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ABSTRACT Since the Internet of Robotic Things (IoRT) is composed of robots with actuators, interferences
with the real-world activities are necessary, and safety is essential. In addition, some IoRT services may
require bidirectional communication between multiple machines. One of the communication protocols that
satisfy these requirements is AMQP, a broker architecture that emphasizes reliability and high functionality
in communication. Therefore, using AMQP as the communication infrastructure between components in
an IoRT system, it can contribute to improving the reliability of robot operations in IoRT and diversi-
fying messaging between robots. To verify AMQP’s communication advantages, we have implemented
the communication interface of AMQP in RT-Middleware, which is one of the robot middlewares, and
have conducted performance and reliability tests on the effectiveness of RT-Middleware as a platform for
constructing a reliable IoRT system. In the tests, we compared the communication performance of the
platform with CORBA and MQTT communication interfaces implemented in RT-Middleware. The results
show that although AMQP causes a small amount of latency compared to other communication interfaces,
the distribution range of the latency is small, and relatively stable communication is performed. Furthermore,
in the messaging quality test results, the data loss during communication by AMQP is almost a hundred times
better than CORBA, and ten times better thanMQTT, which mean that highly reliable messaging is possible.
Based on this study’s findings, we conclude that AMQP should be fully used as a communication protocol
for constructing IoRT systems.

INDEX TERMS AMQP (advanced message queuing protocol), brokered publish/subscribe messag-
ing, highly reliable Internet of Robotic Things (IoRT), MQTT (message queuing telemetry transport),
RT-middleware.

I. INTRODUCTION
In general, robots make decisions about their next actions
based on environmental data obtained from onboard sensors
and their internal states. However, because robots’ physical
payload and available computational resources are limited
in a closed system, they only partially demonstrate their
capability. A way to expand robots’ applications is to use
resources existing outside the robots’ system. The Internet of
Robotic Things (IoRT) attempts to broaden Internet use by
incorporating external resources into robots via the Internet.
IoRT systems are composed of multiple components, such
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as robots, sensors, and clouds, connected to the Internet.
Communication protocols connect each component, mak-
ing them a system of systems. According to P. P. Ray,
IoRT is divided into five major layers, one of which is the
layer responsible for establishing connections on the Internet.
He introduced several Internet of Things (IoT) protocols that
enable it [1], some of which exchangemessages via amessag-
ing architecture with a broker. The messaging protocol with
the broker removes the communication constraints imposed
by network address translation (NAT) mechanisms and fire-
walls and facilitates bi-directional communication between
endpoints on the Internet, making it an essential technology to
meet the first proposition of the IoT, ‘‘Connecting all things.’’
In particular, message queuing telemetry transport (MQTT)
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is a representative protocol for publishing/subscribing
(pub/sub)-type messaging and has simple specifications and
lightweight messaging as its main features [2]. Both features
contribute to reducing the communication overhead, thereby
improving communication performance and power saving.
In IoT systems, some field-side devices may have limited
machine resources, and securing a stable power supply may
be difficult. For this reason, MQTT is useful for increasing
the connectivity and scalability of IoT systems, independent
of the performance aspects of field-side devices. Because of
the above, constructing IoT systems with MQTT has become
a worldwide best practice.

However, it is important to note that there is almost a
trade-off between performance and reliability improvement
in a system. It raises the concern that MQTT, which has
low latency and high performance, may not support mission-
critical systems. MQTT’s high-throughput messaging is due
to its simplicity, and messaging quality assurance is mini-
mized. As a result, messaging service quality is degraded,
especially in unstable networks.

The objective of this study is to develop a reliable and
robust IoRT system. We discuss the state of communication
in IoRT systems and propose a communication model and
system configuration method for realizing it. We provide an
implementation and show the verification results to verify the
model and method’s effectiveness. As a concrete implemen-
tation, we use advanced message queuing protocol (AMQP),
a pub/sub messaging protocol with a broker that focuses on
reliability, and extend it as a communication interface for
robotic technology (RT) middleware (RT-Middleware), one
of the robot middlewares. By combining the AMQP commu-
nication interface with the RabbitMQ server, AMQP’s main
message broker, it is possible to construct a more reliable
and robust IoRT system using only RT-Middleware. It implies
that RT-Middleware extends beyond middleware and into
IoRT platforms. In addition, if a system is implemented with
RT-Middleware, reliability can be realized by constructing a
robust AMQP bridge between robot systems developed with
previously developed functions.

However, while improving reliability, there is a concern
that communication performance, to some degree, particu-
larly in real-time environments, may be sacrificed. In this
study, we have conducted actual communication experiments
and evaluated communication performance. As a result,
we have confirmed that the implementation of AMQP has
many advantages and few disadvantages.

This study is organized as follows. Following our discus-
sion on the differences between IoRT and IoT in Section 2,
we present the advantages of AMQP in IoRT and the features
of the RabbitMQ server, a message broker that augments
AMQP, with a functional comparison withMQTT and related
research. In Section 3, we discuss issues in constructing an
AMQP-based IoRT system using existing IoT platforms and
robot middleware and explain how and why we came to
choose RT-Middleware as the infrastructure for constructing
an IoRT system. In Section 4, we explain the basic concepts

of RT-Middleware specifications and discuss why they apply
to systems other than robot systems. In Section 5, we show
a communication structure with AMQP on RT-Middleware.
In Section 6, we evaluate the performance of various commu-
nication interfaces, including AMQP on RT-Middleware with
actual devices, and discuss the effectiveness of the developed
AMQP communication interface. Finally, Section 7 summa-
rizes this study and discusses future research.

II. THE NEED FOR RELIABLE PUB/SUB
MESSAGING IN IORT
MQTT, a lightweight messaging solution, which has become
almost a de facto standard in the field of IoT, has been intro-
duced for various research and commercial purposes. AMQP,
by contrast, has a poor track record of adoption in the field of
IoT and IoRT. The reason could be a high communication
overhead caused by the protocol’s complexity because of the
emphasis on reliability. In the following, we will contrast
the need for lightweight pub/sub messaging represented by
MQTT and reliable messaging represented by AMQP.

