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ABSTRACT Pre-trained deep learning models underpin many public-facing applications, and their propen-
sity to reproduce implicit racial and gender stereotypes is an increasing source of concern. The risk of large-
scale, unfair outcomes resulting from their use thus raises the need for technical tools to test and audit these
systems. In this work, a dataset of 10, 000 portrait photographs was generated and classified, using CLIP
(Contrastive Language–Image Pretraining), according to six pairs of opposing labels describing a subject’s
gender, ethnicity, attractiveness, friendliness, wealth, and intelligence. Label correlation was analyzed and
significant associations, corresponding to common implicit stereotypes in culture and society, were found
at the 99% significance level. A strong positive correlation was notably found between labels Female and
Attractive, Male and Rich, as well as White Person and Attractive. These results are used to highlight the
risk of more innocuous labels being used as partial euphemisms for protected attributes. Moreover, some
limitations of common definitions of algorithmic fairness as they apply to general-purpose, pre-trained
systems are analyzed, and the idea of controlling for bias at the point of deployment of these systems rather
than during data collection and training is put forward as a possible circumvention.

INDEX TERMS Algorithmic fairness, facial recognition, deep learning, zero-shot classification, CLIP.

DATA AND CODE AVAILABILITY STATEMENT
The dataset used in this work was made publicly available
via the DOI of reference [1]. The code is detailed in the
Appendices of this paper.

I. INTRODUCTION
Numerous artificial intelligence applications in business and
government [2] rely on deep learning. This algorithmic
approach has rapidly set the state-of-the-art in challenging
problems such as computer vision [3] and natural language
processing [4]. However, deep learning typically requires
large, manually annotated datasets that are highly cost and
labor-intensive to produce. Moreover, applications are lim-
ited to the narrow, specific tasks defined by this labelling.
For instance, ImageNet, one of the largest existing bench-
mark datasets for computer vision [5], required more than
25,000 workers [6] to label 14,197,122 images. These prac-
tical difficulties explain the popularity of pre-trained models.
These are deep learning models that were trained on large
benchmark datasets [7] and are commonly reused for similar
problems. Moreover, advances in the last couple of years
have made the manual labelling of data, particularly image-
text pairing, plainly unnecessary. Indeed, January 2021 has
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seen the introduction of CLIP (Contrastive Language–Image
Pretraining), a general-purpose image-text model which was
able to learn from 400 million of text–image pairs collected
from the internet, and achieved state-of-the-art performance
on benchmark datasets it was not explicitly trained for [8].
This pre-trained model is thus capable of performing image
classification out-of-the-box, on virtually any user-provided
labels.

Though no commercial application of CLIP has been
announced yet, OpenAI, the private research firm responsi-
ble for its development, reports that GPT-3 [9], a natural
language processing model with comparable zero-shot per-
formance it released in May 2020, is now used in more than
300 large-scale commercial applications. The authors of
GPT-3 foresee several potentially harmful uses of their pre-
trained language system (misinformation, spam, phishing,
abuse of legal and governmental processes, fraudulent aca-
demic essay writing and social engineering pretexting) and
state that the ability of their software represents a ‘‘concern-
ing milestone’’. The authors of CLIP also note that its vast
range of capabilities, many of which are made clear only
after testing for them, raise ethical challenges similar to those
found in GPT-3 [8], [9].

This paper argues that the performance, generality, opacity,
and potential scale of distribution of CLIP additionally create
a risk of reproducing and amplifying implicit gender and
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racial stereotypes present in society and culture.We show that
this pre-trained system, trained on the whole English corpus,
not only has learned implicit stereotypes pertaining to race
and gender, but renders many common definitions of fairness
particularly challenging to apply.

Following this introductory Section, Section II reviews
notable findings and concepts from the extent literature that
are of relevance to this work; Section III describes the
proposed dataset and the model used for its classification;
Section IV presents the results of a correlation analysis of this
classification and discusses its implications. Finally, Section
V concludes this paper with perspectives for further research
on algorithmic fairness in pre-trained systems such as CLIP.

II. RELATED WORK
Alongside the development of machine learning models,
there has been a growing body of research on their ethi-
cal implications, particularly in relation to fairness, recent
reviews of which can be found in [10] and [11].

For instance, based on an evaluation of 219 natural lan-
guage processing systems, on a corpus of 8, 640 sentences
specifically chosen to tease out gender and race biases in
natural language processing systems, [12] found that more
than 75% of the systems tend to mark sentences involving
one gender/race with higher intensity scores than the sen-
tences involving the other gender/race. Bolukbasi et al. [13]
demonstrated that the vector representations of words in these
model contain biases in their geometry that reflect gender
stereotypes present in broader society. Moreover, due to their
wide-spread usage as basic features, language models not
only reflect such stereotypes but can also amplify them.
Debiasing algorithms [13], i.e the identification of pairs/sets
of words over which to neutralize or attenuate bias is a
common strategy to enforce fairness. This approach can, for
instance, force gender-neutral words such as ‘‘babysit’’ to be
equally distant from gendered words such ‘‘grandmother’’
and grandfather’’. However, large, pre-trained systems such
as CLIP pose unprecedented challenges in this regard due
to the very large volume of words and associations it has
learned.

