the non-zero coding coefficients, which can be achieved through
sending uncoded (systematic) packets. However, conventional recoding of sparse RLNC coded packets at an
intermediate node in a multi-hop network increases the density of non-zero coding coefficients. We develop
and evaluate sparsity-preserving recoding (SpaRec) strategies that preserve the low density of non-zero
coding coefficients of sparse RLNCwith systematic packets. We develop SpaRec strategies with and without
decoding at the intermediate nodes, with andwithout a specified coding rate, as well as with finite and infinite
recoding window lengths. We evaluate the SpaRec strategies in multi-hop networks in terms of packet loss,
packet delivery delay, as well as recoding and decoding (computation) throughput. We find that the SpaRec
strategies substantially improve the RLNC performance compared to conventional recoding.

INDEX TERMS Intermediate network node, low coding coefficient density, multi-hop network, random
linear network coding (RLNC), recoding, sliding window coding, sparse coding, systematic packet.

I. INTRODUCTION
A. MOTIVATION
Random Linear Network Coding (RLNC) linearly combines
a block (also referred to as generation) of G data packets
with random coding coefficients from a Galois Field to create
coded packets. The original G data packets can be recov-
ered from any set of G received linearly independent coded
packets through RLNC decoding. The decoding involves the
multiplication and inversion of a G × G matrix of coding
coefficients. The RLNC packet recovery from any set of
G linearly independent coded packets does not require any
signaling or coordination. Each coded packet only needs
to carry its own coding coefficients, making RLNC well-
suited for error-prone communication networks, e.g., wireless
networks [3]–[8] and content distribution networks [9]–[11].
However, the high computational complexity of the RLNC

The associate editor coordinating the review of this manuscript and

approving it for publication was Nafees Mansoor .

coding and decoding has hampered the adoption of RLNC in
practical networks [12], [13].

One promising strategy to reduce the computational com-
plexity while retaining the packet recovery property is to
employ sparse coding coefficients, i.e., a low density of non-
zero coding coefficients [14]. As reviewed in Section I-B,
a low-coding coefficient density can be achieved with various
strategies [14]. We focus on the systematic RLNC approach
that intersperses only few coded packets with non-zero cod-
ing coefficients among the uncoded (so-called systematic)
packets in a generation, i.e., so-called sparse systematic
RLNC [15]–[19]. To date, sparse systematic RLNC has been
mainly studied for end-to-end coding, i.e., sparse systematic
RLNC encoding at the sending (source) node, and decod-
ing at the ultimate destination node. However, an impor-
tant performance-enhancing aspect of RLNC is recoding at
intermediate network nodes, which can substantially increase
the overall network performance [20]–[29]. With recoding,
the intermediate network nodes not only store-and-forward

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 168567

https://orcid.org/0000-0001-9193-8085
https://orcid.org/0000-0002-4745-6641
https://orcid.org/0000-0002-7525-2670
https://orcid.org/0000-0001-7132-4123
https://orcid.org/0000-0003-3724-3244
https://orcid.org/0000-0001-8469-9573
https://orcid.org/0000-0003-1606-233X
https://orcid.org/0000-0002-3408-237X


E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

coded packets, but rather store, recode, and forward the
packets.

Conventional recoding typically combines the received
packets with new random coding coefficients without con-
sideration of the systematic RLNC coding structure of sys-
tematic packets and coded packets. Thereby, the conventional
recoding effectively ‘‘destroys’’ the sparsity property of the
initially sparse systematic RLNC encoding of the source.

B. RELATED WORK
Pioneering studies on sparse RLNC, e.g., [30]–[34], primarily
considered sparse RLNC with random subsets of the coding
coefficients set to zero. Refinements and variations of this
random subset sparsity approach have been investigated in
numerous studies, e.g. [35]–[45], and related recoding strate-
gies have been studied in [46], [47]. Li et al. [14] have given
a general overview of sparse network coding schemes and
quantitatively compared the sparse systematic RLNC with
batched sparse (BATS) network coding [48]–[52]. Li et al.
have conducted the quantitative comparison in the context
of coastal communication with recoding in one intermediate
network node and found that BATS coding and systematic
RLNC have generally comparable performance; whereby,
BATS coding tends to achieve slightly higher data rates
and overall lower decoding complexity, whereas systematic
RLNC tends to achieve shorter delays until decoding the
full generation at the destination as well as lower decoding
complexity for networks with low packet loss probabilities.

While recoding in intermediate network nodes has been
extensively studied for BATS codes, see e.g., [53]–[55], to the
best of our knowledge there has been no prior detailed study
of recoding for sparse systematic RLNC with preservation of
the sparsity property. This journal article extends the related
preliminary conference papers [1], [2] by introducing the
novel Rec-woDec strategy and the novel rateless recoding
approach. Also, this journal article provides substantially
extended evaluations compared to [1], [2] by including the
recoding throughput as well as evaluations for different num-
bers of intermediate nodes.

Systematic coding is generally preferred for low-latency
communication [56]–[59] and there have been extensive stud-
ies on low-latency communication schemes employing sys-
tematic RLNC, see e.g., [60]–[66]. Therefore, it is important
to develop and evaluate sparsity-preserving recoding strate-
gies for sparse systematic RLNC.

C. CONTRIBUTIONS AND STRUCTURE OF THIS ARTICLE
This article proposes and evaluates a comprehensive set of
sparsity-preserving recoding (SpaRec) strategies for sparse
systematic RLNC. Section II specifies a SpaRec strategy
with a decoder in each intermediate network node as well as
two SpaRec strategies without decoders: one strategy with a
packet buffer that can hold the recoding window size in each
intermediate node and one strategy that operates with smaller
packet buffers in the intermediate nodes. Also, Section II
specifies a rateless (adaptive) sparse recoding approach that

TABLE 1. Summary of main notations.

can be combined with any of the proposed SpaRec strategies.
Section III describes the multi-hop network evaluation set-up
and defines themetrics for evaluating the packet loss, in-order
packet delay, as well as recoding and decoding (computation)
throughput.

Section IV-A first evaluates the utilization of idle slots
appearing due to packet erasures on the incoming links in
the intermediate nodes. The evaluation demonstrates that
sending coded packets in such idle slots can substantially
reduce the packet delay. Section IV-B evaluates the impact
of the code rate and the recoding window size. We find that
rateless recoding with a finite recoding window size reduces
the packet delay and increases the recoding and decoding
throughput compared to recoding with a prescribed code rate
or infinite recoding window size. Section IV-C compares
the three specified SpaRec strategies operating with idle
slot utilization, rateless recoding, and a finite window size
against conventional recoding [67], [68], systematic RLNC
[60]–[66], and a conventional recoding with small buffer
benchmark [14]. We find that the proposed SpaRec strategies
substantially reduce the packet losses while reducing the
mean in-order packet delays down to approximately half of
the benchmarks. Also, the SpaRec approaches can double the
recoding throughput, and substantially increase the decoding
throughput.

II. SPECIFICATIONS OF SPARSE RECODING (SPAREC)
APPROACHES
This section explains our novel recoding algorithms that
maintain the sparsity of the systematic RLNC cod-
ing in multi-hop networks: Decode-Recode (Dec-Rec) in
Section II-A, Recoding without Decoding (Rec-woDec)
in Section II-B, and Sparsified Pure Recoding (SparsePR)
in Section II-C. Section II-D specifies an adaptive recoding
strategy that does not enforce a prescribed code rate and can
be combined with any recoding algorithm.

A. PROPOSED DECODE-RECODE (DEC-REC) SPARSE
RECODING
1) OVERVIEW
The general components of the Decode-Recode (Dec-Rec)
recoding technique are: each intermediate node has a decoder
to decode received coded packets instantly on-the-fly; and

168568 VOLUME 9, 2021



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 1. Decode-Recode (Dec-Rec) sparse systematic recoding for sliding window RLNC network coding: The code rate of the
source, as well as the intermediate nodes N1 and N2 is c = m/(m + k) = 4/5. An X in the receiv. column of an intermediate node
indicates a packet erasure on the link leading to the node. C is the coded packet received from the source, while P0+P1+P2+P3
denotes a recoded packet generated by an intermediate node as a combination of P0, P1, P2, and P3 with random coding
coefficients. The in-order packet delay metric, defined in Section III-B2, measures the difference between the time slot when
packet i is received uncoded or is decoded by the destination minus its order number i in the generation. (a) Conventional
approach: idle time slots without new information to send go unutilized. (b) Dec-Rec with idle slot utilization: coded packets
replace the idle slots.

each intermediate node has an encoder to generate new coded
packets, i.e., recoded packets. Intermediate nodes do not need
to receive an entire generation before applying recoding.With
our Dec-Rec approach, recoding occurs while the packets of
a generation traverse the network. Intermediate nodes may
receive packets out of order due to packet erasures (or packet
reordering). In order to reduce packet in-order delay, the inter-
mediate nodes follow an algorithm similar to a code design
at the source. That is, the intermediate nodes first forward a
subset of the received systematic packets and interleave coded
packets in between the subsets of systematic packets.

2) PACKET TRANSMISSION PATTERN
Fig 1 shows an example of the Dec-Rec scheme for two
intermediate nodes N1 and N2 and destination D. The source
node encodes the original packets using sliding window net-
work coding [69] with a prescribed finite length encoding
window [37], [65], [70]–[75], set to wfin = 5. The first
packets received by N1, as displayed in the receiv. column in
Fig 1, namely the Pi, i ∈ 0, 1, . . . ,G−1, are the original (sys-
tematic) source packets in a given generation, while the
Cj, j ∈ 0, 1, . . ., correspond to the coded packets generated
by the source (see Table 1 for a summary of the notations).
We consider that the time is slotted and in each time slot,
either a systematic packet or a coded packet is transmitted
over the erasure channel.

After intermediate node N1 receives packets, it sends them
in the same sliding window pattern. Specifically, N1 first
sends a subset of the earlier arrived uncoded packets or
decoded packets, then N1 generates coded packets for For-
ward Error Correction (FEC). In the example in Fig 1(a),
the code rate of N1 is c = m/(m + k) = 4/5. Therefore,
after sending m = 4 uncoded packets (P0, P1, P2, and P3),
N1 generates a coded packet as a combination of P0, P1, P2,
and P3 and sends it to the next node. Then, N1 continues
to send P4. N2 also follows the sliding window pattern for
recoding the packets.

3) PACKET DECODING AND SEEN PACKETS
Note that N1 may be able to recover packets that were erased
on the S–N1 link by decoding received coded packets on-the-
fly. An example of on-the-fly decoding is shown in the dec.
column of N1. After receiving coded packet C0, N1 is able
to decode P3, and then sends P3 to N2. Another example is
observed for N2: N2 is able to decode P2 by receiving the
coded packet that is a combination of P0, P1, P2, and P3
from N1.
If a packet erasures burst erases more than k packets, then

k coded FEC packets are not sufficient to recover all erased
packets. In this case, intermediate nodes have seen pack-
ets, which are partially decoded packets with information of
future packets [76]. For sake of clarity, we give an example

VOLUME 9, 2021 168569



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

of the coefficient vector of a seen packet. Assume that on
the S–N1 link, packet P2 would get erased, together with P3.
Then, the coded packet C0 would not be able to decode
P2 and P3. In the coding coefficient row

[
0 0 1 F 0 0 0

]
,

there would be a seen packet coding coefficient of 1 that
corresponds to P2 and the F , which is a random value from
the considered Galois field, corresponding to the P3. Note
that since P0 and P1 are available uncoded, they would be
subtracted from C0, and only the combination of P2 and P3
remains undecoded, being referred to as a seen packet [76].
When seen packets appear, intermediate nodes operating
with Dec-Rec also send the seen packets to the destination.
Receiving the seen coded packets can aid the decoding at the
destination.

When a full generation is decoded by an intermediate node,
then the node ignores any further packets arriving from an
upstream intermediate node or the source. Then the node
first checks if there are newly decoded packets that have not
been previously transmitted in uncoded form and transmits
all such packets in uncoded form. Subsequently, the node
newly generates and transmits fully dense coded packets that
are combinations of all packets in the generation until the
end of the generation transmission is determined through
conventional signaling, e.g., header signaling [77].

4) IDLE SLOT UTILIZATION
In a time slot with a packet erasure, there may not be new
information to send. More specifically, when a packet erasure
occurs, an idle time slot appears, as illustrated in Fig 1(a) for
several examples (see X in the receiv. column followed by
idle in the sent column). Conventionally, nodes do not send
any information in such an idle time slot.

For the SpaRec algorithms, includingDec-Rec, we propose
to send coded packets instead of staying idle. Examples of
such transmissions of coded packets in conventionally idle
slots are shown in Fig 1(b). We observe from Fig 1(b) that
N2 recovers P2 one time slot earlier when it receives the
coded packet that is a combination of P0, P1, and P2 than
with the conventional approach in Fig 1(a). Similar to N2, the
destination also receives packets earlier when idle time slots
are filled with coded packet transmissions. For instance, P1
is recovered in time slot 6 with the conventional approach in
Fig 1(a); however, P1 is recovered in time slot 2 in Fig 1(b).

