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ABSTRACT In this paper, a novel error-tracking adaptive iterative learning control scheme is proposed
to solve trajectory-tracking problem for a class of robot manipulators with time-varying parameters and
arbitrary initial errors. Firstly, desired error trajectories are constructed for implementing error tracking
strategy in the robotic systems, so as to relax the requirement of zero initial errors, which is usually
assumed to be met in traditional iterative learning control algorithms. Secondly, with the help of reasonable
parameterization to the robotic dynamics, the adaptive iterative control law is designed by using Lyapunov
approach. Projection-free combined time-domain and iteration-domain adaptive learning strategy is adopted
to estimate the unknown time-invariant parametric uncertainties, and difference learning strategy is adopted
to estimate unknown time-varying parametric uncertainties. As the iteration number increases, the system
error follows its desired error trajectory over the whole interval. As a result, system state can perfectly track
the reference signal in the predetermined part interval. In the end, several numerical simulations are presented
to demonstrate the effectiveness of the designed control scheme.

INDEX TERMS Adaptive iterative learning control, robot manipulator, initial position problem,
time-varying systems, error-tracking strategy.

I. INTRODUCTION
Iterative learning control (ILC) technique is effective in deal-
ing with repetitive processes [1]–[4]. The ILC system updates
the control input by using the information of error and input
in the previous trial. The special working principle of ILC
systems brings two advantages for applications. The first
advantage is that ILC algorithms may be used in the cases
where it is very difficult to carry out system modeling. The
second one is that, in ILC systems, higher control precision
may be obtained by using gradual iterations. Specifically,
the system output/state may follow the desired signal over
the whole operation time interval, i.e., the tracking error
converges to zero at each time point during the operation
time interval [5]–[11]. Adaptive ILC may be regarded as a
combination of adaptive control and adaptive ILC [12], [13].

The associate editor coordinating the review of this manuscript and
approving it for publication was Nishant Unnikrishnan.

Up to now, many control technologies have been adopted
to the controller design for robotic systems, such as adaptive
control [14], adaptive sliding mode control [15], neural net-
work control [16]–[18], fuzzy control [20], [21] and state-
constrained control [19]. Note that robot manipulators are
widely used to perform repetitive tasks in assembly lines,
rehabilitation processes, and so on, where the reference tra-
jectories are repetitive over a fixed period of operation time.
In such cases, ILC is a suitable technology for designing
controllers so as to improve the tracking performance pro-
gressively.Wewill consider two aspects of adaptive ILC algo-
rithm designs for robotic applications in this work. The first
aspect is about time-varying payload of robot manipulators
during operation. As reported in literature, there have existed
some control schemes that work well for robotic systems with
unknown constant parameters [14]. Nevertheless, in many
situations, the parameters in robotic systems are unknown
and time-varying, such as the mass of payloads or the mass
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of links [22]. For example, robotic pouring and tilling opera-
tions belong to this situation. In [24], Song et al. proposed
a switching type control law for the robot manipulators
with time-varying parameters. In [22] and [23], Pagilla et al.
applied the time-scaling technique to deal with time-varying
parameters in robotic systems. In [25], Hsu and Fu proposed
a globally adaptive decentralized control scheme to solve the
trajectory tracking problem for time-varying robot manipu-
lators. The investigations in [22]–[25] focus the asymptotic
convergence of system errors in time domain. Due to the
existence of inherent time-varying characteristics, the accu-
rate system modeling for robotic systems with time-varying
parameters is a difficult job, which does harm to the accuracy
and applicability of many existing control schemes. In order
to obtain better control performance for the tracking control
of robot manipulators with time-varying parameters, it is a
useful attempt to design the controller by using new control
technology. To date, the literature on how to develop an adap-
tive ILC scheme for robot manipulators with time-varying
parameters uncertainties is still few.