Most performance evaluation tests in related studies have
concluded that MQTT has higher throughput and lower
latency than AMQP, indicating a negative report for AMQP.
For example, D. Happ et al. conducted a performance eval-
uation test using a pub/sub messaging system consisting of
multiple virtual machines launched on a public cloud and
reported that AMQP has higher latency than MQTT for
small- and medium-sized payloads [3]. However, it has also
been reported that there is almost no difference in latency
between the two protocols for large payloads. This finding
is probably due to the difference in the header size in a
message. If the header is compact, as in MQTT, the smaller
the payload size, the greater the benefit in the communica-
tion performance. Conversely, as the payload size increases,
the benefit decreases, and the protocol loses its advantage.
However, for small payloads, MQTT outperforms AMQP in
terms of communication performance, as evidenced by the
results of protocol performance evaluation tests in a smart
factory environment conducted by D. Bezerra et al. [4]. In the
tests, a scenario was implemented for each protocol and the
total processing time of a series of processes was measured.
AMQP did not outperform MQTT in the tests, particularly
in low-bandwidth networks. They concluded that this result
was due to the different message sizes specified in the pro-
tocols. AMQP’s protocol complexity over MQTT improves
robustness, but more resources are needed to achieve it.
Because devices with small machine resources are typically
introduced to IoT systems, we are interested in the suitability
of AMQP, which requires more resources, as an IoT pro-
tocol. A. Chaudhary et al. have pointed out that there is
no AMQP library for microcontrollers with small memory,
such as Arduino, and they have called for the establishment
of an open-source community to expand the application of
AMQP [5].

Thus, there is a view in the literature that AMQP is
inferior to MQTT in terms of communication performance.
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However, its suitability as a protocol for IoT and IoRT cannot
be determined by improving communication performance
through lightweight messaging. Rather, in some cases, the
robustness of systems and the provision of reliable services
such as high-quality messaging may also be evaluated. With
AMQP, as a system constructed on the Internet, which repre-
sents a network with a high degree of uncertainty, there is lit-
tle demand for real-time communication. Therefore, we need
to discuss in depth the necessity and applicability of AMQP
in IoRT, contrasting with the differences from the IoT.

A. DIFFERENCES BETWEEN IOT AND IORT, AND
COMMUNICATION PROTOCOLS FOR
ESTABLISHING IORT SYSTEM
Assuming that IoT and IoRT both consist of cloud services on
an infrastructure side and a group of devices on a field side
across the Internet, the critical differences between IoRT and
IoT can be narrowed down to the following two points.

1) Field-side robots interface with the physical world by
receiving commands from the cloud or other devices
and operating the drive system according to those com-
mands.

2) There is interactive communication between robots on
the field side or via the Internet (multi-robot system).

As for point 1), the difference between IoRT and IoT is
whether sensors or actuators are at the center of the system.
In IoT, which is sensor-centered, there are few situations
where actuators influence objects directly in physical space.
By contrast, in IoRT, since robots, including drive systems,
are at the center, the interaction between physical entities
is essential and physical safety must be ensured. For this
reason, the integrity of external commands to robots should
be ensured. Any deficiencies or inconsistencies in commands
delivered to them can make robots run out of control.

AMQP (ver. 0.9.1) includes two features to achieve
messaging integrity: transaction control and message
queue [6], [7]. The former guarantees the full reachability of
messages, whereas the latter guarantees the arrival order of
messages as well as their reachability. In transaction control,
a series of messages between clients from a sender to a
receiver are handled synchronously as a single process. This
single process introduces a significant communication delay
due to the locking of the message queue in the process, but it
makes the exchange ofmessages between clientsmore robust.
Conversely, in AMQP, the output-side queue corresponding
to the receiving client is defined in the broker, and messages
are processed one by one in a first-in–first-out (FIFO) format.
The FIFO format guarantees the reachability and arrival
order of messages originating from the sender. The high-
reliability messaging capabilities of AMQP will be of great
value in mission-critical systems such as social infrastructure,
where constant operation is essential. It has been used as the
messaging infrastructure for the financial trading systems of
Deutsche Börse and J.P. Morgan [8].

Meanwhile, the MQTT protocol has no provision for
queues, and message reachability by quality of service (QoS)

is guaranteed only by acknowledgments between clients and
brokers [9]. In other words, MQTT has no way to confirm
if messages have been exchanged reliably between clients at
the protocol level. Since there is no queue corresponding to
the receiving client, the arrival order of messages is not guar-
anteed. Table 1 summarizes the differences in characteristics
between AMQP and MQTT, mainly regarding reliability in
messaging.

TABLE 1. Differences in reliability-related features between AMQP
and MQTT.

N. Q. Uy et al. [10] demonstrated the high reliability
of AMQP messaging through communication performance
evaluation tests in an Internet-like test environment by com-
paring AMQP with MQTT. One of the tests is designed to
measure the delay by continuously sending packets without
setting the frequency in a network environment loaded by the
tool. In the test, MQTT exhibits packet loss, regardless of
QoS, whereas AMQP has no packet loss in any of the test
cases.