5) ANALYSIS OF RECODING WINDOW SIZE
For a given packet erasure probability ε of the outgoing link
of a given source node or intermediate node and numerator
m of the code rate c = m/(m + k) (which should satisfy
c ≤ 1 − ε [69]), we propose to set the finite coding window
size (length) of the source or finite recoding window size
(length) of the intermediate node to

wfin = m× (1+ ε). (1)

If wfin yields a fractional number, we round to the closest
integer. Only packets in the window are coded together.

Based on the evaluations in [65] demonstrating low packet
loss probability and low computational complexity for finite
coding window length at the source, we consider finite
encoding window length at the source throughout this study.
However, infinite and finite length coding windows have
not been studied for recoding in the intermediate nodes.
Therefore, we evaluate the performance characteristics of the
different recoding window lengths in Section IV-B.

B. PROPOSED RECODING WITHOUT DECODING
(REC-WODEC) SPARSE RECODING
1) OVERVIEW
WithRecodingwithout Decoding (Rec-woDec), intermediate
nodes do not decode incoming coded packets. Therefore,
erased packets cannot be recovered at the intermediate
nodes. An intermediate node first sends m uncoded pack-
ets; whereby, new coded packets, i.e., recoded packets, are
created and sent if there are no received uncoded packets.
Then, the intermediate node generates k coded packets from
the previously received packets, irrespective of whether the
received packets are systematic packets or coded packets.
Since the code rate c of each node can be different, the
numbersm and k of uncoded and coded packets, respectively,
can be different at each node. Intermediate nodes can distin-
guish uncoded packets from coded packets by examining the
coefficient vector of received packets: uncoded packets have
only one non-zero element in the coefficient vector, while
coded packets have more than one non-zero elements in their
coefficient vector.

2) PACKET TRANSMISSION PATTERN
Figure 2 shows an example of the Rec-woDec technique.
C0 and C1 are coded packets generated by the source,
S0, S1, and S2 are coded packets generated by the N1, while
Z0, Z1, Z2, and Z3 are coded packets generated by N2. The
code rates of the source, N1, and N2 are cS = 3/4, cN1 =

2/3, and cN2 = 3/4, respectively. Figure 2 looks similar to
Figure 1; however, with Rec-woDec, received coded packets
are also combined with received uncoded packets to generate
new coded packets. In Figure 2, we can consider finite length
recoding windows at N1 and N2, or infinite length recoding
windows.

3) FINITE RECODING WINDOW LENGTH
Suppose the window lengths of the source, N1, and N2
are 4, 3, and 4, respectively. As shown in Figure 2, N1 sends
k = 1 coded packet for FEC after every m = 2 uncoded
packets since the code rate is c = 2/3. After sending P0 and
P1, N1 generates the coded packet S0 in time slot 2. Since in
this time slot, P0, P1, and P2 are in the buffer, S0 becomes
a combination of these three packets. When P0, P1, and P2
are combined, each of them is multiplied with a different
random coding coefficient, following the general principles
of RLNC recoding [77], [78]. The coding coefficients and
the payloads are summed separately. Then, the summed cod-

168570 VOLUME 9, 2021



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 2. Recoding without Decoding (Rec-woDec) with idle slot utilization in the intermediate nodes: For a prescribed code rate
c = m/(m + k), intermediate nodes strive to follow the transmission pattern of m uncoded packets followed by k coded packets. If there is a
lack of uncoded packets, then coded packets are sent. With a finite recoding window wfin, the coded packets combine the last wfin received
packets (irrespective of whether these wfin packets are uncoded or coded).

ing coefficients are appended to the payload to be sent to
the next node.

Similar to S0, coded packet S1 is also a combination of
the last three received packets which are P4, P3, and C0. The
coded packet C0 includes P0, P1, P2; as a result, S1 becomes a
combination of P0, P1, P2, P3, and P4. Although the recoding
window length of N1 is wfin = 3, there is information
of 5 packets in coded packet S1. This property is different
from Dec-Rec, namely coded packets are not combined with
uncoded packets in Dec-Rec. Thus, the number of non-zero
elements in the coefficient vector of generated coded packets
in Rec-woDec can exceed the recoding window length wfin;
whereas, in Dec-Rec the number of non-zero elements in
the coefficient vector of the generated coded packets exactly
equals the window length wfin.

The coded packet S2 is generated at N1 since there is no
uncoded packet available to send; S2 is a combination of C1,
P4, and P3. In turn, C1 is a combination of P2, P3, P4, and
P5; as a result, S2 is a combination of P2, P3, P4, and P5.
Although P5 is erased and not available uncoded at N1, S2
still has information of P5 thanks to C1.

ExaminingN2 in Figure 2, we see that only Z1 is generated
for FEC, while Z0, Z2, and Z3 are generated to fill the idle
slots. After D receives Z0, it is able to decode P1 because
Z0 is a combination of P0 and P1. Although the recoding
window size is wfin = 4 in N2, only P0 and P1 are available
for recoding in time slot 2. Afterwards, P2, Z1, and P3 are
sent by N2.
Subsequently, D decodes P4 by receiving Z2 which is a

combination of S1, P3, P2, and P1 (whereby S1 is a combi-
nation of P0, P1, P2, P3, and P4); hence, Z2 is a combination
of P0, P1, P2, P3, and P4. Finally, D is able to decode P5 by
receiving Z3, which is a combination of S2, S1, P3, and P2,
whereby S2 is a combination of P2, P3, P4, and P5; hence Z3
is a combination of P0, P1, P2, P3, P4, and P5.

4) INFINITE RECODING WINDOW LENGTH
If an infinite-length recodingwindow is used, then the S and Z
coded packets will be generated by using all received packets

of a given generation, i.e., at most G packets. As an example,
Z3 will be a combination of P0, P1, P2, P3, S1, and S2.

C. PROPOSED SPARSIFIED PURE RECODING (SPARSEPR)
Similar to Rec-woDec, sparsified pure recoding (SparsePR)
does not have a decoder in the intermediate nodes. Also,
similar to the Rec-woDec algorithm, with SparsePR, inter-
mediate nodes send m uncoded packets followed by k coded
packets as shown in Figure 2. However, the SparsePR opera-
tions in the recoder buffer are different from the Rec-woDec
operations.

In Rec-woDec, every packet is stored in a different buffer
as illustrated on the left-hand side of Figure 3. In order to store
each packet individually, the number of packet buffers in an
intermediate Rec-woDec node needs to equal the recoding
window size i.e., wfin for a finite recoding window size or the
generation size G for an infinite recoding window size. The
transmitted packets that are out of the scope of the recoding
window can be discarded to open packet buffers for newly
arrived and un-transmitted packets. However, the deletion of
old packets causes a loss of information. SparsePR addresses
this issue by keeping more information with limited packet
buffers.

In SparsePR, every received packet is immediately com-
bined with the previously received packets in the packet
buffers. An example of this combination at N1 (of Figure 2)
for SparsePR with three packet buffers (3B) is shown for
the first three received packets in Figure 3 on the right-hand
side. When packet P0 is received, it is first sent uncoded and
then stored in the recoder packet buffer Q0. Then, packet
P1 is received and sent uncoded. Afterwards, packet P1 is
combinedwith P0 inQ0 and then P1 is placed in theQ1 buffer.
When P2 is received, P2 is combined with the packets in the
Q0 and Q1 buffers, then P2 is placed in the Q2 buffer. In time
slot 2, the coded packet S0 should be sent as illustrated in
Figure 2. Thus, the three buffersQ0,Q1, andQ2 are combined
to generate coded packet S0 (for the N1 window size of
wfin = 3). Effectively, S0 becomes the combination of P0,
P1, and P2.

VOLUME 9, 2021 168571



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 3. Illustration of differences of Rec-woDec and SparsePR in an
intermediate node with three packet buffers (3B): Packets P0, P1, and P2
received at N1 in Figure 2 are stored in separate packet buffers Q0, Q1,
and Q3 in Rec-woDec (left-hand side); whereas, SparsePR combines the
packets in the packet buffers (right-hand side).

Note that an alternative way to create coded packet S0
could be to simply take the packet in Q0 since the packet in
Q0 contains information of P0, P1, and P2. However, simply
taking the packet in Q0 for the transmission of coded packet
S0 would cause linear dependencies in case multiple coded
packets need to be sent, i.e., sending the packet in Q0 more
than once would not help the destination. Instead, creating
different combinations from the last w packet buffers will aid
the decoder in decoding erased packets.

The analogous combination steps are applied to the other
received packets. Similar to S0, when coded packets S1 and
S2 are generated, the last wfin = 3 buffers are combined.
When the window size is not limited, then all buffers are
combined to generate coded packets; whereby the number of
packet buffers is not limited for an infinite window size.

There are advantages and disadvantages of combining the
received packet with the packets in the packet buffers. The
advantage is that intermediate nodes can have limited num-
bers of packet buffers and still have the information of the pre-
vious packets. For instance, packet buffer Q0 progressively
holds information ofmore packets, although its capacity is for
only one packet. As a result, the generated coded packets will
include the information of more packets and this can reduce
the delay until decoding the full generation at the decoder.
One disadvantage is that this constant combination increases
the computational effort in the intermediate nodes.

D. RATELESS (ADAPTIVE) SPARSE RECODING
In this section, we remove the notion of a prescribed code
rate c for the SpaRec strategies in the intermediate nodes.
With a prescribed code rate c = m/(m + k), a node sends
m uncoded packets followed by k coded packets for FEC.
In a single-hop network, these k redundant coded packets are
very important to recover erased packets. However, it may
not be prudent to obey a prescribed code rate c in a multi-
hop network. As observed in the description of Rec-woDec in
Section II-B, in order to utilize the idle slots, an intermediate
node can send a coded packet when there are no uncoded

FIGURE 4. Multi-hop network model with source S, intermediate nodes
N1 and N2, and destination D interconnected by links with packet erasure
probabilities ε1 = 0.15, ε2 = 0.2, and ε3 = 0.25 with code rates cS = 8/10,
cN1

= 7/10, and cN2
= 6/10, unless noted otherwise.

packets to send (even when the code rate does not yet require
the transmission of a coded packet).

When intermediate nodes send coded packets to comply
with a prescribed code rate c and to utilize idle slots, then the
destination may receive unneeded coded packets. In order to
avoid this problem of excessive coded packets we propose not
to obey a prescribed code rate for recoding in the intermedi-
ate nodes. Instead, we propose to forward uncoded packets
whenever they arrive, and to send a coded packet when an
erasure occurs (creating an idle slot) or when a coded packet
arrives.

For example, consider N1 in time slot 2 in Figure 2: after
sending P0 and P1, N1 generates and sends S0 although P2 is
available in the buffer. Instead of sending S0 in time slot 2,
with rateless (adaptive) recoding, N1 sends P2 in time slot 2.
The coded packet S0 is then sent in time slot 3 when C0 is
received.

III. PERFORMANCE EVALUATION SETUP
This section first introduces the simulation scenario in
Section III-A and the evaluation metrics in Section III-B.

A. SIMULATION SCENARIO
Figure 4 shows our experimental multi-hop network model
for evaluating the packet loss and the packet delay; for the
throughput evaluations, we consider one to four intermediate
nodes. We model time with slots, whereby a time slot cor-
responds to the transmission time of one packet (as further
elaborated in Section III-B2). We assume that all packets
are available at the source without delay. Packet erasures
are independently distributed and occur on each link with
probability ε. We conducted 10 000 independent replications
for each simulation scenario. The resulting 95% confidence
intervals on the performance metrics are less than 1% of the
corresponding sample means (unless noted otherwise) and
are omitted from the plots to avoid visual clutter. The packet
size was set to σ = 1500 bytes, which mimics the maximum
size of UDP packets. Unless otherwise noted, all evaluations
were conducted for a generation size of G = 60 packets,
which is common in network coding studies [32], [79], [80].
We considered a Galois field size of GF(28), which ensures
a negligible probability of linear dependency with RLNC.

B. EVALUATION METRICS
1) PACKET LOSS
The packet loss probability L in percent is the difference
between the generation size G and the number µ of packets
that are recovered at the destination (either by being received
in uncoded form or by being decoded at the destination),

168572 VOLUME 9, 2021



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

normalized by the generation size G, i.e.,

L =
(G− µ)× 100

G
. (2)

Note that all seen packets are counted as packet losses if they
are not fully decoded by the destination.