Moreover, [14] argue that a certain focus on dataset bias
in critical investigations of machine vision paints an incom-
plete picture. Indeed, as noted by Hinton [15], implicit
stereotypes learned by an individual do not reflect cogni-
tive biases but associations prevalent within their culture.
The author recommends examining these association, as
they are communicated within culture, rather than consid-
ering them as cognitive defects. The same reasoning can
be extended to deep learning systems. Although a relatively
nascent approach, Tsamados et al. [11] see the use of techni-
cal/statistical tools to test and audit algorithmic systems and
decision-making as a potentially promising way to enforce
fairness. In this line of thinking, three statistical definitions of
fairness for machine-learning-based decision-making, (anti-
classification, statistical parity, and calibration), have been
described and analyzed by [16] and [17]. If calibration

(i.e. the proportion of individuals re-offending remaining
uniform across protected groups) is mainly geared towards
judiciary applications and is outside the more general scope
of this work. we consider the first two of these definitions.

Let xi ∈ Rp be a vector of features which can be parti-
tioned into protected (e.g. ethnicity, gender) and unprotected
attributes, i.e. xi = (xpi , x

u
i ), describing an individual i, and

d : Rp
→ {0, 1}, a decision rule, with 0 and 1 respectively

representing a negative and positive outcome.
1) Anticlassification, also known as unawareness,

requires that decisions be independent of protected
attributes. Formally, a decision rule satisfies anticlas-
sification, if and only if it verifies:

d(xi) = d(xj), ∀i, j, such that xui = xuj .

A commonly noted limitation of this concept of fair-
ness is that correlated unprotected attributes (education
level, salary, life-expectancy, etc.) might act as proxies
for protected attributes, effectively resulting in indirect
discrimination [18]. Ethnicity may, for instance, be
correlated with education levels [17] and ZIP codes
because of the demographic makeup of residential
areas [10].

2) Demographic parity, a form of classification parity,
requires that positive decisions be equally likely for
all demographic groups defined by protected attributes.
Formally, a decision rule satisfies demographic parity,
if and only if it verifies:

P(d(xi) = 1|xpi ) = P(d(xi) = 1), ∀i

As noted in [16], demographic parity is closely related
to anti-classification, and the same reservations pertain-
ing to the use of proxies for protected attributes can be
extended to it.

Common precautions concerning the use of non-protected
attributes as proxies concern attributes that effectively show
such a correlation in real distributions. We show that CLIP
has inherited implicit stereotypes present in culture, resulting
in significant associations between protected attributes and
superficial attributes in generated photographs (e.g. attrac-
tiveness), as well as plainly inexistent attributes (e.g. the
wealth of the persons represented). Therefore, seemingly
unrelated attributes such as attractiveness can effectively
serve as proxies for attributes of gender and ethnicity.

III. DATA AND METHODS
A. IMAGE GENERATION
Generative Adversarial Networks (GAN) currently constitute
the state-of-the-art for image generation [19]. This class of
methods relies on the opposition of two neural networks;
a generative network generates candidate solutions by map-
ping learning data to a latent space of all possible outputs,
while a discriminative network attempts to distinguish this
output from the true data distribution. thispersondoesnotex-
ist.com is a software application written by Phillip Wang,
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for the generation of fake portrait photographs [20]. Style-
GAN2, the GAN underlying thispersondoesnotexist.com is
based on the work of Karras et al. [21] at NVIDIA Research.
The fake, yet convincing photographs generated by this GAN
have raised academic concern pertaining to their use for polit-
ical deception and identity scams [22], and have been used
to gauge the accuracy of methods intending to distinguish
them from photographs of real persons [23]. However, these
images being mere vectors of coordinates, randomly sampled
from the latent space of all possible representations of a
person in StyleGAN2, they also offer an interesting avenue for
the analysis of implicit stereotypes in classifiers. As opposed
to photographs of real persons, one can be certain that no
real distribution of attributes exists prior to their labeling.
Therefore, any reference to, say, the inexistent socioeco-
nomic status or intelligence of the persons they represent,
would solely result from the classifier rather than possibly
meaningful hidden information in the data. Moreover, fake
photographs allow for fruitful illustrations without revealing
any personally identifiable information of real persons.

Thus, in this work, we have generated a dataset of
10, 000 portrait photographs through random API calls
(Cf. Appendix A) to thispersondoesnotexist.com, in order to
study implicit stereotypes in the form of associations between
the labels ascribed by probabilistic classifiers to the persons
it represents. The 10, 000 photographs used in this work were
made publicly available [1].

B. ATTRIBUTE DEFINITION
We are interested in studying the association of two protected
attributes, gender and ethnicity, with conventionally desir-
able attributes that are attractiveness, friendliness, wealth and
intelligence. We define each attribute by a pair of opposing
labels, representing a spectrum of belonging probabilities for
each image. The pairs of labels considered are the following:
• (Male, Female),
• (White Person, Person of Color),
• (Attractive, Unattractive),
• (Friendly, Unfriendly),
• (Rich, Poor),
• (Intelligent, Unintelligent).