The stability of AMQP in high frequency communication
has been clearly demonstrated in the results of performance
evaluation tests of various messaging middleware used in
the Industrial Internet of Things (IIoT) field conducted by
G. Andrei et al. [11]. The two messaging specifications of
the data distribution service (DDS) [12] and AMQP are
employed in the performance evaluation. Both of the spec-
ifications are mainly for pub/sub messaging, but DDS is bro-
kerless, while AMQP is brokered. Nevertheless, the results of
the performance evaluation tests show that AMQP is able to
maintain higher messaging throughput even at high frequen-
cies, and the number of messages that stay in the queue is
stayed at the minimum throughout the tests. In contrast, the
DDS implementations have unstable communication, with
sudden and/or large delays from the beginning. Based on the
above, AMQP is reported to provide more stable communi-
cation than the two DDS implementations.
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Several studies, however, have shown that AMQP’s mes-
saging is unreliable on highly unstable networks, where con-
nection loss between the sender client and the broker occurs
frequently. In the protocol performance evaluation test con-
ducted by T. Moraes et al. assuming a network failure, two
communication paths were set up between the sender client
and the broker, and at regular intervals, a network failure
occurred on one of the paths, and the effective path was
switched [13]. AMQP explicitly states that when a connec-
tion is lost because of a network failure, the sender client
takes a long time to establish another connection on a new
communication path, resulting in a large amount of packet
loss. However, this is the result obtained by the broker with
default settings, and it can be resolved by making appropriate
adjustments in the configuration.

Nevertheless, considering that AMQP uses message
queues in the broker to guarantee the arrival order of mes-
sages, reliability depends on the condition that messages
arrive at the broker from the sender client. Therefore, we can-
not completely address the concern that the advantage of
AMQP reliability may deteriorate in a highly unstable net-
work environment, where maintaining connections is diffi-
cult. However, from the opposite perspective, AMQP can
only ensure reliable messaging if messages from the sender
client to the broker are delivered consistently. In other words,
deploying a broker for each endpoint, including robots, is suf-
ficient. The testbed developed by D. Lu et al. for cloud
computing for mobile robots is based on AMQP, and the
implementation is exactly following the above deploy [14].
A broker is deployed not only on the cloud but also on mobile
robots in the field, which contributes to the improvement
of messaging quality while making good use of the proto-
col’s special message routing to enable broadcast distribution
between robots without going through the cloud.

In addition to the protocol specifications, there are also
examples of messaging middleware that extends the protocol
and applies it to IoRT. The RabbitMQ server provided by
RabbitMQ [15] messaging middleware supports messaging
by MQTT not only the main one by AMQP. This makes it
possible to operate a system that combines highly reliable
communication usingAMQP and bandwidth-economical one
using MQTT. The human fall detection system in the smart
home developed by L. Killian et al. is also based on this [16].
This system consists of three software components: a surveil-
lance camera to detect falls and room clutter, a communi-
cation robot to alert the user about falls, and a server-side
logger. These can be used in different ways via RabbitMQ,
such as MQTT for urgent communication and AMQP for
more reliable one.

Thus, in many cases, IoRT systems constructed using
AMQP focus more on the high functionality and multifunc-
tionality of the protocol and messaging middleware than on
reliability. The previous example is an application of the bro-
ker’s message routing function in AMQP. In addition to the
topic routing in MQTT, in AMQP, various message delivery

FIGURE 1. Overview of AMQP ver. 0.9.1 messaging architecture.

modes can be selected, such as one-to-one push/pull type and
broadcast delivery. The direct reason for this capability of
expressing multiple delivery modes is that each component
(‘‘exchange’’ and ‘‘message queue’’) associated with each
sender client and receiver client is provided for the broker.
In AMQP, as shown in Figure 1, various communication
routes are represented by the binding method of ‘‘exchange’’
and ‘‘message queue’’ and by matching the ‘‘binding key’’
associated with the binding with the ‘‘routing key’’ in the
message [17]. This diverse message routing capability has
been applied as a control plane, a key element of network
control in cloud services provided by NASA and Red Hat [8].
The network robotics framework implemented by
J. Lim et al. on smartphones is another example of how
AMQP can be used successfully [18]. In AMQP, when multi-
ple consumers are assigned to a message queue, messages are
passed around to the consumers in a round-robin order. In the
framework, this function is used to offload tasks generated
on the robot side, distributing them in turn to multiple task
processing prepared on the server side.

AMQP’s messaging functions can be used in the com-
munication in the multi-robot system described in point 2).
In addition to the broadcast communication described above,
AMQP can create a variety of data flows by changing a
robot’s communication partner according to the broker’s rout-
ing settings. Furthermore, since AMQP uses a broker as its
communication architecture, even if each robot belongs to a
different local network, message routing between robots is
possible if they can connect to the broker, which can work as
a server. In other words, AMQP facilitates crossing NAT and
firewalls and encourages connectivity between robots on the
Internet. In addition, by allocating multiple consumers to a
single message queue, it is possible to divide a task assigned
to a single robot into small tasks and allocate them to other
robots, thereby distributing the workload. However, in IoT
systems, where the field side is mainly composed of sen-
sors, there are few situations where communication between
sensors occurs, and only MQTT, a lightweight messaging
system, is sufficient for sensor-to-cloud communication.
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B. ENHANCE SYSTEM RELIABILITY AND ROBUSTNESS
BY CLUSTERING THE BROKER ARCHITECTURE
The advantage of AMQP in IoRT has been found in the
characteristics of the protocol, but high-quality and advanced
messaging can be realized only with system sustainability.
Traditionally, the broker is located alone in the center of the
system, and it has been a cause of system failure in the event
of a server outage. One way to solve this problem is to cluster
the brokers. In clustering, multiple servers with deployed
brokers are linked together to provide redundancy and risk
distribution of broker functions. Therefore, even if some of
the linked servers fail, the system can continue running as
long as at least a single server with a broker function is active.

FIGURE 2. RabbitMQ cluster consisting of four broker nodes.