For the loss evaluation, the source sends the number of
packets that corresponds to the minimum code rate cmin =

mmin/(mmin + kmin) = 6/10 among the code rates in the
caption of Figure 4. Specifically, the source sends a total of
G+ dG/mminekmin packets for a given generation. Whereby,
the source follows the transmission pattern that corresponds
to its source code rate cS = mS/(mS + kS ) = 8/10 for
the bG/mSc full subsets in the generation. Then, the source
sends fully coded dense packets (i.e., combinations of all G
source packets) until reaching a total of G + dG/mminekmin
transmitted packets. In particular, the source sends a trans-
mission pattern of mS = 8 uncoded packets followed by
kS = 2 coded packets bG/mSc = b60/8c = 7 times,
i.e., the source sends seven full subsets, each consisting of
mS = 8 uncoded packets followed by kS = 2 coded packets
[that are combinations of wfin = 9 [see Eqn. (1)] uncoded
packets]. Then, the source sends the remaining 4 uncoded
packets, followed by 26 fully dense coded packets, for a total
of dG/mminekmin = d60/6e4 = 40 coded packets for the
generation of G = 60 uncoded packets. Afterwards, the
source stops. Then, the destination counts the number G−µ
of received uncoded and decoded original source packets to
evaluate the packet loss according to Eqn. (2). Subsequently,
the source proceeds to the next generation.

2) DELAY
For a generation ofG packets, the mean in-order packet delay
D at the decoder is evaluated as:

D =
1
G

G−1∑
i=0

δ(i), (3)

where δ(i), i = 0, 1, 2, . . . ,G−1, denotes the in-order delay
of packet Pi in elapsed time slots. That is, δ(i) is the integer
difference between the time slot in which Pi is received
uncoded or decoded by the destination (whereby we neglect
the computation delay for the decoding; the decoding compu-
tation delay is accounted for in the decoding throughput) and
the order number i of packet Pi in the considered generation
at the source.

More specifically, one integer time slot models the deliv-
ery of one packet from the source via multiple intermediate
recoding nodes to the destination without erasures, as illus-
trated for P0 in the first line in Figs. 1(a) and (b), as well
as Figure 2. We note that in real physical networks, each
intermediate node incurs one time slot delay for the packet
transmission in the store-compute-forward process, i.e., the
actual packet delay in a real physical network corresponds
to the in-order packet delay metric δ(i), plus one time slot
for the transmission delay for each intermediate node, plus
applicable nodal processing delays, nodal queueing delays,
and link propagation delays.

Effectively, our δ(i) delay metric counts the extra time
slots that are incurred due to the coding and link packet
erasures. Specifically, the delay metric δ(i) counts the extra
time slots due to the coding at the source, the recoding in
the intermediate nodes, as well as the packet erasures on the
links and the corresponding packet recovery through coded
packet transmissions so as to deliver the packet in order
position i of a generation to the destination (and neglects the
source and in-network processing, queueing, transmission,
and propagation delays). We adopted this delay metric to
focus on the delay components that are directly affected by
the coding and recoding mechanisms and the link packet
erasures, while excluding ancillary delay components that are
unrelated (constant with respect) to the coding and link packet
erasure dynamics.

For the delay evaluation and the throughput evaluation, the
source follows the transmission pattern from Section III-B1,
and then sends additional fully coded dense packets until the
destination has recovered all G original source packets in the
generation.

3) THROUGHPUT
a: DECODER
For a generation of G packets, the decoder throughput Td is
evaluated as

Td =
Gσ8
τ
, (4)

whereby σ is the packet size (in bytes), and whereby τ
is the total decoding (computation) time of a generation.
The decoder throughput is evaluated in Megabits per sec-
ond. For the decoding computation time evaluation, all
packets received at the destination for a given generation
were available to the destination decoder when the decoding
commenced.

b: RECODER
The recoder throughput Tr is evaluated analogously as the
decoder throughput Td . For evaluating the recoding through-
put, τ represents the total computation time incurred for
recoding the packets of a generation at an intermediate node.

Intermediate nodes have two packet processing stages.
The first stage is the packet reading stage. When a packet
is received, a time delay is incurred to ‘‘read’’ this packet.
Whereby, reading a packet refers to the packet decoding in
Dec-Rec and the examination of the coding coefficients to
detect uncoded packets in Rec-woDec and SparsePR. There-
fore, a different amount of reading time is incurred depending
on the recoding approach. After reading a packet, the packet
writing stage commences. In the writing stage, a coded packet
is generated and transmitted to the next node, or an uncoded
packet is transmitted to the next node. The total computation
(processing) time for the packet reading and writing stages
for a generation is represented as τ .

For the recoding computation time evaluation, all pack-
ets received at an intermediate node for a given generation

VOLUME 9, 2021 168573



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

were available to the recoder when the recoding commenced.
For scenarios with multiple intermediate nodes, the recod-
ing throughputs of the individual intermediate nodes were
averaged.

C. REFERENCE SCHEMES
1) CONVENTIONAL RECODING
In conventional recoding [67], [68], an intermediate node
sends only recoded packets. For recoding, all received packets
in the buffer for a given generation are combined, i.e., the
recoding window size is limited to the generation size G.

2) SYSTEMATIC RLNC
With the systematic Random Linear Network Cod-
ing (RLNC) coding scheme for a prescribed code
rate c [60]–[66], the source first sends the entire generation
ofG uncoded packets, followed by p coded packets, whereby
c = G/(G+ p). Intermediate nodes follow the same scheme
for the recoding. In particular, an intermediate node sends G
uncoded packets, and then recovers any erased packets after
receiving redundant packets using its decoder. Recovered
packets are sent according to the priority indicated by their
order number. After sendingG uncoded packets, the interme-
diate node generates and sends p coded packets, whereby the
window size for generating coded packets at an intermediate
node equals the generation size G.

For an example of systematic RLNC, consider Figure 1(a)
with a generation size of G = 4 and code rate of the source
and intermediate nodes of c = 4/5. The source sends the
coded packet C0 after sending G = 4 uncoded packets,
the intermediate nodes N1 and N2 follow the same packet
transmission pattern. First, N1 sends the received P0, P1, and
P2 to N2; and N2 sends the received packets P0 and P1 to
the destination D. After receiving C0, N1 recovers P3, which
was erased on the link from S to N1. After recovering P3,
N1 sends P3 to N2; and N2 receives P3 and sends P3 to D.
After N1 sends an entire generation of G = 4 uncoded
packets, N1 generates p = 1 coded packet from P0, P1, P2,
and P3. By receiving this coded packet, N2 decodes P2 and
sends P2 toD. After sending the generation,N2 also generates
p = 1 coded packet from P0, P1, P2, and P3.

Note that in this illustrative example with generation size
G = 4 and p = 1, the systematic RLNC dynamics equal
the Dec-Rec dynamics in Figure 1(a). However, for larger
generation sizes, e.g., G = 60, the dynamics differ since the
systematic RLNC source sends first the G = 60 uncoded
packets and then sends p = G(1/c− 1) redundant packets.
If an intermediate node cannot recover all G packets in

a generation, then the intermediate node only forwards the
received uncoded packets and packets that the node was able
to decode. Then, the node stays idle and does not send coded
packets. A generation of recoded packets without recovering
the full generation would require a specific protocol to signal
the end of the packet transmissions from the preceding node;
such a protocol is out of the scope of this study. Cases of
an intermediate node not being able to decode the entire

generation arise only for the packet loss evaluation scenario,
see Section III-B1, which limits the number of transmitted
coded packets for a generation.

3) CONVENTIONAL RECODING WITH SMALL BUFFER (CRSB)
Another way of recoding is proposed in [14], namely a con-
ventional recoding with a small buffer size (CRSB). With
CRSB, intermediate nodes have a small buffer, e.g., a buffer
holding up to 4 packets. When packets are received, they are
stored in the buffer. When recoded packets are generated,
all the received packets in the buffer are combined. After
generating a fixed number of recoded packets, the packets in
the buffer are discarded. Then, the intermediate node includes
the next packet into the buffer for recoding; whereby the next
packets may be held in a different ‘‘holding buffer’’ before
entering the recoding buffer, see [14] for details.

An example of CRSB is illustrated in Figure 2 at N1 with
a buffer size of 4. When P0 arrives, it is stored in the buffer
and sent to N2 (irrespective of whether it is an uncoded or
coded packet). The recoding process starts when the second
packet is received. Then, when P1 arrives, P1 is combined
with P0, and a combination of P0 and P1 is sent in time slot 1.
In time slot 2, P2 arrives and a combination of P0, P1, and P2
is sent. In time slot 3, C0 arrives and a combination of P0,
P1, P2, and C0 is sent. Thus, consistent with the underlying
conventional recoding, CRSB sends mainly coded packets;
specifically, CRSB in an intermediate node recodes all pack-
ets, except for the first packet in a set of buffered packets,
which is transmitted as it was received at the intermediate
node (it could be received as a systematic packet or as a
coded packet).

Since the buffer of size four packets is full at the end of
time slot 3, the buffer is cleared (purged). In time slot 4, P3
is received and P3 is alone sent to N2 since P3 is the only
packet in the buffer after clearing. Then, P4 is received, and
a recoded packet which is a combination of P3 and P4 is
generated and transmitted. Then, packet P5 is sent by the
source, but is erased on the link. The intermediate node sends
another combination of P3 and P4 to fill the idle slot. In the
last time slot in Figure 2, C1 is received at N1. Then, another
recoded packet is generated (from P3, P4, and C1) and send
to N2.
According to this CRSB approach, nodes generate at

least 3 coded packets, which is equal to the buffer size minus
one, before discarding the packets in the buffer. If idle
time slots appear, the intermediate node generates additional
recoded packets from the packets that are currently in the
buffer to fill the gap. Therefore, the number of generated
recoded packets for each set of buffered packets can be
different.

In summary, by recoding only a small number of pack-
ets, the CRSB approach can reduce the computation effort
of intermediate nodes and the destination compared to
the conventional recoding. However, the CRSB approach
destroys the systematic sparse structure created by the
source.

168574 VOLUME 9, 2021



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 5. Boxplots of mean in-order packet delay D for a generation of
G = 60 packets without utilization of idle slots, see Figure 1(a) (denoted
by ‘‘idle’’), and with utilization of idle slots, see Figure 1(b) (denoted by
‘‘non-idle’’) for three-hop network in Figure 4 with the code rates
specified in the caption of Figure 4 and unlimited recoding windows.

D. IMPLEMENTATION ASPECTS
The recoding algorithms were implemented on top of the
Kodo library [81] version 17.0.0. For Rec-woDec and CRSB,
the packets are combined in the intermediate nodes with the
Kodo fifi library. For Dec-Rec and systematic RLNC, the
intermediate nodes have a decoder and an encoder utilizing
the standard Kodo decoder and encoder. For conventional
recoding, the regular pure-recoder of the Kodo library was
used; while for SparsePR, the Kodo pure-recoder was adapted
to implement the principle in Figure 2 with five packet
buffers (5B, approx. half the packet buffers of the other
SpaRec approaches), i.e., one packet buffer for holding the
incoming packet and four packet buffers for holding packet
combinations.

The throughput evaluations were performed on a computer
with an Intel Core i5-6500 3.2GHz processor and 8Gbyte
RAM operating with Ubuntu 20.04 with Linux 5.4.0.

IV. EVALUATION RESULTS
Section IV-A examines the delay implications of the idle time
slot utilization. The delay and throughput of the proposed
SpaRec algorithms with and without a prescribed code rate in
combination with different recoding window sizes are evalu-
ated in Section IV-B. Finally, the packet loss, in-order packet
delay, and throughput performance of the best-performing
SpaRec approaches are compared against the benchmarks in
Section IV-C.

A. EVALUATION OF UTILIZATION OF IDLE TIME SLOTS
Figure 5 compares the mean in-order packet delay D
[see Eqn. (3)] represented with boxplots for Dec-Rec,
Rec-woDec, and SparsePR in the intermediate nodes without
and with idle slot utilization. A boxplot shows the interquar-
tile range from the first quartile Q1 to the third quartile Q3 as
a box with the median marked by a horizontal line inside
the box. The whiskers mark the commonly considered non-
outlier range from Q1− 1.5(Q3−Q1) to Q3+ 1.5(Q3−Q1).

TABLE 2. Mean throughput of a recoder at an intermediate node and the
decoder at the destination for different recoding approaches with finite
and infinite recoding windows; one intermediate node, packet erasure
probabilities ε1 = 0.15 and ε2 = 0.20, code rates cS = 8/10 and
cN1

= 7/10.

The coding window sizes of N1, and N2 were unlimited to
observe the maximum impact of the idle case.

We observe from Figure 5 that the idle slot utilization
(corresponding to the non-idle results in Figure 5) achieves
substantial delay reductions for Rec-woDec and SparsePR,
while not influencing theDec-Rec delay. Dec-Rec can decode
coded packets on the fly in intermediate nodes, resulting typ-
ically in a lower proportion of idle slots than for Rec-woDec
and SparsePR, which do not decode in intermediate nodes.
Also, with Dec-Rec, an intermediate node does not experi-
ence any more idle slots once its decoder can decode the full
generation; then the node only sends fully dense coded pack-
ets. In contrast, using recoding without a decoder, intermedi-
ate nodes may experience idle slots up until the destination
can decode the full generation.