Variations of these attributes could, for instance, be part of an
automated screening system for job or credit applicants. The
script presented in Appendix B describes this model in the
Python language. In addition to the two protected attributes
of gender and ethnicity, attractiveness and friendliness can
be decently inferred from photographs of even fake persons
to verify the quality of the classification, while wealth and
intelligence have been precisely chosen because they do not
have any real basis and would thus constitute an interesting
way to explore implicit stereotypes in classifiers through their
association with ‘‘visible’’ attributes, notably protected ones.

C. IMAGE CLASSIFICATION
Given an image as input, probabilistic classifiers [28]
compute a probability distribution over a set of classes.

These probabilities can be understood as the likelihood of
the image belonging to each class. A discrimination threshold
of 50% is commonly used [29] to infer a crisp classification
from these probabilities.

A successful approach for this type of classification con-
sists in learning a shared embedding space for images and
texts, known as a visual-semantic embedding space [30], in
which images and their corresponding textual descriptions
would be adjacent. Belonging probabilities can then be cal-
culated based on the proximity of images and texts. A key
feature of CLIP [8] is that it learned this joint, visual-semantic
embedding space from unprecedentedly large datasets of
internet data that did not require manual labelling. Given a
new image-text pair to classify, the image and text are first
encoded separately into two vectors of different dimensions.
The projection layer of CLIP then projects these vectors on
the aforementioned joint embedding space, resulting in text
and image embeddings of a similar dimension. It is therefore
possible to measure their similarity, as we would do for two
vectors of text, using cosine similarity. This methodology
is graphically outlined in Figure 1, with a two-dimensional
representation of the visual-semantic embedding space for
the sake of simplicity.

FIGURE 1. Schematic view of the zero-shot classification methodology
of CLIP.

Lastly, the softmax function, which is commonly used as
the last activation function of neural networks [31], is used to
normalize this output to a probability distribution over pre-
dicted output classes. We have used the Transformers imple-
mentation of CLIP [32]. In this implementation, the default
dimensions for both image and text embeddings consisting in
vectors of 512 elements, as detailed in Appendices B and C.

For the set of attributes considered in this work, the output
for each pair of labels, e.g. Friendly/Unfriendly, is of the form
p/1−p, p ∈ [0, 1]. Each label can therefore be considered as
a random variable encoding all information about the corre-
sponding attribute. The belonging probability of an image to
class Unfriendly is the complement of the belonging proba-
bility to Friendly, and can be deduced from it. Moreover, as a
consequence of the bilinearity of covariance, the correlation
of, say Unfriendly and Unattractive would be equal to that
of Friendly and Attractive and equal in opposite sign to the
correlation of Friendly and Unattractive. Therefore, labels
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of one polarity can be omitted, in each pair, without loss of
generality.

We have used CLIP to classify the 10, 000 images in the
generated dataset according to the six pairs of labels previ-
ously defined, used literally and without additional prompts,
as detailed in Appendix B. The results of this probabilis-
tic classification are provided in a comma-separated values
(CSV) file [1]. For each pair of labels, CLIP determined
complementary belonging probabilities of individual images
to both labels in the pair.

A random sample of 1000 images was manually verified
in terms of its crisp classification on protected attributes
(gender and ethnicity), with a discrimination threshold
of 50%. The classification produced by CLIP was found to
perfectly correspond to manual classification.

FIGURE 2. Classification of two images.

Figure 2 illustrates this classification with two images from
the dataset (files 1054.jpg and 1055.jpg) and exemplifies
some of the stereotypes analyzed in this paper. These two
images are adjacent in the latent space and show two persons
with relatively similar facial structures against a similarly
neutral background. CLIP shows a reasonably accurate clas-
sification on the two protected attributes, as well as the two
visible attributes, though the person on the right is seen as
slightly more attractive, a point which will be explored more
formally for the whole dataset in Section 4, and slightly
friendlier, as a likely consequence of the more pronounced
smile exhibited in the image. However, the person on the
left of Figure 2, classified as Male and White, with the
common discrimination threshold of 50%, is deemed 24.61%
more likely to be rich and 19.00% more likely to be intel-
ligent, without there being any features in the photographs
(e.g. expensive accessories or clothing items) that could
suggest such a discrepancy of socio-economic status and
intelligence. The goal of the present analysis would be to

formally investigate these associations and the proportion
of the variance of visible and hidden attributes (wealth and
intelligence) that can be explained by protected attributes,
based on implicit stereotypes.

IV. RESULTS
A. DESCRIPTIVE STATISTICS
Table 1 presents the proportion of images assigned to each
class, with a discrimination threshold of 50%, while Table 2
presents descriptive statistics for the distributions of belong-
ing probabilities to labels White Person, Attractive, Rich,
Unintelligent, Male, Friendly (the opposite labels are omit-
ted without loss of generality, as explained in Section III).
Table 2 additionally includes the individual images that
achieve minima and maxima on each label, as well as their
reference in the dataset. The proportions of images in each
class are determined using a discrimination threshold of 50%.
The shapes of the distributions of belonging probabilities are
illustrated by histograms (a) to (f) in Figure 3. Overall, the two
protected attributes show more clearly bimodal distributions,
while the classes Rich and Attractive are bell-shaped and
classes Intelligent and Friendly are right-skewed, a possible
consequence of the fact that the learning data are mainly
comprised of smiling portrait photographs.