The RabbitMQ server also uses multiple brokers, offering
a solution to the single point of failure problem inherent in
the traditional broker architecture by clustering a group of
broker nodes. An example of the clustering configuration in
the RabbitMQ server is shown in Figure 2. A cluster consists
of two types of broker nodes: disk nodes, which use both
memory and storage for storing runtime information other
than message queues, and RAM nodes, which use only mem-
ory. Disk nodes are the default nodes, and at least one node is
required in a cluster. RAM nodes, by contrast, contribute to
throughput improvement but are typically not used because
they require synchronization with disk nodes at startup and
highly depend on the disk nodes. By coordinating broker
nodes in a cluster, it is possible to achieve redundancy and risk
distribution in a system. As long as one disk node is running,
the cluster does not stop, promoting system sustainability in
the event of a failure in the server. Furthermore, the ability to
scale in and out of the cluster without stopping the system also
promises system sustainability during maintenance. In this
way, the RabbitMQ server promises to enhance safety and
further improve reliability in IoRT systems, in addition to
realizing a fault-tolerant system by clustering a group of the
broker nodes. In other words, the combination of AMQP
and the RabbitMQ server can have a synergistic effect on a
system’s robustness and reliability improvement.

III. REALIZATION OF HIGHLY RELIABLE IORT PLATFORM
As shown in the previous section, one characteristic of IoRT
systems that differs from IoT systems is that they require

flexible and diverse messaging functions for more advanced
communication among robots while ensuring safety so that
robot actions do not endanger humans in the real world.
AMQP satisfies these two requirements through reliable and
highly functional messaging, contributing to the construction
of more reliable IoRT systems. However, to construct an
actual IoRT system using AMQP, there must be an environ-
ment in which AMQP’s broker service is provided on the
cloud on the infrastructure side, and AMQP’s client library
can be easily used in a robot system on the field side. In this
section, we first summarize the issues in using AMQP at each
layer when IoRT is largely divided into the infrastructure side
and the field side.

As a prerequisite for constructing an AMQP-based IoRT
system, it is necessary to prepare AMQP broker services on
the infrastructure side. The easiest way to fulfill this prereq-
uisite is to use IoT platforms provided by major vendors.1

If you do not use them, you need to deploy an AMQP broker
on a virtual server on Infrastructure as a Service or prepare
an AMQP broker service yourself, as on-premises. Although
the latter requires more development labor time, it allows
for greater flexibility in system development and flexible
customization of various business logic.

By contrast, to realize data communication by AMQP in
the field-side robot, the simplest way is to embed an AMQP
client in the desired robot system. In robot operating system
(ROS) [23], which is the de facto standard for robot middle-
ware, the transport for communication between the nodes that
make up the robot system is fixed at TCPROS or UDPROS,
which are ROS’s original specifications, and it is difficult to
switch to other communication protocols, including AMQP.
Therefore, one way to use AMQP in an ROS robotic system is
to incorporate an AMQP client into the ROS node. However,
in this method, IoRT is managed by separate solutions, that
is, ROS on the field side and AMQP messaging middleware
on the Internet side, which may increase labor time and cause
complications in maintenance and operation.

In contrast, in ROS2 [24], which is attracting attention
as the next generation of robot middleware, communication
functions are separated from the middleware infrastructure,
and the ROSmiddleware (rmw) layer that abstracts communi-
cation functions, mainly pub/sub communication, including
QoS, is provided. In ROS2, the communication interface is
typically selected from DDS implementations of each ven-
dor using the application programming interface provided
by rmw. However, if communication functions equivalent to
rmw are provided, it is possible to switch to other imple-
mentations. This suggests that rmw implementation using
AMQP is also possible, but ROS2 does not support switching
communication interfaces for every communication port in

1Typical examples of IoT platforms, such as Amazon’s AWS IoT
Core [19], Google’s Cloud IoT Core [20], IBM’s Watson IoT Platform [21],
and Microsoft’s Azure IoT Hub [22], all support HTTP and MQTT, but as of
July 2021, only Azure IoT Hub supports AMQP. Therefore, Azure IoT Hub
is the only choice for constructing an AMQP-based IoRT system using IoT
platforms from major vendors.
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FIGURE 3. An IoRT system model expressed on RT-Middleware.

each node, and different types of communication interfaces
cannot be contained in a single node. Therefore, the conven-
tional way to use AMQP and DDS in ROS2 is to embed
an AMQP client in the node, as in ROS. However, because
ROS2 can effectively control the messaging quality through
DDS-based QoS, which may provide the same reliability as
AMQP, the system cannot be connected effectively as the
broker architecture. This is because DDS is optimized for
peer-to-peer communication. To apply it to different local
networks through the Internet, we need to design and tune the
routing settings. In contrast, in the broker architecture such as
AMQP, each client in a different local network only needs to
connect to a broker on the Internet, and there is no need to
configure the router for NAT crossing. In other words, it is
possible to develop a reliable IoRT system using only ROS2
and DDS, but it is not as simple as developing a system using
AMQP.

As described above, ROS and ROS2 do not provide an
environment that allows easy use of the AMQP client library,
and if the AMQP client is embedded in a ROS node, the
system is separated into a robot system in the field and an
IoT system on the Internet. It is necessary tomanage the entire
system through two solutions, ROS and AMQP. In contrast,
another robot middleware, RT-Middleware, allows each com-
ponent of a robot system to have a different communication
protocol, such as AMQP, implemented without modifying the
underlying software. In other words, as shown in the example
in Figure 3, RT-Middleware has the potential to become an
IoRT platform that can cover all layers of system construc-
tion in IoRT, from cloud computing and robot systems to

communication systems that connect them. It means that in
IoRT systems, where separate solutions are typically applied
to each layer, a single RT-Middleware solution can be used
to construct and operate the entire system. Integrated man-
agement of IoRT simplifies the maintenance and operation
of the IoRT system and reduces design, development, and
operation costs. Table 2 summarizes the differences in the
functions of each robot middleware in integrating heteroge-
neous systems that comprise IoRT. In this study, we introduce
RT-Middleware, which can provide such benefits and extend
the AMQP communication interface to RT-Middleware, mak-
ing it a platform for constructing a reliable IoRT system.