We also note that irrespective of the idle slot utilization,
the decoding in Dec-Rec lowers the packet delays, which is
further examined in Section IV-C2. For now, we conclude
that sending coded packets in the idle time slots decreases
the delay. Therefore, we utilize idle slots throughout the
remainder of this study.

B. IMPACT OF THE CODE RATE AND WINDOW SIZE
We observe from Figure 6 that the finite versus infinite recod-
ing window size does not significantly affect the delay distri-
bution. This is mainly because the finite window length wfin
proposed in Eqn. (1) is long enough to ensure that sufficient
numbers of packets are combined in the recodings to support
the timely recovery of erased packets. In particular, Eqn. (1)
specifies that the finite recoding window wfin covers the last

VOLUME 9, 2021 168575



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 6. Boxplots of mean in-order packet delay D from Eqn. (3) of recoding approaches with finite and infinite recoding windows combined with a
prescribed code rate or with rateless coding; for three-hop network in Figure 4.

subset of m packets, plus m × ε packets (which correspond
to the expected number of packets that are erased on the
outgoing link of a given recoding node). Generally, the earlier
the destination recovers erased packets, the lower the delay of
packets that were erased on any of the links. The essentially
equivalent delays for finite versus infinite recoding windows
demonstrate that the finite recoding window wfin supports
packet loss recovery essentially as well as an infinite window
length.

We also observe from Figure 6 that the rateless recod-
ing achieves substantially shorter delays than the recoding
with a prescribed code rate for the Dec-Rec and Rec-woDec
approaches, while the SparsePR delays are independent of the
code rate. For Dec-Rec and Rec-woDec, the shorter packet
delays with rateless recoding are mainly due to the extra
delays that are introduced when intermediate nodes enforce
a prescribed code rate c = m/(m + k) for each subset of
m uncoded packets. When an intermediate node enforces
a prescribed code rate c, any uncoded packets that arrive
immediately after m uncoded packets have been transmitted
by the intermediate node, need to wait until the intermediate
node has transmitted k coded packets to fulfill the code
rate c. In contrast, the rateless approach allows an interme-
diate node to transmit uncoded packets immediately after
their arrival, lowering the packet delays. On the other hand,
in SparsePR, each received packet is immediately combined
with the contents of the packet buffers, see Section II-C.
Then, when a coded packet is generated by combining the
packet buffers, the coded packet includes information about
the latest received packet. Thus, a received uncoded packet is
effectively not delayed by transmitting a coded packet.

We observe from Table 2 that for all approaches, rateless
recoding achieves higher recoder and decoder throughput
than recoding with a prescribed code rate c. This is mainly
due to an excessive generation of coded packets when inter-
mediate nodes enforce a prescribed code rate. Specifically,
coded packets are generated to fulfill the code rate c, and
to fill the idle slots. Generating coded packets for these
two purposes tends to result in superfluous coded packets
that are linearly dependent to the already received packets

at the destination. More specifically, the decoder evaluates
the coding coefficient vector of each received packet. If a
coded packet is superfluous, i.e., is not useful to recover an
erased packet (because the coded packet is a linear com-
bination of the already received packets), then the coded
packet is discarded. The decoder detects a superfluous coded
packet from the coding coefficient vector through a modified
version of the Gauss-Jordan algorithm that detects linear
dependent packets [82]. Thus, some coding vector opera-
tions are required in the recoding nodes for Dec-Rec and in
the destination decoder for all SpaRec approaches to detect
superfluous packets. These coding vector operations cause
slight reductions of the recoding throughput and the decoding
throughput.

We also observe from Table 2 that the finite recoding win-
dow length generally tends to give slightly higher throughput
levels than the infinite window length. This is mainly due
to the slightly higher computational complexity of decoding
coded packets that are combinations of a high number of
packets. With the finite window length wfin, see Eqn. (1),
typically on the order of ten packets are combined in a
coded packet; whereas, with the infinite window, up to G =
60 packets are combined.

Based on the results in this section, we select the rateless
(RL) recoding with finite (Fin) window length for the remain-
ing evaluations in this article.

C. COMPARISON WITH BENCHMARKS
This section compares the performance of the SpaRec
approaches Dec-Rec, Rec-woDec, and SparsePR, all oper-
ating with rateless recoding with a finite window wfin, see
Eqn. (1), with the benchmarks conventional recoding, sys-
tematic RLNC, and CRSB in terms of packet loss, delay, and
throughput.

1) PACKET LOSS PERFORMANCE
a: PACKET LOSS DYNAMICS OF BENCHMARKS
We observe from Figure 7 that the medians and upper
whiskers of the packet loss boxplots of all algorithms are zero;
except for systematic RLNC. Systematic RLNC has the first

168576 VOLUME 9, 2021



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 7. Boxplots of packet loss probability in percent of SpaRec
approaches Dec-Rec, Rec-woDec, and SparsePR in comparison with
benchmarks conventional recoding, systematic RLNC, and CRSB; for
three-hop network in Figure 4.

packet loss quartile at around 23%, which means that 75% of
the generations experienced packet losses above 23%. With
systematic RLNC, the source sends the G = 60 uncoded
packets followed by 40 coded packets. If these 40 coded
packets are not enough to recover the packet erasures that
occur between the source and N1, then N1 cannot recover
the entire generation and therefore—following the systematic
RLNC benchmark operation, see Section III-C2—does not
send coded packets to the next node N2. As a result, the next
node N2 would not be able to recover packet erasures that
occurred between N1 and N2. Thus, the destination tends to
experience many missing packets with systematic RLNC as
observed in Figure 7.

We observe from Figure 7 that conventional recoding
results in rare outliers in the 70–100% packet loss probability
range (whereby most of these outliers cluster in the 90–100%
range); in contrast, CRSB results in frequent outliers in the
60–100% packet loss probability range. The main reason
for the outliers at these high packet loss probabilities is the
relatively high number of seen packets (see Section II-A3) in
conventional recoding. Following the recoding study in [14],
CRSB applies conventional recoding with a small buffer of
10 packets [14]. In particular, with CRSB, an intermediate
node transmits only coded packets (unless the buffer holds
only one uncoded packet). However, the CRSB-recoded
packets are combinations of fewer packets than with con-
ventional recoding, i.e., the CRSB-recoded packets provide
only a restricted (weaker) protection against packet erasures
compared to conventionally recoded packets that are com-
binations of all packets of a generation that an intermedi-
ate node has received. Accordingly, CRSB tends to require
overall more packet transmissions than conventional RLNC
recoding in order to complete the decoding at the destination,
as previously examined in [14, Figure 4(a)], which considers
a similar recoding principle as CRSB. In our loss evaluation
methodology, see Section III-B1, the source stops sending
packets after a prescribed number of packet transmissions.
Consequently, the event of not completing the decoding of a

generation tends to occur more frequently with CRSB than
with conventional recoding.

b: SPAREC PACKET LOSS DYNAMICS
The SpaRec approaches also combine only few packets, simi-
lar to CRSB. However, in contrast to CRSB, which transmits
mostly coded packets, the SpaRec approaches send mostly
systematic packets. Thus, the SpaRec approaches avoid the
CRSB drawback of requiring a large number of coded packet
transmissions for decoding. The SpaRec systematic packet
transmissions also aid the decoding of seen packets on the
fly; thus, mitigating the problem of conventional recoding’s
inability to decode the seen packets.

We observe from Figure 7 that compared to the bench-
marks, the three proposed SpaRec algorithms result in out-
liers at lower packet loss probability levels, typically less than
60% with Rec-woDec and SparsePR, as well as typically less
than 40% (with most outliers clustering below 35%) with
Dec-Rec. The low packet loss probabilities of the Dec-Rec
outliers are mainly due to the on-the-fly decoding at each
intermediate node. Hence, Dec-Rec gives intermediate nodes
a chance to recover erased packets and send them to the
next node.

We observe from Figure 7 that Rec-woDec and SparsePR
achieve the smallest numbers of outliers; specifically, only
ten and nine of the 10 000 generations, respectively, had
packets losses and these were around 40–60%. For explain-
ing the low number of packet loss outliers of Rec-woDec
and SparsePR, it is instructive to compare the dynamics
of Rec-woDec and SparsePR versus the dynamics of Dec-
Rec towards the end of the transmission of the packets of a
generation, when the source sends fully dense coded pack-
ets (see Section III-B1). Dec-Rec independently decodes the
entire generation at each intermediate node. Typically, the
first intermediate node N1 first succeeds in fully decoding the
generation (usually when the source starts to send fully dense
coded packets or a few time slots thereafter).

After N1 has decoded the full generation, N1 ignores any
further packets arriving from the source. Then,N1 first checks
whether there are any newly decoded packets that have not
previously been transmitted and transmits all such packets.
Subsequently, N1 generates fully dense coded packets that
are combinations of all G packets in the generation. The
successive intermediate node N2 typically decodes the full
generation a few time slots afterN1, and then follows the same
process of transmitting packets that were not transmitted
previously and then transmitting newly generated fully dense
coded packets.

In contrast, when the fully dense coded packets from the
source arrive to N1, the rateless Rec-woDec and SparsePR
include the fully dense coded packets in the combination
of the wfin packets in Rec-woDec (resp. five packets in
SparsePR) that are combined to generate recoded packets.
Thus, the recoded packets become fully dense coded packets.
Effectively, the fully dense coded packets from the source are
thus immediately forwarded (in the sense of being included

VOLUME 9, 2021 168577



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

in the recoded packets) by N1 to N2, and similarly N2 imme-
diately forwards the fully dense coded packets received from
N1 to the destination. Thus, with Rec-woDec and SparsePR,
the intermediate nodes begin forwarding the fully dense
coded packets essentially in lock-step, i.e., in a ‘‘synchro-
nized’’ fashion. This synchronized forwarding of the fully
dense coded packets by the intermediate nodes to the des-
tination, gets the fully dense coded packets to the destination
sooner than with Dec-Rec, where the intermediate nodes are
not synchronized. Rather, with Dec-Rec, the intermediate
nodes independently (asynchronously) decode the full gen-
eration. Thus, with Dec-Rec, the fully dense coded packets
tend to arrive later at the destination, resulting in a higher
tendency of not finishing the decoding at the destinationwhen
the source stops transmitting.

2) PACKET DELAY PERFORMANCE
a: GENERAL RECODING PACKET DELAY DYNAMICS
Figure 8(a) shows the mean in-order packet delay of indi-
vidual packets [δ(i) in Eqn. (3)], while Figure 8(b) shows
boxplots of the mean in-order packet delay [D in Eqn. (3)].
Generally, we observe ‘‘ripples’’ in Figure 8(a) and trends of
increasing delays as the packet order number i increases (up
to about the middle of a generation) for all approaches, except
systematic RLNC. These ripples are caused by the source
packet transmission pattern in subsets, each subset consisting
of m = 8 systematic packets followed by k = 2 coded
packets, as per the considered source code rate cS = 8/10.
For the considered generation size G = 60, there are 7 full
subsets and an additional 4 packets, resulting in 7 and a half
ripples in Figure 8(a).

It is instructive to first consider these ripples in an erasure
free network: The first m = 8 systematic packets Pi, i =
0, 1, . . . , 7, will have a delay metric δ(i) = 0. After the
transmission of these first m = 8 packets, the source sends
k = 2 coded packets to complete the transmission of the first
subset of packets. These k = 2 coded packets introduce a
delay for the subsequent m = 8 systematic packets of 2 time
slots, resulting in delays δ(i) = 2 for systematic packets with
order numbers i = 8, 9, . . . , 15 in the erasure-free scenario.
The systematic packets in each subsequent subset are delayed
by an additional two time slots, resulting towards the end
of the generation in δ(i) = 12 for i = 48, . . . , 55, and
δ(i) = 14 = bG/mSckS = b60/8c2 for i = 56, . . . , 59.
Accordingly, the mean packet delay D across the generation
of G = 60 packets is D = 6.5 in the erasure-free scenario.

It is also instructive to consider the other extreme scenario
in the delay dynamics, namely the scenario when a packet
Pi is erased on one of the links and only recovered at the
destination when the fully dense coded packets arrive. For
source code rate cS = mS/(mS + kS ), there are bG/mSc full
subsets at the source, i.e., a total of bG/mSckS coded packets
with finite coding window wfin are transmitted by the source
as part of the bG/mSc full subsets. Thus, the fully dense coded
packets begin to arrive at the destination at the earliest in time

slotG+bG/mSckS . Therefore, a packet Piwith a delay δ(i) ≥
G+bG/mSckS− i = 74− i is generally only recovered when
fully dense coded packets start to arrive to the destination.
(Dec-Rec is an exception since the fully dense coded packets
in Dec-Rec may arrive later to the destination due to the
asynchronous decoding in the individual intermediate nodes,
see the end of Section IV-C1.)