The second aspect we will address in this work is about
initial position problem of robotic adaptive ILC systems. In
traditional ILC algorithms, there exist a common assump-
tion that the initial value of system errors at each iteration
must be zero. Otherwise, a slight nonzero initial error may
lead to the divergence of tracking error [26]. Due to the
limitation of physical resetting, the zero initial error con-
dition cannot be met in real industrial applications. As a
result, traditional ILC algorithms cannot be used in indus-
trial systems, which is called the initial position problem
of ILC [26], [27]. The past two decades have witnessed
the rapid progress in adaptive ILC algorithms of robotic
systems. Some adaptive ILC schemes for the tracking of
robotic systems with time-invariant parameters have been
proposed in the related literature [28]–[31]. In [28], Jia and
Yuan proposed three simple ILC schemes to solve the posi-
tion tracking problem for rigid robot manipulators. In [29],
Chien and Tayebi designed a combined time-domain and
iteration-domain adaptation law for uncertain robot manip-
ulators. In [30], Cao and Liu designed a adaptive boundary
ILC law for a two−link rigid−flexible manipulator, so as
to drive the joints to follow desired trajectory and elimi-
nate deformation of flexible beam simultaneously. In [31],
Li et al. developed an iterative learning impedance controller
for rehabilitation robots driven by series elastic actuators.
The topics discussed in [28]–[31] belong to the ILC system
design for robot manipulators with time-invariant parametric
uncertainties under zero initial error condition. For the reason
mentioned above, this condition is hard to be satisfied in real
robotic applications, which brings about the need for further
research to remove it in robotic ILC designs. Up to now,
only a few results have reported the ILC algorithms for the
tracking of robotic systems with time-invariant parameter and
with arbitrary initial errors [32]–[34]. Specifically, in [32],
initial rectification action [35], [36] is applied to solve the
non-repetitive trajectory tracking of robot manipulators with

joint position constraints and actuator faults. In [33], a neural
network-based adaptive ILC scheme is developed to solve
the trajectory tracking problem for rigid robot manipulators
with arbitrary initial errors, where the technique of time-
varying boundary layer [37] is used to remove the zero ini-
tial error condition. Besides, in [34], alignment condition
is adopted as a solution to the initial position problem of
time-variant robotic systems with smoothly closed desired
trajectory, based on which, an position-constrained adaptive
ILC controller is designed by using barrier Lyapunov func-
tion [39], [40]. By contrast, the literature result involving
the adaptive learning control (including adaptive ILC and
adaptive repetitive learning control) for robotic systems with
time-varying parameters is very few. The repetitive learn-
ing control algorithm for robotic systems with time-varying
parameters proposed in [38] can be used in the situation that
two following assumptions are satisfied: (1) The reference
trajectory is smoothly closed, i.e., the initial state of refer-
ence trajectory must be equal to the final state of reference
trajectory; (2) The initial state of current cycle must be equal
to the final state of previous cycle. Note that the above two
assumptions means that the initial system error of current
cyclemust be equal to the final system error of previous cycle.

To the best of authors’ knowledge, no literature has
reported the adaptive ILC method for robot manipulator with
time-varying parameters and arbitrary initial errors. How to
develop an error-tracking adaptive ILC scheme for the robotic
systems in this situation is still an issue to be further studied.

Based on the above discussion, this paper investigates the
trajectory tracking problem for a class of robot manipula-
tors with time-varying parameters and arbitrary initial errors.
An robotic error-tracking adaptive ILC scheme is developed
to obtain high-precision tracking performance. Compared
with existing results, the main contributions of this work can
be summarized as follows:

1) Error-tracking adaptive ILC is proposed for robot
manipulators with time-varying parameters, which can guar-
antee the performance and overcome the initial position prob-
lem of ILC.

2) A reasonable parameterization strategy is put forward
for the later uncertainty compensation. A projection-free
combined adaptive iterative learning law is designed to com-
pensate time-invariant parametric uncertainties, which can
guarantee the boundeness of parameter estimations without
saturation/projection strategy used.

3) With the proposed ILC scheme, all the signals of the
closed-loop robotic system are proved to be bounded, the
closed-loop system error during the preset operation time
interval converge to zero as the iteration number increases.

The remainder of this paper is organized as follows. Prob-
lem formulation is presented in Section 2. In Section 3, the
desired error trajectory is constructed for dealing with the
initial position problem of robotic adaptive ILC systems.
In Section 4, the adaptive iterative learning controller is
designed based on Lyapunov approach. In Section 5, the
global convergence of the proposed adaptive ILC law is
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given. To demonstrate the effectiveness of the proposed error-
tracking adaptive ILC scheme, several numerical simulations
are shown in Section 6, followed by Section 7 which con-
cludes the work.