IV. OVERVIEW OF RT-MIDDLEWARE
AND RT-COMPONENTS
RT-Middleware is the middleware for constructing robot sys-
tems and has been specified mainly by the National Insti-
tute of Advanced Industrial Science and Technology (AIST),
Japan. A robot system constructed by RT-Middleware is
called an RT-System, and an RT-System consists of one or
more components called RT-Components (RTCs). In other
words, RT-Middleware is a component-oriented middleware
based on a distributed control system [25]. The compo-
nent models and interfaces in RTCs have been standardized
by the Object Management Group (OMG), a standard-
ization consortium, and the specifications are given by a
platform-independent model, which does not depend on a
specific platform [26]. Therefore, regardless of the platform,
RT-Middleware is used in robot implementation as long as
it adheres to the RTC specifications. As a result, although
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TABLE 2. Available functions of robot middleware in IoRT system construction.

FIGURE 4. Example of RT system on OpenRTM-aist and overview of
communication architecture between data ports of RTC.

it depends on the base platform, it can be a framework to
construct more advanced systems beyond the middleware of
robot systems.

However, the RTC specification advocates the use of com-
mon object request broker architecture (CORBA) [27] as
a platform-specific model for distributed systems on net-
works [26]. CORBA is also used in OpenRTM-aist [28],
a reference implementation of RT-Middleware [29], and it is
the default communication interface for port-to-port commu-
nication in RTCs. There are two types of ports in RTCs, and
we extended the communication interface for the data port,
which is used for continuous data transmission and reception,
in this study.

Figure 4 shows an example of RT-system construction
using OpenRTM-aist and the communication structure of
data port-to-data communication using the CORBA commu-
nication interface. As shown in the figure, in the CORBA
communication interface, the pairs of data ports that are the
targets of data transmission and reception have a client/server
relationship. In other words, the consumer module of the
sending out-port implements push-type communication using
the service provided by the provider module of the receiv-
ing in-port. This tightly coupled client/server architecture is
a communication model suitable for robotic systems, as it

is expected to ensure real-time performance through direct
communication between endpoints. However, if either the
client or the server is missing, the system is no longer viable,
making the system difficult to handle to operate on unstable
networks such as the Internet as well as less scalable. On an
unstable network, pub/sub messaging with loosely coupled
architecture is the technology for improving the continuity
and scalability of the system. In addition, AMQP, a protocol
designed to maintain the quality of messaging, is adopted as
a new communication interface in this study.

V. SYSTEM ARCHITECTURE WITH AMQP
COMMUNICATION INTERFACE
To add the AMQP communication interface for data port
communication to OpenRTM-aist by C++, we have devel-
oped two new communicationmodules. One of the communi-
cation modules is the producer module for data transmission,
which is embedded in the out-port. The other is the consumer
module for receiving data, which will be embedded in the in-
port. These communication modules are developed based on
AMQP-CPP [30], which is an open-source C++ library for
building AMQP clients.

For example, the message transmission function in the
producer module is shown below.

Function 1 Message Transmission Function in the Producer
Module

1: InPortConsumer::ReturnCode OutPortAmqpcppProducer::
2: put(cdrMemoryStream& data){
3: const int bufleng = static_cast<int>(data.bufSize());
4: const void∗ data_p = data.bufPtr();
5: const char∗ cstr_data = static_cast<const char∗>(data_p);
6:
7: try{
8: amqp_publish(cstr_data, (uint64_t)bufleng);
9: return InPortConsumer::PORT_OK;
10: }
11: catch (. . .){
12: return CONNECTION_LOST;
13: }
14: return UNKNOWN_ERROR;
15: }
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The message transmission function ‘‘put’’ is called from
the RT-Middleware side and is responsible for periodic mes-
sage transmission using AMQP. The function ‘‘put’’ first
obtains the data length from the CORBA data object received
as an argument from RT-Middleware side, and then performs
data type conversion (lines 3-5 in Function 1). This is so
that the data can be sent according to the AMQP-CPP spec-
ifications. After that, the message is sent by AMQP using
an originally implemented function (line 8 in Function 1).
In the default OpenRTM-aist, in the function ‘‘put,’’ the
client/server type data transmission procedure using CORBA
is performed. TheCORBAcommunication interface is imple-
mented in such a way that the client sends and receives data
by using the server-side service. However, in AMQP, the data
receiver is also a client, so it is necessary to implement a
callback function that is automatically called when a message
is received. For example, the callback function (message
receiving function) in the consumer module is shown below.

Function 2 Message Receiving Function in the Consumer
Module

1: void InPortAmqpcppConsumer::amqp_consume(){
2: channel->consume(amqp_get_qname())
3: .onReceived([&](const AMQP::Message &msg, uint64_t
deliveryTag, bool redelivered){
4: const char∗ pld = msg.body();
5: void∗ part = (void∗)pld;
6: const uint64_t len = msg.bodySize();
7:
8: ::OpenRTM::CdrData tmp((CORBA::ULong)(len),
9: (CORBA::ULong)(len),
10: static_cast<CORBA::Octet∗>(part), 0);
11:
12: cdrMemoryStream cdr;
13: bool endian_type = m_connector->isLittleEndian();
14: cdr.setByteSwapFlag(endian_type);
15: cdr.put_octet_array(&(tmp[0]), tmp.length());
16:
17: BufferStatus::Enum ret = m_buffer->write(cdr);
18: });
19: }

The callback function for message reception is responsible
for passing the contents of messages received through AMQP
messaging to the RT-Middleware side. The callback function
first retrieves the data and data length from the message
(lines 4-6 in Function 2), and then converts the retrieved
data into a CORBA data object (lines 8-15 in Function 2).
After that, data passing to RT-Middleware is completed
by writing to the in-port buffer (line 17 in Function 2).
With the two functions introduced above, AMQP messaging
via message broker between out-port and in-port, and thus
between RT-Components, is established. RabbitMQ Server
is used as the message broker, and it runs independently
from RT-Middleware. Figure 5 depicts the communication
structure of the RT-System when the AMQP communication
interface is used.

FIGURE 5. System architecture with AMQP communication interface on
OpenRTM-aist.