We also observe from Figure 8(a) that for all approaches,
except systematic RLNC, the mean in-order packet delay
δ(i) is relatively short for the first packet for conventional
recoding and CRSB or the first subset of m = 8 packets
for the SpaRec approaches, and grows longer with increasing
packet order number i, and becomes again shorter as the
packet order number i approaches the end of a generation
of G packets. This general behavior is mainly caused by the
averaging of 10 000 independent replications of the transmis-
sion of the G packets (i = 0, 1, . . . ,G − 1) in a generation
to obtain the plotted mean in-order packet delay δ(i). More
specifically, packets experience typically two different delay
dynamics: (a) erasure-free multi-hop transmission or ‘‘local’’
recovery with the coded packets for the subset that the packet
belongs to, or (b) ‘‘global’’ recovery with the fully dense
coded packets that the destination receives at the end of the
generation. The erasure-free transmission or local recovery
results in short delays that are on the order of the number
m of packets in a subset and the total number bG/mSckS of
coded packets with a finite coding window wfin. On the other
hand, the global recovery results in packet delays on the order
of the ‘‘distance’’ G + bG/mSckS − i of packet Pi from the
end of the generation, when fully dense coded packets arrive
to the destination. For a specific example, suppose that P0
and P3 are erased on the S–N1 link. With Dec-Rec, N1 can
recover these two erased packets when N1 receives the k = 2
redundant coded packets of the first subset. With the other
SpaRec approaches, the destination can similarly recover the
two erased packets through on-the-fly decoding, provided
no erasures occur on the other links. If one of these coded
packets is erased, or a third systematic packet is erased, then
these erased systematic packets require global recovery at the
destination at the end of the generation.

b: PACKET DELAY DYNAMICS OF BENCHMARKS
We observe from Figure 8(a) that the in-order packet delays
δ(i) of conventional recoding and CRSB increase steeply
over the first m = 8 packets, i.e., packets i = 0, 1, . . . ,m,
in a generation. This is mainly because conventional recod-
ing at N1 creates increasingly dense recoded packets as the
source sends uncoded systematic packets; thus, N1 destroys
the structure of the sliding window coding scheme that the
source uses. More specifically, the source first sends a subset
of m uncoded packets to allow the destination to utilize these
packets immediately, if they are not erased by the links.
However, conventional recoding always creates coded pack-
ets which require the portion of the decoding matrix at the
destination that corresponds to the packets that have been
received so far to reach full rank for decoding the coded

168578 VOLUME 9, 2021



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 8. In-order packet delays of SpaRec approaches Dec-Rec, Rec-woDec, and SparsePR in comparison with benchmarks conventional
recoding, systematic RLNC, and CRSB for three-hop network in Figure 4: (a) mean in-order delay of individual packets δ(i ) as a function of
packet order number i (based on 10 000 independent replications resulting in confidence interval widths less than 4% of the means);
(b) Boxplots of mean in-order packet delay D from Eqn. (3).

packets that have been received so far. Suppose that packets
0, 1, . . . , i − 1 < m are transmitted erasure-free and Pi
suffers an erasure on the S–N1 link or its recoded version
suffers an erasure on the N1–N2 link or the N2–D link; then,
packet Pi cannot immediately be decoded at the destination.
If a total of less than two packet erasures occur during the
transmission of the first m = 8 packets and the subsequent
k = 2 coded packets transmitted by the source traverse the
network erasure-free, then the two packet erasures can be
recovered following the RLNC principles, resulting in the
downward ‘‘notch’’ for packet delay δ(7) (the last packet in
the first subset of m = 8 packets) for conventional recoding
in Figure 8(a).

Packet erasures that cannot be recovered with the k coded
packets that the source sends per subset result in seen packets
at the destination that can only be decoded with the additional
fully dense coded packets at the end of the generation. In the
considered multi-hop network in Figure 4, a given packet is
transmitted erasure-free over all three hops with probability
0.85 · 0.8 · 0.75 = 0.51. Hence, packet erasures are quite
common, resulting in the steeply growing delays δ(i) for con-
ventional recoding in Figure 8(a), as the additional fully dense
coded packets at the end of the generation are required to
recover from packet erasures. Accordingly, the mean packet
delays D across the G packets in a generation are very high
for conventional recoding in Figure 8(b).

We observe from Figs. 8(a) and 8(b) that CRSB gives
somewhat higher packet delays than conventional recoding.
This in mainly due to the relatively weak protection in CRSB
by combining few packets which then requires more packet
transmissions at the end of a generation, confirming the
results in [14, Figure 4(a)]. More specifically, in conven-
tional recoding, all packets for a generation in the buffer in
an intermediate node are combined when recoded packets

are generated. CRSB only combines the packets in a small
buffer to generate recoded packets. By periodically purg-
ing the buffer in the CRSB approach (see Section III-C3),
intermediate nodes lose the information of previous packets.
Accordingly, CRSB requires more fully dense coded packets
at the end of a generation.

With systematic RLNC, any packet erasure during the
transmission of the G systematic packets in the first G time
slots can only be recovered with the fully dense coded packets
transmitted at the end of the generation. Accordingly, the
mean in-order packet delay δ(i) decreaseswith the ‘‘distance’’
to the end of the generation, as observed in Figure 8(a).
Nevertheless, the systematic packet transmissions i that arrive
erasure-free have an in-order packet delay δ(i) = 0, reducing
the upper quartile of the mean packet delay D in Figure 8(b).

c: SPAREC PACKET DELAY DYNAMICS
We observe from Figure 8(a) that the in-order packet delays
δ(i) with the SpaRec schemes are substantially lower than
for the benchmarks, whereby Dec-Rec achieves generally
the lowest packet delays. The Rec-woDec and SparsePR
packet delays are typically a few time slots higher than the
Dec-Rec delays. The somewhat higher packet delays δ(i) of
Rec-woDec and SparsePR compared to Dec-Rec are primar-
ily due to the inclusion of coded packets in the packet combi-
nations created by Rec-woDec and SparsePR, increasing the
coding density of the created recoded packets. These denser
recoded packets tend to cause more seen packets at the des-
tination, which require more fully dense coded packets at the
end of the generation for decoding. In contrast, Dec-Rec only
creates coded packets from systematic or decoded packets.
Therefore, the Dec-Rec recoded packets have a relatively
lower (sparser) coding density (as examined in more detail in
Table 3), causing fewer seen packets at the destination, and

VOLUME 9, 2021 168579



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 9. Mean (computation) throughput of recoder Tr and decoder Td as a function of generation sizes G for one intermediate node and
packet erasure probabilities ε1 = 0.15 and ε2 = 0.2.

thus requiring fewer fully dense coded packets at the end of
the generation. Also, due to the decoding at each intermediate
node, Dec-Rec tends to deliver more systematic packets to the
destination than Rec-woDec and SparsePR.

Overall, we observe from Figure 8(b) that the SpaRec
approaches significantly reduce the mean delay D of the
packets in a generation compared to the existing recoding
benchmarks. The third quartiles of the mean packet delay D
with the SpaRec approaches are consistently below the first
quartiles of the mean packet delays D of the existing bench-
marks. The mean packet delays D of the proposed Dec-Rec
approach are approximately half or less of the corresponding
mean packet delays of the existing benchmarks.

In additional evaluations, whichwe cannot include in detail
due to space constraints, we examined the sensitivity of the
packet loss and delay performance to an underestimation of
the erasure probability ε by increasing ε by 0.1 for each link in
Fig. 4 while keeping the source code rate initially unchanged
at cS = 8/10 (and rateless recoding in intermediate nodes).
We found that the increased ε: (i) increased the mean in-order
packet delays D by a factor of 1.5 to 1.8, and (ii) increased
the upper quartiles of the conventional recoding and CRSB
packet loss probabilities to approx. 87%, while the SpaRec
upper quartiles remained below 57%. Decreasing, cS to 6/10:
(i) reduced D to levels that are 1.2 to 1.6 above the original
levels, and (ii) returned the packet loss probabilities to their
original levels.

3) THROUGHPUT PERFORMANCE
a: IMPACT OF GENERATION SIZE G ON RECODING
THROUGHPUT
Figure 9 presents the recoder (computation) throughput Tr
and decoder (computation) throughput Td as a function of the
generation size G. A larger generation size G increases the
recoder computations for a recoding approach that processes
all packets that have been received for a given generation,

namely conventional recoding. In particular, conventional
recoding combines all (up to G = 60) packets that have been
received so far for a given generation [77]. The systematic
RLNC and Dec-Rec recoders strive to decode the complete
generation in each intermediate node and thus incur increas-
ing computational complexity as G increases. More specifi-
cally, the systematic RLNC and Dec-Rec recoders check in
each time slot whether a new packet has been decoded.

We observe from Figure 9(a) that the CRSB, SparsePR,
and Rec-woDec recoding throughput levels tends to slightly
increase with increasing generation size G. These Tr
increases for increasing G are mainly due to the sublinear
growth of the number of superfluous packets that are gen-
erated per generation as G grows. Specifically, additional
evaluations revealed for CRSB for G = 60 a mean of
28 superfluous packets, while the four times larger G = 240
had only a 2.5 times larger mean of 74 superfluous packets. A
proportionally smaller number of superfluous packets implies
a proportionally lower processing burden for intermediate
nodes (and the destination) from superfluous packets.

b: IMPACT OF GENERATION SIZE G ON DECODING
THROUGHPUT
We observe from Figure 9(b) that conventional recoding
gives the lowest decoding throughput. With conventional
recoding, the destination receives only dense coded packets.
Dense coded packets require substantial computation effort
for decoding that grows with the generation size G on the
order ofG3 [79], [80] since the entireG×G coding coefficient
matrix and the corresponding packet payloads need to be
processed [79], [80]. Accordingly, the decoding throughput
Td [see Eqn. (4)] drops with a quadratic order, as observed
in Figure 9(b). CRSB, which also delivers essentially only
coded packets to the destination, achieves higher decoding
throughput as only the coding coefficients corresponding to
the up to 10 packets in the recoding buffer are non-zero. Thus,

168580 VOLUME 9, 2021



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 10. Mean number of superfluous received packets at the
destination per generation of G = 180 packets for ε = 0.15 for all links.

the CRSB recoded packets have a lower coding density com-
pared to the dense coded packet of conventional recoding.

We observe from Figure 9(b) that the SpaRec approaches
are clustered together and achieve nearly the same decoding
throughput levels, which are in the general vicinity of the sys-
tematic RLNC decoding throughput. The SpaRec approaches
and systematic RLNC achieve high decoding throughput lev-
els mainly because of the systematic packets received at the
destination.

c: IMPACT OF NUMBER OF INTERMEDIATE NODES ON
SUPERFLUOUS AND SYSTEMATIC PACKETS AT DESTINATION
Before the examination of the throughput as a function of the
number of intermediate nodes in Section IV-C3.d it is instruc-
tive to consider the mean number of superfluous received
packets per generation at the destination as displayed in
Figure 10. For a given generation, the number of superfluous
received packets was evaluated by subtracting the generation
sizeG from the total number of received packets until the gen-
eration could be decoded at the destination. Thus, effectively,
Figure 10 shows the numbers of superfluous coded packets
that are generated by the recoding algorithms per generation.
These superfluous received coded packets are useless to the
decoder at the destination in that they do not increase the
rank of the decoder coefficient matrix, i.e., these superfluous
received coded packets are linear combinations of previously
received packets. Determining the linear dependency takes
some computational effort [82].

We observe from Figure 10 that systematic RLNC has
essentially no superfluous coded packets. With systematic
RLNC, the source node and each intermediate node sends
each of the G packets in the generation once in systematic,
i.e., uncoded form, and then sends fully dense coded packets,
which can be utilized to recover any erased packet of the
generation at the next intermediate node or the destination.

In contrast, we observe from Figure 10 that Dec-Rec has
the highest numbers of superfluous received coded packets.

TABLE 3. Mean number of uncoded packets received by the destination
and coding density (proportion of non-zero coding coefficients) of the
received coded packets that increase the rank of the decoder as a
function of the number of intermediate nodes for G = 180 packets per
generation and ε = 0.15 for all links.

This is mainly due to the relatively high number of linearly
dependent packets that Dec-Rec generates by recoding a
limited set of wfin systematic and decoded packets in the
intermediate nodes. Rec-woDec and SparsePR create less
superfluous packets by including received coded packets
when combining packets to create recoded packets. These
Rec-woDec and SparsePR recoded packets therefore tend to
have a higher coding density (see Table 3) and to include
information from a wider set of packets, reducing the proba-
bility of linear dependency.More specifically, SparsePR has a
higher coding density than Rec-woDec due to the continuous
combination of each incoming packet with the packet buffers
in SparsePR (see Fig. 3); therefore, SparsePR has a lower
number of superfluous packets than Rec-woDec.