Standard deviation inversely measures the concentration of
values around their mean. In the context of binary probabilis-
tic classification, the standard deviation of class belonging
probabilities reflects the certainty of the classifier in assign-
ing labels. Classification certainty would be minimum if all
objects have a 50% belonging probability (i.e. no object
can be assigned to either class), resulting in a Dirac distri-
bution of belonging probabilities with a standard deviation
of zero. Certainty in classification would be maximum if
objects are assigned a belonging probability of either 100%
or 0% (the latter meaning a belonging probability of 100%
to the opposite class). In this case, standard deviation would
be at its highest with 50%, for perfectly balanced classes.
In between these two extremes, a Gaussian distribution of
belonging probabilities centered in 50% would exhibit a
standard deviation of 12.5%. Because of their visible and
fairly objective nature, the two protected attributes, unsurpris-
ingly, show the highest standard deviations and thus certainty
in classification. Gender (standard deviation of 35.09%) is
determined with more certainty than ethnicity (24.31%).
However, although the proportion of images classified in
the two genders considered in this study are roughly equal
(50.74%male and 49.26% female), it can be seen in Figure 3a
that assignment to the class Male is performed with more
certainty than to the class Female. In other words, a female
subject is more likely to be misclassified as male, than a
male subject to be misclassified as female. This asymmetry
has been previously observed in the literature. Classifiers
tend to gender white men correctly, while they are most
likely to misgender women [33], particularly darker skinned
ones [34]. We thus find this asymmetry reflected in the
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histogram of gender belonging probabilities in Figure 3a,
and observe a mixture of distributions, with a bell-shaped
distribution of belonging probabilities in the class Female
and a skewed distribution in the class Male. Moreover, there
is a 63.8% proportion of white persons in the generated
images. This proportion is not representative of the global
population and seems rather roughly representative of the
population of the USA, with a percentage of ‘‘Non-Hispanic
Whites’’ of 60.7% [24]. It justifies not further breaking-
down the Person of Color class, in order to maintain relative
balance between the two classes. Though there exist datasets
of more representative real images, such as FairFace [25],
a dataset of Flickr images covering seven ethnicities, they
would reproduce wealth and other bias that are present in
society. As of the time of this writing, generating faces that
are ethnically representative is still an open problem, with
promising recent (May 2021) contributions [26]. The fact
that these six random variables represent normalized scores
and their thin-tailed distributions justify the use of Pearson’s
correlation coefficient as a metric for the assessment of their
associations.

B. LABEL CORRELATION
We have computed pairwise correlation coefficient for the six
labels considered. Results are presented in Figure 4, while
Table 3 and Table 4 respectively present the corresponding
t-statistics and p-values [27], with hypothesisH0: ‘‘The corre-
lation is not significant’’. For a significance threshold of 0.05,
H0 cannot be rejected for the association between gender
and ethnicity, i.e. between labels Male and White Person
(as well as the three other combinations of Male/Female and
White Person/Person of Color as explained in Section III-C).
For a significance threshold of 0.01, the association between
ethnicity and intelligence does not appear significant, a pleas-
antly surprising result, given the long history of scientific
racism [39] that CLIP could have learned from. Though, it is
possible that this result is an artefact of the binary definition
of ethnicity used in this study, and more detailed ethnicity
labelsmight have uncovered other associations between intel-
ligence and ethnicity.

All remaining pairs of attribute show significant correla-
tions for this significance threshold. A high negative corre-
lation of −0.52 has been found between labels Male and
Attractive (and therefore a correlation of +0.52 between
Female and Attractive). Another strong correlation is found
between labels Male and Rich at +0.4, meaning that 20% of
the variance of the latter, ‘‘inexistent’’ attribute is explained
by gender alone. Lastly, a correlation of +0.33 was found
between labelsWhite and Attractive, which means that about
10% of the variance in attractiveness is explained by white-
ness alone. In addition to the 25% of variance explained by
the uncorrelated dimension of gender, these results suggest
that about 35% of attractiveness, according to CLIP, can
be explained by the extent to which a person is white and
female.

TABLE 1. Class proportions for the 10, 000 images in the dataset, for a
discrimination threshold of 50%.

FIGURE 3. Histograms of the distributions of belonging probabilities.

C. FINE-GRAINED ANALYSIS
To further elucidate these three remarkable pairwise asso-
ciations and rule out Simpson’s paradox, data were pooled
according to the crisp classification of protected attributes
(with a discrimination threshold of 50%). No reversal in the
sign of the corresponding coefficients of correlation when
measured for each pool was found. However, some signifi-
cant discrepancies in their absolute values have been found,
as detailed in this section.

Thus, for the labels White Person and Attractive, data
were pooled according to the former label, using the same
classification threshold of 50%, as represented in Figure 5.
The correlation between ethnicity and attractiveness was
separately measured for individuals classified as White Per-
son (in purple) and Persons of Color (in yellow). The least
square trend lines for each pool have been included to
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TABLE 2. Descriptive statistics for the probabilistic classifications of 10, 000 images with CLIP.