II. PROBLEM FORMULATION
The dynamics of an n-link rigid robot manipulator with time-
varying parameters is described as [22]

M (qqq,φφφ(t))q̈qq+ C(qqq, q̇qq,φφφ(t))q̇qq+ F(qqq, φ̇φφ(t))q̇qq+GGG(qqq,φφφ(t))

= τττ , (1)

where qqq ∈ Rn, q̇qq ∈ Rn and q̈qq ∈ Rn are the joint posi-
tion, joint velocity and joint acceleration vectors, respec-
tively, M (qqq,φφφ(t)) is the inertia matrix, C(qqq, q̇qq,φφφ(t)) ∈ Rn×n

is the matrix composed of Coriolis and centrifugal terms,
GGG(qqq,φφφ(t)) ∈ Rn is the gravity vector, F(qqq, φ̇φφ(t)) ∈ Rn is a
symmetric matrix, which is a consequence of the symmetry
of the inertia matrix, and τττ ∈ Rn is the torque input vector.
Here, φφφ(t) ∈ Rm denotes the combination of time-invariant
parameters and time-varying ones, where the former contain
the masses and inertias of links and motors, and the latter
contain the payload mass and inertia. The reference trajectory
qqqd ∈ Rn is twice differentiable. The properties of the dynamic
model (1) are given as follows:
Property 1: M (qqq,φφφ(t)) ∈ Rn×n is a symmetric positive

definite inertia matrix.
Property 2: The matrix Ṁ (qqq,φφφ(t)) − 2C(qqq, q̇qq,φφφ(t)) −

F(qqq, φ̇φφ(t)) is skew symmetric. Note that the skew-symmetry
property of robot manipulators with time-varying uncertain-
ties is different from that of robot manipulators with time-
invariant parameters [22].
Property 3: The dynamics of robot manipulators

with time-varying uncertainties can be linearly
parameterizable [22], i.e.

M (qqq,φφφ(t))β̈ββ + C(qqq, q̇qq,φφφ(t))β̇ββ + F(qqq, φ̇φφ(t))(
1
2
β̇ββ +

1
2
q̇qq)

+GGG(qqq,φφφ(t))

= 8(qqq, q̇qq, β̇ββ, β̈ββ)ϑϑϑ +W (qqq, q̇qq, β̇ββ, β̈ββ)ηηη(t), (2)

where the time-variant parameter vector ϑϑϑ contains the
masses and inertias of links and motors, the time-varying
parameter vector ηηη(t) contains the payload mass and inertia,
and 8(qqq, q̇qq, β̇ββ, β̈ββ) and W (qqq, q̇qq, β̇ββ, β̈ββ) are the regressor matri-
ces. More details on the linear parameterization of robotic
systems with time-varying uncertainties, see [22], [23].

The robot manipulator considered in this work performs a
repetitive task over the interval t ∈ [0,T ], whose dynamics
at the kth iteration can be written as

M (qqqk ,φφφ(t))q̈qqk + C(qqqk , q̇qqk ,φφφ(t))q̇qqk + F(qqqk , φ̇φφ(t))q̇qqk
+GGG(qqqk ,φφφ(t)) = τττ k . (3)

The control objective is to find a sequence of appropriate
torque inputs τττ k to make qqqk (t) accurately track qqqd (t) under
the condition that qqqk (0) 6= qqqd (0) and q̇qqk (0) 6= q̇qqd (0), as the
iteration number increases.

For brevity, in what follows, arguments are sometimes
omitted when no confusion is likely to arise, and Mk , Ck , Fk
andGGGk denoteM (qqqk ,φφφ),C(qqqk , q̇qqk ,φφφ),F(qqqk , φ̇φφ) andG(qqqk ,φφφ),
respectively.
Remark 1: In traditional robotic ILC algorithms, qqqk (0) =

qqqd (0) and q̇qqk (0) = q̇qqd (0) are assumed to be met at each iter-
ation [28], [41]. In the repetitive learning control algorithm
for robotic systems with time-varying parameters [38], the
assumption conditions qqqk (0) = qqqk−1(T ), q̇qqk (0) = q̇qqk−1(T ),
qqqd (0) = qqqd (T ) and q̇qqd (0) = q̇qqd (T ) must be observed. In this
work, we want to deduce an adaptive ILC scheme so as to
remove all the above-mentioned assumptions.