We observe from Table 3 that the recoding approaches that
strive to build up the full generation of systematic (uncoded)
packets at each intermediate node, i.e., systematic RLNC and
Dec-Rec, deliver a high number of uncoded packets to the
destination that is independent of the number of intermediate
nodes. With systematic RLNC, the last intermediate node
transmits all packets in uncoded form to the destination,
followed by fully dense coded packets to recover the packet
erasures on the last link. In contrast, Dec-Rec intersperses
coded packets that are combinations over the finite coding
window wfin (and thus have a low coding density) among
the uncoded packet transmissions. Rec-woDec also combines
packets in the wfin window, achieving low coding density;
whereas, SparsePR codes with the packet buffer structure in
Fig. 3, resulting in a moderately high coding density around
0.56. Both, Rec-woDec and SparsePR deliver more coded
packets to the destination as the increased number of erasures
with the increasing number of links create more idle slots.
Similarly, with more links, the mean coding density of the
delivered coded CRSB packets increases, mainly due to the
increasing number of fully dense coded packets at the end of
a generation.

d: IMPACT OF NUMBER OF INTERMEDIATE NODES ON
THROUGHPUT
Figure 11 presents the recoder throughput Tr and decoder
throughput Td as a function of the number of intermediate

VOLUME 9, 2021 168581



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

FIGURE 11. Mean (computation) throughput of the recoder Tr and decoder Td as a function of number of intermediate nodes; fixed
parameters: generation size G = 180 packets, erasure probability ε = 0.15 for all links.

nodes. We observe from Figure 11(a) that all approaches
exhibit decreasing recoding throughput as the number of
intermediate recoding nodes increases, whereby this decrease
is most noticeable for CRSB and systematic RLNC.

As the number of links that the packets have to traverse
increases, the probability of packet erasures on the set of links
increases, as each link erases a packet independently with
probability ε. Accordingly, Dec-Rec, which strives to decode
the entire generation in each intermediate node, requires more
fully coded packets at the end of the transmission of a gener-
ation to decode the generation. Thus, when averaging over a
full generation, the intermediate nodes—especially the inter-
mediate nodes towards the end of the multi-hop path—have
to decode on average more fully dense coded packets, which
requires more computational effort for decoding. Therefore,
the plotted Dec-Rec average recoding throughput (across the
given set of intermediate nodes) decreases as the number of
intermediate nodes on the multi-hop path increases.

Subtly different, in systematic RLNC, each intermediate
node builds up the full generation from the systematic packets
and coded packets received from the immediately preceding
node along the path. Thus, the number of erased packets that
need to be recovered in a given intermediate node is only
affected by the erasures on the one link form the immediately
preceding intermediate node (or source). However, the order
in which the packets arrive to the individual intermediate
nodes is more strongly re-shuffled asmore systematic packets
are erased on the successive links and each intermediate node
immediately forwards the received systematic packets (one
packet per time slot, in the packet order number from the
generation at the source, see Section III-C2). Packets that
have been erased on the incoming link are recovered with
the fully dense coded packets at the end of the generation.
The transmission order according to the packet order num-
ber, which has been adopted to reduce the in-order packet

delays, requires more extensive searching for the first in-
order decoded-not-yet-transmitted packet as the number of
intermediate nodes increases.

The CRSB recoder throughput in Figure 11(a) and decoder
throughput in Figure 11(b) mainly decrease due to the rela-
tively large number of fully dense coded packets that CRSB
has to recode in the intermediate nodes at the end of a
generation. CRSB offers weak protection against packet era-
sures, as examined in Section IV-C1.a, and, commensurately,
requires a high number of fully dense coded packets at the
end of the generation (approx. 11 and 28 such packets for one
and four intermediate nodes, respectively). The required high
number of fully dense coded packets can be inferred from
the high number of superfluous received coded packets with
CRSB in Figure 10. More specifically, many of the recoded
packets that CRSB generates in the intermediate nodes by
combining the packets in the buffer during the transmission of
the finite-window coded packets from the source are linearly
dependent as they do not include erased packets from outside
the range of currently buffered packets (and the buffer is peri-
odically purged, thus on average only approximately 5 pack-
ets are combined for the considered 10 packet buffer). And
the probability of packet erasures from outside the buffered
range increases as packets are independently erased over a
larger set of links. Therefore, the recovery at the destination
requires the transmission of an increasing number of fully
dense coded packets at the end of a generation as the number
of intermediate nodes increases, resulting in the increasing
mean coding density observed in Table 3. This increasing
number of fully dense coded packets poses a relatively high
computational load on the intermediate nodes for recoding,
leading to the declining CRSB recoding throughput over a
full generation in Figure 11(a). The computational burden
from the increasing number of fully dense coded packets is
even higher for the decoding in the destination, leading to the

168582 VOLUME 9, 2021



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

steep drop-off of the CRSB decoding throughput to near the
levels of conventional recoding in Figure 11(b) as the number
of intermediate nodes increases.

On the other hand, Rec-woDec, SparsePR, and conven-
tional recoding do not periodically purge the recoding buffer.
Rather, they combine all received uncoded and coded packets
within the full recoding window wfin (or the set of five packet
buffers in SparsePR). This reduces the probability of creating
linear dependent coded packets, leading to themoderate num-
bers of superfluous packets in Figure 10 that increase very lit-
tle with the number of intermediate nodes. Thus, Rec-woDec,
SparsePR, and conventional recoding avoid the large numbers
of fully dense coded packets that CRSB requires at the end
of a generation (e.g., Rec-woDec requires approx. 7.6 and
13 such packets for one and four intermediate nodes, respec-
tively). Correspondingly, Rec-woDec, SparsePR, and con-
ventional recoding do not suffer from a pronounced decrease
of the recoding throughput in Figure 11(a) as the number of
intermediate nodes increases.

However, with an increasing number of links, the proba-
bility that a systematic packet is transmitted erasure-free over
all links to the destination decreases. Thus, the SpaRec inter-
mediate nodes need to fill more idle slots with coded pack-
ets, which increases the computational burden, and, in turn,
reduces the recoding throughput. This recoding throughput
reduction is least pronounced for SparsePR, which combines
each arriving packet with the packet buffers; thus, the creation
of coded packets is a relatively very small additional compu-
tational load. The proportion of coded packets arriving to the
destination increases as Rec-woDec and SparsePR fill more
idle slots with coded packets, see Table 3. Commensurately,
the decoding throughput levels for Rec-woDec and SparsePR
are reduced in Figure 11(b) for an increasing number of
intermediate nodes. Despite high numbers of superfluous
received coded packets, see Figure 10, Dec-Rec achieves a
relatively high decoding throughput, see Figure 11(b), mainly
because Dec-Rec delivers a relatively high number of sys-
tematic packets to the destination decoder and the delivered
coded packets have low coding density, see Table 3.

e: SUMMARY OF THROUGHPUT RESULTS
When excluding CRSB due to its poor packet loss and
delay characteristics, see Figures 7 and 8, we observe
from Figures 9(a) and 11(a) that Rec-woDec and SparsePR
achieve the highest recoding throughput levels. Also,
Rec-woDec achieves the highest decoding throughput
levels [see Figures 9(b) and 11(b)]. As we observe from
Figures 9 and 11, the recoding throughput is generally lower
than the decoding throughput, i.e., for the same computa-
tional capabilities in intermediate nodes and the destination,
the recoding in the intermediate nodes is the bottleneck.
The relatively higher computational complexity for recoding
compared to decoding is mainly due to the computational
effort for creating recoded packets to fill the idle slots that
arose due to link packet erasures, including the computations
for generating the pseudo-random numbers for the recoding.

The SpaRec approaches with the highest recoding
throughput levels, namely Rec-woDec and SparsePR, achieve
substantially higher recoding throughput levels than the high-
est recoding throughput benchmark: For instance, for a
generation size of G = 240, Rec-woDec recodes approxi-
mately 463Mbit/s compared to about 270Mbit/s with sys-
tematic RLNC in Figure 9(a). For four intermediate nodes in
Figure 11(a), Rec-woDec recodes approximately 450Mbit/s
compared to 218Mbit/s with conventional recoding, thus
Rec-woDec can double the recoding throughput compared to
conventional recoding.

V. SUMMARY AND FUTURE WORK
Within the context of sparse systematic RLNC, we have pro-
posed and evaluated a set of three distinct sparsity-preserving
recoding (SpaRec) strategies: Dec-Rec for recoding with a
decoder at each intermediate network node, Rec-woDec for
recoding without a decoder and with sufficient buffers to hold
all packets in the recoding window, as well as SparsePR for
recoding without a decoder and with limited buffers. These
three SpaRec strategies can operate with a finite recoding
window size or with an infinite recoding window (which then
extends to all the packets in a generation). Also, the SpaRec
strategies can operate with a prescribed code rate or conduct
adaptive (rateless) recoding without a prescribed code rate.

Our extensive discrete-event simulation based evalua-
tions indicate that the practical finite-length recoding win-
dow enhances the recoding and decoding (computation)
throughput. Also, the rateless recoding reduces the in-order
packet delays. We have compared the SpaRec strategies with
finite-length recoding window and rateless recoding against
several benchmarks, namely conventional recoding, system-
atic RLNC recoding, and conventional recoding with small
buffers. The benchmark comparisons indicate that the SpaRec
approaches substantially reduce the packet loss probability,
reduce the in-order packet delays (to nearly half of the bench-
mark delays), while enhancing the recoding throughput (can
be doubled) and the decoding throughput.

Among the SpaRec approaches, Rec-woDec and SparsePR
achieve the lowest packet loss probabilities, nearly the low-
est packet delays, and the highest recoding throughput lev-
els in the intermediate nodes. We also find that Dec-Rec
is highly competitive, achieving the lowest in-order packet
delays. Interestingly, the decoding in the intermediate nodes
in Dec-Rec only moderately reduces the recoding throughput
while achieving nearly the same decoding throughput com-
pared to Rec-woDec and SparsePR.

There are several important directions for future research
on sparsity-preserving recoding (SpaRec) for sparse system-
atic RLNC. The present initial SpaRec study has focused
on single-path multi-hop networks. Future research should
extend the SpaRec strategies to multi-path multi-hop net-
works [83]–[85]. Multi-path networks pose several new chal-
lenges, such as different delays and erasure probabilities on
the different paths that need to be accounted for in the coding
of the packet transmissions for the different paths. Generally,

VOLUME 9, 2021 168583



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

in order to avoid the complications of recoding in the interme-
diate nodes on the multiple paths, recoding strategies without
a recoder may be a good initial starting point for researching
recoding in multi-path settings.

Another important future research direction is to exam-
ine the energy consumption of the recoding algorithms.
Commonly, hardware-based solutions substantially reduce
the energy consumption compared to software-based solu-
tions [86]–[88]. Therefore, it will be important to develop and
evaluate efficient SpaRec hardware modules or accelerators
for intermediate network nodes.

ACKNOWLEDGMENT
An earlier version of this paper was presented in part
at the Proceedings of IEEE 93rd Vehicular Techn-
ology Conference (VTC2021-Spring) [1] [DOI: 10.
1109/VTC2021-Spring51267.2021.9448915] and [2] [DOI:
10.1109/VTC2021-Spring51267.2021.9449001].

REFERENCES
[1] E. Tasdemir, J. A. Cabrera, F. Gabriel, D. You, and F. H. P. Fitzek,

‘‘Sliding window RLNC on multi-hop communication for low latency,’’
in Proc. IEEE 93rd Veh. Technol. Conf. (VTC-Spring), Apr. 2021,
pp. 1–6, doi: 10.1109/VTC2021-Spring51267.2021.9448915.

[2] E. Tasdemir, M. Tomoskozi, H. Salah, and F. H. P. Fitzek, ‘‘Low-latency
sliding-window recoding,’’ in Proc. IEEE 93rd Veh. Technol.
Conf. (VTC-Spring), Apr. 2021, pp. 1–5, doi: 10.1109/VTC2021-
Spring51267.2021.9449001.

[3] E. Al-Hawri, N. Correia, and A. Barradas, ‘‘DAG-Coder: Directed acyclic
graph-based network coding for reliable wireless sensor networks,’’ IEEE
Access, vol. 8, pp. 21886–21896, 2020.

[4] E. Benamira and F. Merazka, ‘‘Maximizing throughput in RLNC-based
multi-source multi-relay with guaranteed decoding,’’ Digit. Signal Pro-
cess., vol. 117, Oct. 2021, Art. no. 103164.

[5] S. Laurindo, R. Moraes, C. Montez, and F. Vasques, ‘‘Combining net-
work coding and retransmission techniques to improve the communica-
tion reliability of wireless sensor network,’’ Information, vol. 12, no. 5,
pp. 184.1–184.25, Apr. 2021.

[6] S.Mohammadi, P. Pahlevani, and D. E. Lucani, ‘‘Perpetual network coding
for delay sensitive applications,’’Wireless Pers. Commun., vol. 120, no. 2,
pp. 923–947, Sep. 2021.

[7] X. Shao, C. Wang, C. Zhao, and J. Gao, ‘‘Traffic shaped network cod-
ing aware routing for wireless sensor networks,’’ IEEE Access, vol. 6,
pp. 71767–71782, 2018.

[8] F. Zhu, C. Zhang, Z. Zheng, and A. Farouk, ‘‘Practical network coding
technologies and softwarization in wireless networks,’’ IEEE Internet
Things J., vol. 8, no. 7, pp. 5211–5218, Apr. 2021.