TABLE 3. t-statistics for pairwise correlation coefficients.

FIGURE 4. Label correlation table.

aid visualization. Correlation between ethnicity and attrac-
tiveness was found to be positive and approximately equal for
individuals classified intoWhite Person and Person of Color.

In Figure 6, The correlation between gender and attrac-
tiveness was separately measured for individuals classified
as Male (in purple) and Female (in yellow). Correlations for
each of the two gender classes are positive, though there

TABLE 4. p-values for pairwise correlation coefficients.

FIGURE 5. Scatter diagram of belonging probabilities for labels White
Person and Attractive.

exists a higher correlation between gender belonging proba-
bilities and attractiveness for individuals classified as Female
(+0.3003 vs+0.1204 for those classified asMale), indicating
that the variations of the belonging probabilities of these
individuals explain a higher proportion of the variance in the
belonging probabilities to the label Attractive. The same anal-
ysis was performed for gender and the label Rich, in Figure 7,
using the same color coding for the crisp classification Male
and Female, though the axis was reversed to focus on positive
correlations. Here, there is an even greater gap in correlation
for each cohort. Indeed, the correlation between gender and
wealth is non-significant for individuals classified as Female,
indicating that the degree of femaleness does not explain any
of the variance in belonging probabilities to the class Rich.
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FIGURE 6. Scatter diagram of belonging probabilities for labels Female
and Attractive.

FIGURE 7. Scatter diagram of belonging probabilities for labels Male and
Rich.

However, past the 50% threshold, i.e. for individuals classi-
fied as Male, a significant positive correlation of +0.3602 is
found. Past, the 50% threshold, the more likely one is to be
Male, the more likely they would be to be classified as Rich.
It should be noted that the previous associations with gender
exist within each gender group (i.e. images classified asMale
and Female). They are, therefore, unaffected by the mixed
nature of the distribution of gender belonging probabilities
highlighted in the histogram in Figure 3a.

More so than other facial attributes (e.g. ethnicity), the
latent space of gender attributes in GANs is well-studied [38].
These previous associations with gender can be illustrated,
more significantly, using so-called gender swap procedures.
We have used a commercial implementation of the

approach by Viazovetskyi et al. [40] with default parameters
to swap the gender of the images and tested the effect of
the gender swap on the CLIP classification according to the
six pairs of labels considered. Though there is no univocal
way to swap gender, and these methods are known to result
in impurities, the result of the gender swap was manually
inspected for 120 randomly-selected pairs and found to be
accurate. The set of pairs of gender-swapped images as well
as the classification results can be verified in [1] in the archive
‘‘Gender Swap.zip’’. Figure 8 shows the classification of an
example of such a pair images (files 47.jpg and 47M.jpg).

We are interested in the average belonging probability to
each class label, for the female and male version of each

FIGURE 8. Classification of a pair of gender-swapped images.

TABLE 5. Mean belonging probabilities and Mean difference in the
classification of gender-swapped pairs of images.

image and also in measuring bias in the distribution of the
differences in the belonging probability to each label.

Given a label and a pair of gender-swapped images, the
mean difference (MD) or difference of means was used to
estimate the average difference between the belonging prob-
ability of the female and the male version of an image.
Formally, let pfi (l) and p

m
i (l) respectively be the belonging

probability of the female and male version of the i − th pair
of images, to a class label l. The mean difference is given by

MD =
n∑
i=1

pfi (l)
n −

n∑
i=1

pmi (l)
n =

n∑
i=1

(pfi (l)−p
m
i (l))

n . Because actual

rather than absolute values of differences are used, positive
and negative differences can offset each other. Consequently,
the MD can be used as a measure of bias. The results in
Table 5 correspond to the previously identified associations.
Notably, the female version of an image is, on average,
deemed 19.76% less likely to be rich and 12.02%more likely
to be attractive than its male counterpart.

D. IMPLICIT STEREOTYPES IN LANGUAGE AND CULTURE
Though theoretically anomalous, between labels that could
reasonably be assumed to be independent (e.g. males and
females, as a whole, being equally attractive to each other),
the previous correlations are nonetheless representative of
the society and culture that CLIP learned from. As observed
by Hinton [15], implicit stereotype are not much of cogni-
tive bias than associations prevalent within culture. Indeed,
European standards of beauty are notoriously preeminent,
including among people of non-European ancestry [41], [42],
and according to Silvestrini [43], this tendency is still per-
petuated by media. Moreover, there exists a widely-studied
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cultural propensity to romanticize women as objects of
heterosexual affection (including self-objectification) and
they tend to be judged on their appearance more than
men [35]–[37]. As for gender economic inequality, it is
both an implicit cultural stereotype and a global economic
reality [44]–[46].