Each external module includes a client for management
so that message routing in the RabbitMQ server can be
configured from either the out-port side or the in-port side.
If RTSystemEditor is used, one of the RT-System manage-
ment tools in OpenRTM-aist, configuration values can be
passed from RT-Middleware to the RabbitMQ server by
entering properties in the connector profile screen. However,
the RabbitMQ server cannot be configured as a cluster via
the AMQP communication interface and must be configured
separately on the server side. Although the configuration
is separate, the AMQP communication interface supports
communication using both single and cluster brokers. In this
way, the flexibility of the communication interface enables
the efficient construction of AMQP communication systems
on OpenRTM-aist.

VI. PERFORMANCE EVALUATION OF
COMMUNICATION INTERFACES
Based on the messaging characteristics of AMQP, two types
of performance evaluation tests are conducted in this section:
one is a performance evaluation test on real-time performance
and the other is one on messaging quality. In the former,
we assume a cloud-to-robot communication and measure the
round-trip delay time between endpoints on a TCP/IP net-
work. In the latter, we measure the number of message arrival
order errors and missing messages in one-to-many communi-
cation in a high-load experimental environment. The results
of the latter experiment are used to verify the effectiveness
of AMQP’s advantages, and the results are compared with
those of the former experiment to see how well the balance
with real-time performance is maintained.

A. TEST ENVIRONMENT AND TOOLS
For each of the performance evaluation tests, we have devel-
oped several new test RTCs on OpenRTM-aist ver. 1.1.2
and configured a test system by combining them. In the test
system, each of the test results can be obtained by switching
the communication interface of the data port in the RTC to
various protocols. The communication interfaces to be tested
are as follows. As a side note, the modules corresponding
to any of the communication interfaces are implemented
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in C++. Therefore, all test systems are constructed on the
OpenRTM-aist C++ version.

1) CORBA communication interface
2) MQTT ver. 3.1.1 communication interface
3) AMQP ver. 0.9.1 communication interface

Interface 1) is the default communication interface pro-
vided by OpenRTM-aist. Originally, CORBA uses client/
server-type synchronous communication, but in OpenRTM-
aist, asynchronous communication can be supported by
selecting ‘‘new’’ as the subscription type in the settings when
connecting data ports in RTCs. In the tests, we introduce this
setting for asynchronous communication MQTT and AMQP.
The implementation module for 2) was originally developed
by us for research [31], and it uses mosquittopp [32], a C++
client library for Eclipse Mosquitto. In MQTT, you can
choose 0, 1, or 2 as the QoS for messaging, in the order
of decreasing quality. The value of QoS is directly related
to the number of acknowledgments in messaging between
the client and the broker. Specifically, when QoS is 0, 1,
and 2, there are 0, 1, and 2 acknowledgment(s) respectively.
As the value of QoS increases, the possibility of reaching the
message increases, while the increase in the number of com-
munications causes the delay. For the real-time performance
test, QoS = 0 is selected to improve the throughput of the
broker. However, for the messaging quality test, we attempt
each QoS value ranging from 0 to 2 and verify whether there
is a difference in messaging quality. During the tests, the QoS
between each client of publisher and subscriber should be
matched. The last one, 3), is a communication interface that
we newly developed in this study, as mentioned in Section 5.
In each of the two tests, no transaction control is performed,
and the default messaging control is used. As for the rout-
ing settings, the push/pull type is selected for the real-time
performance test, and the broadcast type is selected for the
messaging quality test. A single message queue is assigned
to each receiver client.

TABLE 3. Default buffer capacity for each messaging broker.

Message brokers are required when configuring a test sys-
tem using MQTT and AMQP communication interfaces, and
we use Mosquitto MQTT broker [33] and RabbitMQ AMQP
server [15]. Both are open-source software brokers. Since the
Mosquitto broker cannot be clustered, the RabbitMQ server
has been configured as a single disk node instead of a cluster.
The configuration of both brokers is left as default and no
changes are made. The broker for each protocol and the buffer
capacity of the default setting are summarized in Table 3.

Although MQTT does not have a provision for queues in the
protocol specification, Mosquitto has implemented its own
queue and buffers messages when QoS is 1 or 2.

TABLE 4. Overview of machine specifications.

The equipment used for the test system is two PCs and a
router. In the test, each PC belongs to the same local network
formed on the router. Either a wired or wireless local area net-
work (LAN) is selected as the connectionmethod between the
PC and the router, depending on the type of performance test.
When constructing a network with a wireless LAN, a 5-GHz
band is used to avoid radio interference. If we consider the
two PCs as Machines A and B, the simplified specifications
are as shown in Table 4.

B. EXPERIMENTAL CONFIGURATIONS
An overview of the configuration of the performance test is
shown in Figure 6. In the figure, the configuration for the
real-time performance test is shown in (a). Of the equipment
prepared for the test, Machine A and the router are connected
via a wired LAN, and machine B and the router are connected
via either a wired or wireless LAN. In the test, the effect
of differences in the network environment on latency is also
verified via two test cases: the first is the test case (a-1)
and the last is the test case (a-2). In both test cases, RTC1,
which measures the round-trip delay, is placed in Machine A,
and RTC2, which returns the received message, is placed in
Machine B, forming a test system. Each MQTT broker and
AMQP broker is deployed in Machine A only. Therefore,
each MQTT and AMQP client in Machine B is connected
to the broker in Machine A through the router. To handle
the payload in a message under the tests, five types of small
string-type dummy data of 8, 16, 32, 64, and 128 bytes are
prepared. In the tests, for each dummy data size, the message
is sent 1,000 times at 100 Hz and repeated 100 times at 10-s
intervals. It means that a total of 100,000 round-trip delay
times are measured for each test. In the test results, the mean,
first quartile, median (second quartile), third quartile, max-
imum, and minimum values are measured and summarized
as a box-and-whisker diagram. The buffer size of the data
port in the RTC is fixed at 1,000 according to the number of
consecutive transmissions, regardless of the communication
interface or test case.