[9] A. A. Abudaqa, A. Mahmoud, M. Abu-Amara, and T. R. Sheltami, ‘‘Super
generation network coding for peer-to-Peer content distribution networks,’’
IEEE Access, vol. 8, pp. 195240–195252, 2020.

[10] A. A. AbuDaqa, A. Mahmoud, M. Abu-Amara, and T. Sheltami, ‘‘Survey
of network coding based P2P file sharing in large scale networks,’’ Appl.
Sci., vol. 10, no. 7, pp. 2206.1–2206.27, Mar. 2020.

[11] D. Li, T. Song, and Y. Yang, ‘‘Content retrieval based on prediction and
network coding in vehicular named data networking,’’ IEEE Access, vol. 8,
pp. 125576–125591, 2020.

[12] F. Stamer, J. Andre, and S. Guenther, ‘‘Network coding—State of the
art,’’ in Proceedings of the Seminar Innov. Internet Technol. Mobile
Commun. (IITM). Munich, Germany: Technical Univ. of Munich, 2021,
pp. 63–66.

[13] S. Wunderlich, F. H. Fitzek, and M. Reisslein, ‘‘Progressive multicore
RLNC decoding with online DAG scheduling,’’ IEEE Access, vol. 7,
pp. 161184–161200, 2019.

[14] Y. Li, J. Wang, S. Zhang, Z. Bao, and J. Wang, ‘‘Efficient coastal com-
munications with sparse network coding,’’ IEEE Netw., vol. 32, no. 4,
pp. 122–128, Jul./Aug. 2018.

[15] M. Karavolos, N. Nomikos, D. Vouyioukas, and P. T. Mathiopoulos,
‘‘HST-NNC: A novel hybrid satellite-terrestrial communication with
NOMA and network coding systems,’’ IEEEOpen J. Commun. Soc., vol. 2,
pp. 887–898, 2021.

[16] C. V. Phung, A. Engelmann, and A. Jukan, ‘‘Error correction with sys-
tematic RLNC in multi-channel THz communication systems,’’ in Proc.
43rd Int. Conv. Inf., Commun. Electron. Technol. (MIPRO), Sep. 2020,
pp. 512–517.

[17] C. V. Phung, A. Engelmann, T. Kuerner, and A. Jukan, ‘‘Improving THz
quality-of-transmission with systematic RLNC and auxiliary channels,’’ in
Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2020,
pp. 1–6.

[18] R. Prior and A. Rodrigues, ‘‘Systematic network coding for packet loss
concealment in broadcast distribution,’’ in Proc. Int. Conf. Inf. Netw.
(ICOIN), Jan. 2011, pp. 245–250.

[19] M. Yu, N. Aboutorab, and P. Sadeghi, ‘‘From instantly decodable to
random linear network coded broadcast,’’ IEEE Trans. Commun., vol. 62,
no. 11, pp. 3943–3955, Nov. 2014.

[20] Y. R. Julio, I. G. Garcia, and J. Marquez, ‘‘R-IoT: An architecture based
on recoding RLNC for IoT wireless network with erase channel,’’ in
Proc. Int. Conf. Inf. Technol. Syst., in Advances in Intelligent Systems and
Computing, vol. 1137. Cham, Switzerland: Springer, 2020, pp. 579–588.

[21] R. Gao, Y. Li, J. Wang, and T. Q. S. Quek, ‘‘Dynamic sparse coded multi-
hop transmissions using reinforcement learning,’’ IEEE Commun. Lett.,
vol. 24, no. 10, pp. 2206–2210, Oct. 2020.

[22] P. Garrido, A. Fernandez, and R. Agueero, ‘‘To recode or not to recode:
Optimizing RLNC recoding and performance evaluation over a COTS
platform,’’ in Proc. VDE Eur. Wireless, May 2018, pp. 1–7.

[23] Y. Li, B. Tang, J. Wang, and Z. Bao, ‘‘On multi-hop short-packet com-
munications: Recoding or end-to-end fountain coding?’’ IEEE Trans. Veh.
Technol., vol. 69, no. 8, pp. 9229–9233, Aug. 2020.

[24] D. Malak, A. Schneuwly, M. Médard, and E. Yeh, ‘‘Delay-aware coding in
multi-hop line networks,’’ in Proc. IEEE 5th World Forum Internet Things
(WF-IoT), Apr. 2019, pp. 650–655.

[25] P. Pahlevani, D. E. Lucani, M. V. Pedersen, and F. H. P. Fitzek,
‘‘PlayNCool: Opportunistic network coding for local optimization of rout-
ing in wireless mesh networks,’’ in Proc. IEEE Globecom Workshops (GC
Wkshps), Dec. 2013, pp. 812–817.

[26] X. Shi, M. Médard, and D. E. Lucani, ‘‘Whether and where to code in
the wireless packet erasure relay channel,’’ IEEE J. Sel. Areas Commun.,
vol. 31, no. 8, pp. 1379–1389, Aug. 2013.

[27] A. Singh and A. Nagaraju, ‘‘Heuristic-based opportunistic network coding
at potential relays in multi-hop wireless networks,’’ Int. J. Comput. Appl.,
pp. 1–12, to be published.

[28] B. N. Vellambi, N. Torabkhani, and F. Fekri, ‘‘Throughput and latency
in finite-buffer line networks,’’ IEEE Trans. Inf. Theory, vol. 57, no. 6,
pp. 3622–3643, Jun. 2011.

[29] H. H. F. Yin, K. H. Ng, A. Z. Zhong, R. W. Yeung, S. Yang, and
I. Y. Y. Chan, ‘‘Intrablock interleaving for batched network coding with
blockwise adaptive recoding,’’ 2021, arXiv:2105.07609.

[30] S. Feizi, D. E. Lucani, and M. Médard, ‘‘Tunable sparse network coding,’’
in Proc. 22th Int. Zurich Seminar Commun. (IZS). Zürich, Switzerland:
Eidgenössische Technische Hochschule Zürich, 2012, pp. 107–110.

[31] S. Feizi, D. E. Lucani, C. W. Sorensen, A. Makhdoumi, and M. Medard,
‘‘Tunable sparse network coding for multicast networks,’’ in Proc. Int.
Symp. Netw. Coding (NetCod), Jun. 2014, pp. 1–6.

[32] Y. Li, E. Soljanin, and P. Spasojević, ‘‘Effects of the generation size
and overlap on throughput and complexity in randomized linear network
coding,’’ IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 1111–1123, Feb. 2011.

[33] X. Li, W. H. Mow, and F.-L. Tsang, ‘‘Rank distribution analysis for
sparse random linear network coding,’’ in Proc. Int. Symp. Netw. Coding,
Jul. 2011, pp. 1–6.

[34] D. Silva, W. Zeng, and F. R. Kschischang, ‘‘Sparse network coding with
overlapping classes,’’ in Proc. Workshop Netw. Coding, Theory Appl.,
Jun. 2009, pp. 74–79.

[35] S. Brown, O. Johnson, and A. Tassi, ‘‘Reliability of broadcast commu-
nications under sparse random linear network coding,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 5, pp. 4677–4682, May 2018.

[36] W. L. Chen, F. Lu, and Y. Dong, ‘‘The rank distribution of sparse random
linear network coding,’’ IEEE Access, vol. 7, pp. 43806–43819, 2019.

[37] P. Garrido, D. Gomez, J. Lanza, and R. Aguero, ‘‘Exploiting sparse cod-
ing: A sliding window enhancement of a random linear network coding
scheme,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[38] P. Garrido, D. E. Lucani, and R. Agüero, ‘‘Markov chain model for the
decoding probability of sparse network coding,’’ IEEE Trans. Commun.,
vol. 65, no. 4, pp. 1675–1685, Apr. 2017.

168584 VOLUME 9, 2021

http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448915
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9449001
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9449001


E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

[39] Y. Li, W. Y. Chan, and S. D. Blostein, ‘‘On design and efficient decod-
ing of sparse random linear network codes,’’ IEEE Access, vol. 5,
pp. 17031–17044, 2017.

[40] V. Nguyen, E. Tasdemir, G. T. Nguyen, D. E. Lucani, F. H. P. Fitzek, and
M. Reisslein, ‘‘DSEP Fulcrum: Dynamic sparsity and expansion packets
for Fulcrum network coding,’’ IEEE Access, vol. 8, pp. 78293–78314,
2020.

[41] H. Sehat and P. Pahlevani, ‘‘An analytical model for rank distribution in
sparse network coding,’’ IEEE Commun. Lett., vol. 23, no. 4, pp. 556–559,
Apr. 2019.

[42] H. Sehat and P. Pahlevani, ‘‘An analytical model for the partial intercept
probability in sparse linear network coding,’’ IEEE Commun. Lett., vol. 24,
no. 4, pp. 725–728, Apr. 2020.

[43] A. Tassi, I. Chatzigeorgiou, and D. E. Lucani, ‘‘Analysis and opti-
mization of sparse random linear network coding for reliable multi-
cast services,’’ IEEE Trans. Commun., vol. 64, no. 1, pp. 285–299,
Jan. 2016.

[44] A. Tassi, R. J. Piechocki, and A. Nix, ‘‘On intercept probability mini-
mization under sparse random linear network coding,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 6, pp. 6137–6141, Jun. 2019.

[45] A. Zarei, P. Pahlevani, and D. E. Lucani, ‘‘An analytical model for sparse
network codes: Field size considerations,’’ IEEE Commun. Lett., vol. 24,
no. 4, pp. 729–733, Apr. 2020.

[46] P. Garrido, D. Lucani, and R. Agüero, ‘‘Role of intermediate nodes in
sparse network coding: Characterization and practical recoding,’’ in Proc.
VDE Eur. Wireless, May 2017, pp. 1–7.

[47] V. Nguyen, J. A. Cabrera, S. Pandi, G. T. Nguyen, and F. H. P. Fitzek,
‘‘Exploring the benefits of memory-limited Fulcrum recoding for hetero-
geneous nodes,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2020, pp. 1–6.

[48] S. Yang and R. W. Yeung, ‘‘Batched sparse codes,’’ IEEE Trans. Inf.
Theory, vol. 60, no. 9, pp. 5322–5346, Sep. 2014.

[49] S. Yang and R. W. Yeung, BATS Codes: Theory and Practice, Synthesis
Lectures on Communication Networks. Williston, VT, USA: Morgan &
Claypool, 2017.

[50] H. H. F. Yin, R. W. Yeung, and S. Yang, ‘‘A protocol design
paradigm for batched sparse codes,’’ Entropy, vol. 22, no. 7, p. 790,
Jul. 2020.

[51] Z. Zhou, C. Li, S. Yang, and X. Guang, ‘‘Practical inner codes for BATS
codes in multi-hop wireless networks,’’ IEEE Trans. Veh. Technol., vol. 68,
no. 3, pp. 2751–2762, Mar. 2019.

[52] Z. Zhou, J. Kang, and L. Zhou, ‘‘Joint BATS code and periodic scheduling
in multihop wireless networks,’’ IEEE Access, vol. 8, pp. 29690–29701,
2020.

[53] X. Xu, Y. L. Guan, and Y. Zeng, ‘‘Batched network coding with adaptive
recoding for multi-hop erasure channels with memory,’’ IEEE Trans. Com-
mun., vol. 66, no. 3, pp. 1042–1052, Mar. 2018.

[54] H. H. F. Yin, B. Tang, K. H. Ng, S. Yang, X.Wang, and Q. Zhou, ‘‘A unified
adaptive recoding framework for batched network coding,’’ in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 1962–1966.

[55] H. H. F. Yin and K. H. Ng, ‘‘Impact of packet loss rate estimation on
blockwise adaptive recoding for batched network coding,’’ in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 1415–1420.

[56] A. Badr, A. Khisti, W.-T. Tan, and J. Apostolopoulos, ‘‘Perfecting protec-
tion for interactive multimedia: A survey of forward error correction for
low-delay interactive applications,’’ IEEE Signal Process. Mag., vol. 34,
no. 2, pp. 95–113, Mar. 2017.

[57] A. Garcia-Saavedra, M. Karzand, and D. J. Leith, ‘‘Low delay random lin-
ear coding and scheduling over multiple interfaces,’’ IEEE Trans. Mobile
Comput., vol. 16, no. 11, pp. 3100–3114, Nov. 2017.

[58] M. Karzand, D. J. Leith, J. Cloud, andM.Médard, ‘‘Design of FEC for low
delay in 5G,’’ IEEE J. Sel. Areas Commun., vol. 35, no. 8, pp. 1783–1793,
Aug. 2017.

[59] Y. Li, F. Zhang, J. Wang, T. Q. S. Quek, and J. Wang, ‘‘On
streaming coding for low-latency packet transmissions over highly
lossy links,’’ IEEE Commun. Lett., vol. 24, no. 9, pp. 1885–1889,
Sep. 2020.

[60] G. Cocco, T. de Cola, and M. Berioli, ‘‘Performance analysis of queueing
systems with systematic packet-level coding,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2015, pp. 4524–4529.