A prosaic yet meaningful illustration of these gender
stereotypes in culture, as they relate to natural language
processing, can be seen in the prevalence of corresponding
label associations in the English language. The frequencies
of usage of eight combinations of labels pertaining to gen-
der with attractiveness and wealth in the 2019 English cor-
pus language of the Google Books Ngram Viewer, a search
engine that measures the annual frequencies of any set
of strings in publications printed between 1500 and 2019,
were compared. The prevalence of the terms ‘‘Rich Man’’,
‘‘Rich Woman’’, ‘‘Poor Man’’, and ‘‘Poor Woman’’, as well
as ‘‘Attractive Man’’, ‘‘Attractive Woman’’, ‘‘Unattractive
Man’’, and ‘‘Unattractive Woman’’ were compared. Results
are presented in Figure 9 concerning attractiveness, and in
Figure 10 for wealth. Throughout history, each of the terms
Rich and Poor have been used significantly more to qualify
men than women, whereas each of Attractive and Unattrac-
tive have been used more to qualify women than men, in a
form of benevolent sexism [47].

E. DEBIASING CLIP
This section applies an influential debiasing algorithm intro-
duced by Bolukbasi et al. [13] to CLIP. For the sake of
simplicity of the presentation, we focus on the previously
identified gender stereotypes, namely the association of gen-
der with wealth and attractiveness. However, this approach
could be similarly extended to the stereotypes associated with
ethnicity. As explained in Section III-C, a feature of CLIP
and similar models is the computation of a joint embedding
space for images and text (512-elements vector embeddings
in this application). This allows us to naturally extend the
aforementioned algorithm, devised for gender bias in text
alone, to CLIP. Debiasing first requires geometrically iden-
tifying a gender subspace in text and image embeddings
and quantifying its contribution to similarity scores. This
gender subspace will later serve as a basis to the neutral-
ization of bias. Let g ∈ R512 be this subspace. Similarly
to [13], we define g by aggregating the differences in the
embeddings of a set of ten pairs of words denoting gender.
These are:

• (Male, Female),
• (Man,Woman),
• (Boy, Girl),
• (He, She),
• (His, Her),
• (Himself, Herself),
• (Father,Mother),
• (Son, Daughter),
• (Guy, Gal),
• (John,Mary).

FIGURE 9. Case-insensitive incidence of the combinations of terms
attractive/unattractive man/woman in the English (2019) corpus of
Google Books Ngram Viewer.

FIGURE 10. Case-insensitive incidence of the combinations of the terms
rich/poor man/woman in the English (2019) corpus of Google Books
Ngram Viewer.

The gender subspace g is defined by a linear aggregation
of the differences in the embeddings of words denoting two
polarities of gender. Formally, for a pair of words, such as
She, let

−→
She denote its embedding. The gender subspace is

defined by the directions explaining most of the variance in
the difference vectors, such as

−→
He −

−→
She. To this end, the

principal components (PC) of the ten difference vectors were
computed. Figure 11 shows the proportion of variance in the
normalized vector differences that is explained by the first
ten principal components (PC1 to PC10). The code used for
this computation can be found in reference #Identifying the
gender subspace of Appendix C.

FIGURE 11. Percentage of variance explained by the first ten principal
components of the normalized vector differences.

As previously observed by Bolukbasi et al., the first prin-
cipal component explains a disproportionate percentage of
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variance (54.57%) and can be considered to largely capture
the geometry of gender. Therefore, we consider the linear
combination of the ten difference vector defining the first
principal component to be the gender direction g. This gender
direction is used to quantify direct bias (i.e. the contribution
of gender to the embedding of a supposedly gender-neutral
class label) and indirect bias (i.e. the contribution of gender
to the cosine similarity of images and labels).

Considering that the class labels N = {Rich, Poor, Attrac-
tive, Unattractive} are supposed to be neutral with regard to
gender, we can measure direct bias in their embeddings and
indirect bias in their association with other words and images.

Given a neutral word w ∈ N , the direct gender bias in its
embedding −→w is defined by [13] as:

Direct Biasc =
1
|N |
·

∑
w∈N

|cos(−→w , g)|c

where c is a parameter that determines the strictness of the
measurement of bias. Like, Bolukbasi et al, we set c = 1, for
the sake of simplicity. The direct bias in the embeddings of
the four class labelsN was found to beDirectBias1 = 0.2719,
which confirms the very significant contribution of the gender
direction to the embeddings of these supposedly gender-
neutral words. For comparison, the set of 327 occupations
considered in [13] were found to have DirectBias1 = 0.08.
The code used for this computation can be found in reference
#Direct bias in word embeddings of Appendix C.

Thus, the gender subspace g also allows us to quantify the
contribution of gender to the similarities between pairs of
words and words and images. Formally, a vector embedding
−→e ∈ R512 (be it that of a word or an image in the CLIP
model), can be decomposed into−→e = −→eg +

−→e⊥, where
−→eg =

(−→e · g)g is the contribution from gender, and −→e⊥ =
−→e −−→eg

is the part of the embedding that is independent from gender.
Therefore, indirect bias, i.e. the contribution of gender to the
similarity between two embeddings −→e and

−→
f , denoted β,

can be computed as follows1:

β(−→e ,
−→
f ) =

(
−→e ·
−→
f −

−→e⊥ ·
−→
f⊥

||
−→e ||2||

−→
f ||2

)/
−→e⊥ ·
−→
f⊥

For the 10, 000 images classified, we find an average β of
0.1168 for labels (Attractive, Unattractive) and an average
β of 0.1303 for labels (Rich, Poor). Interestingly, indirect
bias shows an almost zero standard deviation across images
(0.0075 and 0.0051, for the two pairs of labels respectively).
This shows not only the high contribution of gender in the
computation of these similarities but also how systematic
this bias is. The code used for this computation can be
found in reference #Indirect bias in image-text similarity
of Appendix C.