The performance evaluation test for messaging quality is
shown in Figure 6(b). The equipment used, the location of
the brokers, and the type of the dummy data in the messages
are the same as in test (a), but the test is conducted in
an unstable and high-load environment to verify messaging
reliability. First, the test assumes only a wireless LAN test
case and does not cover tests on a network built only with
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FIGURE 6. (a) Experimental setup for the performance evaluation test.
(b) Experimental setup for messaging quality test.

a wired LAN. Only the router and Machine B communicate
via a wireless LAN, and as in test (a), Machine A and the
router are connected via the wired LAN. Next, in this test
case, we configure a test system that performs one-to-many
communication by preparing multiple RTCs on the receiving
side. Specifically, Machine A has one RTC that sends mes-
sages to the destination, and Machine B has four RTCs that
receive messages and count the number of arrival order errors
and deficiencies, thereby making one-to-four communica-
tion possible and increasing the load on the receiving side.
In addition, the number of consecutivemessage transmissions
is set to 10,000 at 100 Hz, which is an additional load on
the communication path and the broker. The total number
of messages to be received by the four RTCs is 400,000
since this continuous transmission is repeated 10 times at 20-s
intervals per test. The number of errors in the order of arrival
and the number of missing messages for each communica-
tion interface are summed up and summarized in plots. The
number of arrival order errors is counted when messages are
not delivered in sequential order. Therefore, the count is not
limited to cases where messages are delivered in the wrong

order but also includes cases where the order of messages is
skipped.

The above is the test configuration for verifying the relia-
bility of messaging. The setting of the buffer size of the data
port in the RTC should be noted. The buffer of the data port
is specific to RT-Middleware [34]; in other words, an appro-
priate buffer size is ensured by verifying the reliability of
OpenRTM-aist, regardless of the communication interface.
For this reason, the buffer size should be considered sepa-
rately from the reliability verification of the messaging mid-
dleware, which is an implementation of MQTT and AMQP.
Therefore, in the tests, we also cross-sectionally verify the
reliability of OpenRTM-aist when the size of the buffer in the
data port is changed from 0 to 10,000. In addition, the buffer
size is the same for both the out-port and in-port.

C. TEST RESULTS AND DISCUSSION
The results of the real-time performance test (a) are summa-
rized in a box-and-whisker plot in Figure 7. (a-1) shows the
results when Machine B and the router are on a wired LAN,
and (a-2) shows the results when the router is on a wireless
LAN. If we only study the mean or median latency in the
wired LAN tests in (a-1), latency was lowest for CORBA
and highest for AMQP for all payload sizes. However, the
difference is small, ranging from 0.2 to 0.3 ms. MQTT has
less latency than AMQP, but the mean is drawn to the higher
outlier, indicating a slight deviation from the median. In con-
trast, the latency of the AMQP communication interface is
the highest among the three communication interfaces, but its
mean and median values are relatively close, indicating that
stable communication is possible. The quartile range is also
relatively narrow and coherent, and there is no sudden insta-
bility and widening of the quartile range owing to changes in
the payload size.

In contrast, the wireless LAN test in (a-2) is conducted
on an unstable network, and the effect of the instability is
evidenced in the results. Although the median value does
not show a significant difference between the communication
interfaces, the average value shows a large difference between
CORBA and the other communication interfaces. There is a
difference of approximately 30 ms, depending on the payload
size. In the results for CORBA, a large upward deviation of
the mean from the median is due to a frequent occurrence
of sudden high latency conditions compared to MQTT and
AMQP. The interquartile range also shows that CORBA has
a wider range of values around the median than the other two
interfaces, confirming its instability. In comparison, the mean
values ofMQTT andAMQP show some tendency to be drawn
by outliers, but the median and mean values do not deviate as
much as those of CORBA, indicating that relatively stable
communication has been achieved. In particular, AMQP has
a narrower quartile range than MQTT, and the difference
between the median and mean values is narrower in the
64- and 128-bytes results, making AMQP more stable than
MQTT.
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FIGURE 7. (a-1) Round trip time with wired network environment.
(a-2) Round trip time with wireless network environment.

As described above, the real-time performance tests (a-1)
and (a-2) yield extremely different results. The results are
significantly influenced by the network environment. (a-1) is
tested on a stable network built only with wired LANs, and
the reason why MQTT can achieve lower latency than can
AMQP is that a small payload is used. We can assume that
the small size of the header in the message caused the result.
In contrast, we consider that the main reason why CORBA
has the lowest latency is the difference in the messaging
paradigm. CORBA differs from the other two communica-
tion protocols because it uses a client/server communica-
tion model, with no medium between the client and server.
CORBA also adopts a broker architecture using an object
request broker (ORB). However, ORB is also an object and
is embedded in each process of the client or server at the
endpoint. It is important to note that the system architecture is
very different from that of a pub/submessaging broker, which
runs in a separate process, regardless of whether it is inside
or outside the endpoint.

In contrast, in the test on the unstable network built with
the wireless LAN in (a-2), the cause of more sudden delays
may be expected in the CORBA specification or its imple-
mentation. CORBA uses Internet inter-ORB protocol [27]
as the communication protocol between ORBs in TCP/IP
networks, but the protocol is not designed for IoT and may
not be sufficiently optimized for communication in unstable
networks. By contrast, MQTT and AMQP are protocols that

are developed for system development on the Internet, and it
is assumed that the plots show the optimization results for sys-
tems onwireless networks. Among them, the Nagle algorithm
is a possible reason why AMQP, which has a higher commu-
nication overhead, appears more stable and, in some cases,
has less latency than MQTT. The Nagle algorithm is used to
reduce the number of packets in a TCP/IP network to improve
throughput and is used for congestion control. However, since
it sacrifices latency for efficiency, it should not be used in
systems, where real-time performance is required. When we
assess the configuration of Mosquitto and RabbitMQ, we see
that the Nagle algorithm is turned on for Mosquitto and off
for RabbitMQ by default. It means that RabbitMQ is better at
reducing latency when considering only the Nagle algorithm
setting. In the case of the default setting of Mosquitto, it can
be inferred that the Nagle algorithm works as a congestion
control in unstable network environments and override the
original low latency communication. This means that we
cannot simply conclude that the communication performance
of MQTT and AMQP may be reversed when communicating
over wireless networks using small payloads.