[61] F. Gabriel, S. Wunderlich, S. Pandi, F. H. Fitzek, andM. Reisslein, ‘‘Cater-
pillar RLNC with feedback (CRLNC-FB): Reducing delay in selective
repeat ARQ through coding,’’ IEEE Access, vol. 6, pp. 44787–44802,
2018.

[62] F. Karetsi and E. Papapetrou, ‘‘A low complexity network-coded ARQ
protocol for ultra-reliable low latency communication,’’ in Proc. IEEE
22nd Int. Symp. World Wireless, Mobile Multimedia Netw. (WoWMoM),
Jun. 2021, pp. 11–20.

[63] D. E. Lucani, M. Medard, and M. Stojanovic, ‘‘On coding for delay—
Network coding for time-division duplexing,’’ IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2330–2348, Apr. 2012.

[64] S. Pandi, F. Gabriel, J. A. Cabrera, S. Wunderlich, M. Reisslein, and
F. H. Fitzek, ‘‘PACE: Redundancy engineering in RLNC for low-latency
communication,’’ IEEE Access, vol. 5, pp. 20477–20493, 2017.

[65] S. Wunderlich, F. Gabriel, S. Pandi, F. H. Fitzek, and M. Reisslein,
‘‘Caterpillar RLNC (CRLNC): A practical finite sliding window RLNC
approach,’’ IEEE Access, vol. 5, pp. 20183–20197, 2017.

[66] M. Zverev, P. Garrido, R. Aguero, and J. Bilbao, ‘‘Systematic network
coding with overlap for IoT scenarios,’’ in Proc. Int. Conf. Wireless Mobile
Comput., Netw. Commun. (WiMob), Oct. 2019, pp. 1–6.

[67] A. Cohen, G. Thiran, V. B. Bracha, and M. Médard, ‘‘Adaptive causal
network coding with feedback for multipath multi-hop communications,’’
IEEE Trans. Commun., vol. 69, no. 2, pp. 766–785, Feb. 2021.

[68] T. K. Dikaliotis, A. G. Dimakis, T. Ho, and M. Effros, ‘‘On the delay
advantage of coding in packet erasure networks,’’ IEEE Trans. Inf. Theory,
vol. 60, no. 5, pp. 2868–2883, May 2014.

[69] J. Cloud and M. Médard, ‘‘Network coding over SATCOM: Lessons
learned,’’ in Proc. Int. Conf. Wireless Satell. Syst., in Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, vol. 154. Cham, Switzerland: Springer, 2015,
pp. 272–285.

[70] P. J. Braun, D. Malak, M. Medard, and P. Ekler, ‘‘Multi-source coded
downloads,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–7.

[71] P. J. Braun, M. Medard, and P. Ekler, ‘‘Practical evaluation of multi-source
coded downloads,’’ IEEE Access, vol. 7, pp. 120304–120314, 2019.

[72] A. Cohen, D. Malak, V. B. Bracha, and M. Medard, ‘‘Adaptive causal
network coding with feedback,’’ IEEE Trans. Commun., vol. 68, no. 7,
pp. 4325–4341, Jul. 2020.

[73] V. Roca, F. Michel, I. Swett, and M.-J. Montpetit, ‘‘Sliding window
random linear code (RLC) forward erasure correction (FEC) schemes
for QUIC, internet draft, draft-roca-nwcrg-rlc-fec-scheme-for-quic-03,’’
Internet Eng. Task Force (IETF), Fremont, CA, USA, Tech. Rep. draft-
roca-nwcrg-rlc-fec-scheme-for-quic-03, 2020.

[74] E. Tasdemir, C. Lehmann, D. Nophut, F. Gabriel, and F. H. P. Fitzek, ‘‘Vehi-
cle platooning: SlidingwindowRLNC for low latency and high resilience,’’
inProc. IEEE Int. Conf. Commun.Workshops (ICCWorkshops), Jun. 2020,
pp. 1–6.

[75] E. Tasdemir, C. Lehmann, and F. H. P. Fitzek, ‘‘Joint application of
sliding window and full-vector RLNC for vehicular platooning,’’ in Proc.
IEEE 11th Annu. Comput. Commun. Workshop Conf. (CCWC), Jan. 2021,
pp. 1429–1435.

[76] J. K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzenmacher,
and J. Barros, ‘‘Network coding meets TCP: Theory and implementation,’’
Proc. IEEE, vol. 99, no. 3, pp. 490–512, Mar. 2011.

[77] D. Goncalves, S. Signorello, F. M. V. Ramos, and M. Medard, ‘‘Random
linear network coding on programmable switches,’’ in Proc. ACM/IEEE
Symp. Architecture Netw. Commun. Syst. (ANCS), Sep. 2019, pp. 1–6.

[78] E. Tsimbalo and M. Sandell, ‘‘Reliability of relay networks under ran-
dom linear network coding,’’ IEEE Trans. Commun., vol. 67, no. 8,
pp. 5230–5240, Aug. 2019.

[79] H. Shin and J.-S. Park, ‘‘Optimizing random network coding for multi-
media content distribution over smartphones,’’ Multimedia Tools Appl.,
vol. 76, pp. 19379–19395, Oct. 2017.

[80] S. Wunderlich, J. A. Cabrera, F. H. P. Fitzek, and M. Reisslein, ‘‘Network
coding in heterogeneous multicore IoT nodes with DAG scheduling of
parallel matrix block operations,’’ IEEE Internet Things J., vol. 4, no. 4,
pp. 917–933, Aug. 2017.

[81] M. V. Pedersen, J. Heide, and F. H. Fitzek, ‘‘Kodo: An open and research
oriented network coding library,’’ in Proc. Int. Conf. Res. Netw., in Lecture
Notes in Computer Science, vol. 6827. Berlin, Germany: Springer, 2011,
pp. 145–152.

[82] J. Heide, M. V. Pedersen, and F. H. Fitzek, ‘‘Decoding algorithms for
random linear network codes,’’ in Proc. Int. Conf. Res. Netw., in Lecture
Notes in Computer Science, vol. 6827. Berlin, Germany: Springer, 2011,
pp. 129–136.

[83] C. Han, J. Yin, L. Ye, and Y. Yang, ‘‘NCAnt: A network coding-based
multipath data transmission scheme for multi-UAV formation flying net-
works,’’ IEEE Commun. Lett., vol. 25, no. 3, pp. 1041–1044, Mar. 2021.

VOLUME 9, 2021 168585



E. Tasdemir et al.: SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks

[84] Z. Li, M. Xu, T. Liu, and L. Yu, ‘‘A network coding-based braided mul-
tipath routing protocol for wireless sensor networks,’’ Wireless Commun.
Mobile Comput., vol. 2019, Dec. 2019, Art. no. 2757601.

[85] S. Sankar, P. Srinivasan, S. Ramasubbareddy, and B. Balamurugan,
‘‘Energy-aware multipath routing protocol for Internet of Things using
network coding techniques,’’ J. Grid Utility Comput., vol. 11, no. 6,
pp. 838–846, 2020.

[86] J. Acevedo, R. Scheffel, S. Wunderlich, M. Hasler, S. Pandi, J. Cabrera,
F. Fitzek, G. Fettweis, and M. Reisslein, ‘‘Hardware acceleration for
RLNC: A case study based on the Xtensa processor with the Tensilica
instruction-set extension,’’ Electronics, vol. 7, no. 9, p. 180, Sep. 2018.

[87] L. Linguaglossa, S. Lange, S. Pontarelli, G. Retvari, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, and G. Bianchi, ‘‘Survey of performance accelera-
tion techniques for network function virtualization,’’ Proc. IEEE, vol. 107,
no. 4, pp. 746–764, Apr. 2019.

[88] P. Shantharama, A. S. Thyagaturu, and M. Reisslein, ‘‘Hardware-
accelerated platforms and infrastructures for network functions: A survey
of enabling technologies and research studies,’’ IEEE Access, vol. 8,
pp. 132021–132085, 2020.

ELIF TASDEMIR received the B.Sc. degree in
electronics and telecommunication engineering
from Kocaeli University, in 2012, and the M.Sc.
degree in communication engineering from Yildiz
Technical University, Turkey, in 2015. She is cur-
rently pursuing the Ph.D. degree with the Deutsche
Telekom Chair of Communication Networks,
TU Dresden.

MÁTÉ TÖMÖSKÖZI received the M.Sc. degree
from the Budapest University of Technology and
Economics, Hungary, in 2013, and the Ph.D.
degree from TU Dresden, in 2021. He has many
years of industry experience as a Senior Software
Engineer. At acticom GmbH, Berlin, Germany,
he worked on network header compression imple-
mentations that also influenced his later research
at TU Dresden, where he specializes in advancing
header compression and network coding for next

generation wireless use-cases. He is currently a Postdoctoral Researcher at
Technische Universität Dresden, Germany, in the framework of the Centre
for Tactile Internet with Human-in-the-Loop (CeTI), a Cluster of Excellence.

JUAN A. CABRERA received the B.Sc. degree
in electronics engineering from Simon Bolivar
University, Venezuela, in 2013, and the M.Sc.
degree in wireless communication systems from
Aalborg University, Denmark, in 2015. He is
currently pursuing the Ph.D. degree with the
Deutsche Telekom Chair of Communication Net-
works, Technical University Dresden, Germany.
His special research interests include network cod-
ing, fog computing, distributed storage systems,

and mobile edge cloud solutions.

FRANK GABRIEL received the Dipl.-Inf. degree
in computer science from Technical University
Chemnitz, Germany, in 2011. He is currently pur-
suing the Ph.D. degree with the Deutsche Telekom
Chair of Communication Networks, TU Dresden.

DONGHO YOU received the B.S. and M.S.
degrees in media IT engineering and the Ph.D.
degree in broadcasting and communications engi-
neering from the Seoul National University of Sci-
ence and Technology, Seoul, South Korea, in 2012,
2014, and 2018, respectively. He was a Senior
Researcher at the Deutsche Telecom Chair of
Communication Networks, Technical University
of Dresden, from 2018 to 2021. He is currently
an Assistant Professor with Hannam University,

South Korea. His current research interests include 5G communications and
networks for ultra-reliable and low-latency multimedia service.

FRANK H. P. FITZEK (Senior Member, IEEE)
received the Diploma (Dipl.-Ing.) degree in elec-
trical engineering from Rheinisch-Westfälische
Technische Hochschule (RWTH), Aachen,
Germany, in 1997, the Ph.D. (Dr.-Ing.) degree in
electrical engineering from Technical University
Berlin, Germany, in 2002, and the Doctor Hon-
oris Causa degree from the Budapest University
of Technology and Economy (BUTE), in 2015.
He became an Adjunct Professor at the University

of Ferrara, Italy, in 2002. He is currently a Professor and the Head of the
Deutsche Telekom Chair of Communication Networks, Technical University
Dresden, Germany, coordinating the 5G Lab Germany. He is the Spokesman
of the DFG Cluster of Excellence CeTI. His current research interests
include wireless and mobile 5G communication networks, mobile phone
programming, network coding, cross layer, and energy efficient protocol
design and cooperative networking. In 2003, he joined Aalborg University as
an Associate Professor and later became a Professor. He co-founded several
start-up companies starting with acticom GmbH, Berlin, in 1999. He was
selected to receive the NOKIA Champion Award several times in a row,
from 2007 to 2011. In 2008, he was awarded the Nokia Achievement Award
for his work on cooperative networks. In 2011, he received the SAPERE
AUDE Research Grant from the Danish government. In 2012, he received
the Vodafone Innovation Prize.

MARTIN REISSLEIN (Fellow, IEEE) received
the Ph.D. degree in systems engineering from
the University of Pennsylvania, Philadelphia, PA,
USA, in 1998. He is currently a Professor with
the School of Electrical, Computer, and Energy
Engineering, Arizona State University (ASU),
Tempe, AZ, USA. He received the IEEE Com-
munications Society Best Tutorial Paper Award,
in 2008, the Friedrich Wilhelm Bessel Research
Award from the Alexander von Humboldt Foun-

dation, in 2015, and the DRESDEN Senior Fellowship, in 2016 and 2019.
He served as an Associate Editor-in-Chief for the IEEE COMMUNICATIONS

SURVEYS AND TUTORIALS, from 2007 to 2020, an Associate Editor for
the IEEE/ACM TRANSACTIONS ON NETWORKING, from 2009 to 2013, and
chaired the Steering Committee for the IEEE TRANSACTIONS ON MULTIMEDIA,
from 2017 to 2019. He is an Associate Editor for IEEE ACCESS, IEEE
TRANSACTIONS ON EDUCATION, IEEE TRANSACTIONS ON MOBILE COMPUTING, and
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. He serves as a
Co-Editor-in-Chief for Optical Switching and Networking and the Optical
Communications Area Editor for the IEEE COMMUNICATIONS SURVEYS AND

TUTORIALS.

168586 VOLUME 9, 2021