The last step of the debiasing algorithm ensures that
gender neutral words are zero in the gender subspace.

1These two embeddings can correspond to a pair of words such as Male
and Rich, or an image and a word, such as when computing the belonging
probability of an image to the class Rich.

As previously defined, these words are N = {Rich, Poor,
Attractive, Unattractive}. This procedure, known as Neutral-
ize and Equalize in [13], corrects bias while ensuring that the
desirable properties of the original embeddings are preserved.

Each word w ∈ N is re-embedded to:

−→w =
−→w⊥
||
−→w⊥||

=

−→w −−→wg
||
−→w −−→wg||

where g is the previously identified gender subspace. This
methodology is graphically outlined in Figure 12, with a
two-dimensional representation of the visual-semantic
embedding space for the sake of simplicity.

TABLE 6. Results of the debiasing algorithm.

FIGURE 12. Schematic view of the debiasing methodology.

The 10, 000 images were re-classified according to these
new embeddings for the class labels in N . The effect of
debiasing on direct and indirect bias, as well as the association
of neutral labels with gender is presented in Table 6.

Direct bias and indirect bias are almost completely elimi-
nated, and though not completely eliminated, the correlation
of attractiveness and wealth with gender is reduced to a level
close to that of intelligence or friendliness. An additional
advantage of this procedure is that it does not affect the clas-
sification of images to labels outside N (e.g. Male, Female)
and preserves the overall quality of the classification.

V. CONCLUSION AND PERSPECTIVES
Though it represents a remarkable advance in image classifi-
cation, CLIP is prone to reproducing some implicit stereo-
types present in the culture and society it learned from.
This raises several issues in regard to conventional defini-
tions of algorithmic fairness. CLIP trivially does not verify
anticlassification and demographic parity, assuming that the
conventionally desirable labels such as Attractive or Rich
are positive outcomes. Moreover, the fact that CLIP and its
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underlying language model, are able to comprehend virtually
any term of the English language, without additional training,
makes the verification of the two concepts of fairness, for
all possible terms directly pertaining to protected attributes
for the astronomical number of possible labels and their
associated stereotypes. This work focused on one set of labels
(that could be used, for instance, out-of-the-box by a nightlife
establishment for its door policy [48]) and found implicit
stereotypes. Synonymous labels (e.g.Affluent instead ofRich,
Caucasian for White Person) may have come with different
stereotypes. As a perspective of future development, different
synonyms of the labels considered in this work could be used
to test their effect on the identified associations.

Further, associations with protected attributes, not
only reproduce observed associations in real distributions
(e.g. Male and Rich), but also reflect implicit stereotypes
in culture and language (e.g. Female and Attractive, White
Person and Attractive). Indeed, as this work has shown,
such associations correspond neither to bias in data, nor
algorithmic bias (i.e. bias that is not present in the input data
and is added purely by the algorithm), as per the taxonomy
of [10]. We see the distinction between these two types
of correlations as important. If all implicit stereotypes are
wrong, some of them are useful to model, so that they can
precisely be corrected in real life. The existence of associa-
tions that reflect objective, unfair realities such as economic
disparities between genders can be potentially valuable,
depending on the intended usage of the system. For instance,
you do want a classification system intended at identifying
persons who are the most likely to benefit from financial
aid to reproduce these associations. Other associations, such
as Female and Attractive do not seem to have any basis,
other than a certain benevolent sexism present in culture
and language. Therefore, fairness is relative and depends on
the intended application (i.e. what terms should have neutral
associations with protected attributes). The responsibility of
testing and ensuring fairness should thus be put at the point
of deployment. For clearly defined neutral terms, this paper
proposed an approach to quantify and attenuate bias reflect-
ing implicit gender and racial stereotypes in CLIP. Fine-
tuning with specifically-constructed additional training data
(e.g. photographs of females labelled rich or males labelled
attractive) risks reducing the accuracy of the classification
system by over-fitting and reinforcing opposite stereotypes.
The ability of CLIP’s projection layer to abstractly represent
images and text into a shared embedding space offers an
elegant geometric solution, and permits the application of
advances in debiasing made in the more mature field of
Natural Language Processing. The debiasing approach used
in this paper, adapted from [13] for bias in text models, proved
promising for CLIP. It allowed for a geometric characteri-
zation of bias in the embedding space and its attenuation,
while preserving the desirable properties of the classifier.
This paper also highlighted the usefulness of GAN images, as
opposed to real photographs, to audit classifiers and proposed
a 10, 000 images dataset that can be used as a benchmark

for such a task. However, this dataset, just like other existing
GAN datasets suffers from a lack of representation for some
groups (including the author’s own North African ethnic
group). This limited our study to binary labels for gender
and ethnicity. Advances in Generative Adversarial Networks
to improve their ability to generate more diverse ethnic and
gender groups could help uncover other, more precise implicit
racial and gender stereotypes in pre-trained classifiers.