Next, we show the results of the messaging quality test (b).
To compare and verify the results among the communication
interfaces, a clear difference is observed when the buffer size
of the data port was zero, and only this result is shown in
Figure 8. They are shown in bar plots as the number of errors
in the order of message arrival and the number of missing
messages at each tested communication interface for each
payload size. For the simplicity, they are called as the number
of error occurrences in the following.

As shown in the figure, in the test with a buffer size of 0,
CORBA has the highest number of errors for any payload
size, followed by MQTT and AMQP. The message miss-
ing rate for the test with CORBA is approximately 2.2%.
Although MQTT, the runner-up, does not have the same poor
messaging quality as CORBA, its messaging quality is not
improved, even when the QoS is set to a higher number, and
in some cases, the number of errors increases with a decrease
in QoS value. Meanwhile, AMQP has the lowest number of
errors among the three communication interfaces. Although
it does not perform transaction control, both message arrival
order errors and missing messages rarely occur, and the
message missing rate is close to zero. These results show
a similar trend for all payload sizes, and although we only
tested with small payloads, we do not find any relationship
between payload size and the number of errors.

We consider that the reason for the significant occurrence
of errors in CORBA at any payload size is the client/server-
type communication architecture. In the tests, to perform
one-to-four communication, one out-port of the client is
connected to each of the four in-ports of the server in the
CORBA communication interface, and data transmission and
reception are established. It means that the workload on the
client side is four times higher than usual, which can be
interpreted as simply reflecting the increased load on the out-
port. In contrast, in pub/sub messaging with a broker such as

VOLUME 9, 2021 167239



D. Yoshino et al.: Highly Reliable Communication System for IoRT and Implementation in RT-Middleware

FIGURE 8. Number of arrival order errors and the number of messages
lost in wireless and heavily loaded environment.

MQTT and AMQP, the out-port, as the client, only needs to
connect to a single broker, as the server. In addition, since
the broker is deployed in the same local environment as the
RTC with the out-port, messages delivered from the out-port
are almost certain to reach the broker, and it is unlikely that
the publisher (producer) is the cause of the error. Therefore,
we can assume that either the processing performed by the
broker or subscriber (consumer) is the bottleneck.

In MQTT, when QoS is set to 0, there is no limit to the
number of messages a broker can process simultaneously,
so it can be assumed that messages can be sent continuously.
However, they are lost if the subscriber cannot fully pro-
cess them. When QoS is set to 1 or 2, the broker waits for
the other party’s response when communicating, and in the
default state, the maximum number of messages that can be
processed simultaneously without waiting for a response is
set to 20. Once this limit is reached, other messages are stored
in the queue. When the limit is exceeded, the oldest messages
are discarded. It indicates that when QoS is set to 1 and 2, the
processing by the broker introduces some bottlenecks.

By contrast, AMQP processes messages one by one in
a FIFO format in each queue allocated to each consumer,
so the order is guaranteed. However, if there is a deadlock
in the processing on the consumer side, there should be some

message loss. The count in the arrival order error is directly
caused by the skipped order due to missing messages.

In the above test results, when the buffer size of the data
port was set to 0, a large number of errors related to messag-
ing quality are observed in each communication interface of
CORBA and MQTT. For CORBA, although the number of
error occurrences decreases, even when the buffer size is set
to 100, this trend continues and some missing messages are
observed. For both MQTT and AMQP communication inter-
faces, except CORBA, setting the buffer size to 100 results
in zero error occurrences. Furthermore, by setting the buffer
size to 10,000, the results show that the error occurrence is
zero for all communication interfaces, including CORBA.
Therefore, we can conclude that ensuring sufficient buffer
size for asynchronous communication at the data port of an
RTC improves reliability, regardless of the type of commu-
nication interface. In addition, the test results show that the
AMQP communication interface can sufficiently maintain
high-quality messaging under unstable and high-load net-
work conditions without relying on RT-Middleware’s buffer
mechanism.

VII. CONCLUSION AND FUTURE WORK
The objective of this study was to develop a reliable and
robust IoRT system.We have discussed the state of communi-
cation in IoRT systems and have proposed a communication
model and system configuration method for realizing it.

As the concrete implementation, we have introduced
AMQP, a pub/sub messaging protocol with a broker, because
AMQP can ensure the arrival and order of messages as well
as AMQP can create a variety of message flows.

In this study, we have chosen RT-Middleware for
expanding the AMQP communication interface, because
RT-Middleware allows network components to have multiple
types of communication interfaces, meanwhile it has been
difficult with other IoT platforms, along with robot mid-
dlewares such as ROS or ROS2. By combining the AMQP
communication interface with the RabbitMQ server, it has
become possible to construct a more reliable and robust IoRT
system using only RT-Middleware.

We have made the performance analysis of the implemen-
tation, and have shown that it can maintain reliable mes-
saging, even in a high-load wireless network environment,
at least when sending and receiving data with small payloads.
On the other hand, we have also found that maintaining real-
time performance is difficult, especially in a wired LAN
environment.

Our implementation presented in this study has been
released in the GitHub repository2 as public. In the future,
we would like to build and present a reference guide of IoRT
systems and promote the AMQP communication interfaces in
RT-Middleware as a platform for constructing highly reliable
IoRT systems. We are greatly honored if this study helps you
develop IoRT systems.

2https://github.com/dyubicuoa/OpenRTM_aist_amqpcpp_interface
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