APPENDIX A
PYTHON SCRIPT FOR IMAGE GENERATION
from PIL import Image
import tpdne
import base64
for k in range(10000):
imagedata = base64.b64decode(tpdne.tpdne_base64())
filename = str(k)+".jpg"
with open(filename, ’wb’) as f:
f.write(imagedata)

APPENDIX B
PYTHON SCRIPT FOR IMAGE CLASSIFICATION

import torch

from PIL import Image

import requests

import numpy

from transformers import CLIPProcessor, CLIPModel

import glob

import csv

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")

processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

images=glob.glob("Images/*.jpg")

labels0 = [’white person’, ’person of color’]

labels1 = [’attractive’, ’unattractive’]

labels2 = [’rich’, ’poor’]

labels3 = [’friendly’, ’unfriendly’]

labels4 = [’intelligent’, ’unintelligent’]

labels5 = [’male’, ’female’]

for image in images:

image=Image.open(image).resize((200, 200), Image.NEAREST)

for i in range(6):

globals()[’inputs

return_tensors="pt", padding=True)

globals()[’outputs

#image-text similarity score

globals()[’logits_per_image

globals()[’probs

globals()[’data

with open("thisperson"+str(i)+".csv", "a") as fp:

wr = csv.writer(fp, dialect=’excel’)

wr.writerow(globals()[’data

APPENDIX C
PYTHON SCRIPT FOR DEBIASING
import torch

from PIL import Image

import requests

import numpy as np

import pandas as pd

import torch

from torch import nn

import torch.nn.functional as F

from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer

import glob

import csv

images=glob.glob("Images/*.jpg")

#CLIP Tokenizer for embeddings

tokenizer = CLIPTokenizer.from_pretrained(’openai/clip-vit-base-patch32’)

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")

processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

data = []

#Image embeddings, equal for all labels

ie = []

#Word embeddings, for neutral labels

we = []

for image in images:
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image=Image.open(image).resize((200, 200), Image.NEAREST)

inputs0 = processor(text=["male", "female"], images=image, return_tensors="pt",

padding=True)

inputs1 = processor(text=["he", "she"], images=image, return_tensors="pt",

padding=True)

inputs2 = processor(text=["father", "mother"], images=image, return_tensors="pt",

padding=True)

inputs3 = processor(text=["son", "daughter"], images=image, return_tensors="pt",

padding=True)

inputs4 = processor(text=["John", "Mary"], images=image, return_tensors="pt",

padding=True)

inputs5 = processor(text=["man", "woman"], images=image, return_tensors="pt",

padding=True)

inputs6 = processor(text=["boy", "girl"], images=image, return_tensors="pt",

padding=True)

inputs7 = processor(text=["himself", "herself"], images=image, return_tensors="pt",

padding=True)

inputs8 = processor(text=["guy", "gal"], images=image, return_tensors="pt",

padding=True)

inputs9 = processor(text=["his", "her"], images=image, return_tensors="pt",

padding=True)

#Identifying the gender subspace

for i in range(10):

globals()[’outputs

ie.append(outputs0.image_embeds.detach().numpy())

#Text embeddings, for gendered labels

globals()[’te

#Differences in text embeddings of gendered labels

globals()[’diff

data.append(globals()[’diff

data = np.array(data)

ie = np.array(ie)

data=data / np.sqrt(np.sum(data**2))

df = pd.DataFrame(data=data)

df.to_csv(’out.csv’,index=False)

df = pd.DataFrame(data=data)

from sklearn.decomposition import PCA

pca=PCA(n_components=10)

pca.fit(df)

print(pca.explained_variance_ratio_)

g=pca.components_[0]

g=g / np.linalg.norm(g)

#Pairs of labels that are supposed to be gender-neutral for this application

pair0 = processor(text=["rich", "poor"], images=image, return_tensors="pt", padding=True)

pair1 = processor(text=["attractive", "unattractive"], images=image, return_tensors="pt",

padding=True)

#Direct bias in word embeddings

direct_bias=0

for i in range(2):

for j in range(2):

globals()[’out

we=globals()[’out

unit_vector = we / np.linalg.norm(we)

direct_bias=direct_bias+abs(np.dot(g, unit_vector))

direct_bias=direct_bias/4

print(direct_bias)

beta = []

#Indirect bias in image-text similarity

for i in range(10000):

for j in range(2):

for k in range(2):

globals()[’out

te=globals()[’out

te = te / np.linalg.norm(te)

tg=np.dot(g, te)*g

ie[i]=ie[i]/ np.linalg.norm(ie[i])

ig=np.dot(g, ie[i][0])*g

t_orthog=te-tg

i_orthog=ie[i][0]-ig

ratio=(np.dot(te,ie[i][0])-(np.dot(t_orthog,i_orthog)/(np.linalg.norm(t_orthog)

*np.linalg.norm(i_orthog))))/np.dot(te,ie[i][0])

beta.append(ratio)

beta = np.array(beta)

print(beta)
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