III. CONSTRUCTION OF DESIRED ERROR TRAJECTORY
Define q̃qqk = [q̃1,k , q̃2,k , · · · , q̃n,k ]T = qqqk − qqqd and dq̃qqk =
[dq̃1,k , dq̃2,k , · · · , dq̃n,k ]T = q̇qqk−q̇qqd . Due to qqqk (0) 6= qqqd (0),
it is impossible to obtain qqqk (t) = qqqd (t), ∀t ∈ [0,T ]. As an
alternative, we want to find a sequence of appropriate torque
inputs τττ k such that limk→+∞(qqqk (t)−qqqd (t)) = 0, ∀t ∈ [tε,T ],
where tε is a preset moment between 0 and T .
To remove the zero initial error condition, a common

assumption in traditional ILC algorithms, let us construct
the desired error trajectory q̃qqdk = [q̃d1,k , q̃

d
2,k , · · · , q̃

d
n,k ]

T and
dq̃qqdk = [dq̃d1,k , dq̃

d
2,k , · · · , dq̃

d
n,k ]

T
= ˙̃qdk as follows:

For i = 1, 2, · · · , n, while tε ≤ t ≤ T , let

q̃di,k (t) = 0, dq̃di,k (t) = 0; (4)

while 0 ≤ t < tε , let

q̃di,k (t) = ai0,k + ai1,k t + ai2,k t2 + ai3,k t3 + ai4,k t4

+ai5,k t5,

dq̃di,k (t) = ai1,k + 2ai2,k t + 3ai3,k t2 + 4ai4,k t3

+5ai5,k t4, (5)

where ai0,k = q̃i,k (0), ai1,k = dq̃i,k (0), ai2,k = 0,
[ai3,k , ai4,k , ai5,k ]T = t3ε t4ε t5ε
3t2ε 4t3ε 5t4ε
6tε 12t2ε 20t3ε

−1−ai0,k − ai1,k tε − ai2,k t2ε−ai1,k − 2ai2,k tε
−2ai2,k

 . (6)

Define zzzk = [z1,k , z2,k , · · · , zn,k ]T = q̃qqk − q̃qqdk . It can be
easily seen from the above construction that zi,k (0) = 0,
żi,k (0) = 0 and z̈i,k (0) = 0 hold for i = 1, 2, · · · , n. Note that
zi,k (t) = 0, żi,k (t) = 0, ∀t ∈ [0,T ] is a sufficient condition
for q̃i,k (t) = 0, dq̃i,k (t) = 0, ∀t ∈ [tε,T ]. In order to make
q̃qqk and dq̃qqk follow q̃qqdk and dq̃qqdk for t ∈ [tε,T ], respectively,
our strategy is to let zzzk (t) = 0 and żzzk (t) = 0 for t ∈ [0,T ].
Remark 2: (4) means that once zzzk (t) = 0, żzzk (t) = 0,∀t ∈

[Tε,T ] holds, then qqqk (t) = qqqd (t), q̇qqk (t) = q̇qqd (t),∀t ∈ [tε,T ]
will hold subsequently. From (5) and (6), we can see that
zzzk (0) = 0, żzzk (0) = 0, which is helpful to solve the initial
problem of ILC. Moreover, q̃qqdk (t), ˙̃qqq

d
k (t) and ¨̃qqqdk (t) are all

continuous over the whole interval ( in particular, including
t = tε ), which is helpful to obtain the continuity of control
input to be designed.
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IV. THE DESIGN OF ADAPTIVE LEARNING CONTROLLERS
Define a filtered tracking error-like variable sssk ∈ Rn as
follows:

sssk = żzzk + λzzzk = q̇qqk − q̇qqd − ˙̃qqq
d
k + λzzzk (7)

where λ is a positive constant. Taking the derivative of Vk =
1
2sss
T
kMksssk with respect to time t , we have

V̇k =
1
2
sssTk Ṁksssk + sssTkMk (q̈qqk − q̈qqd − ¨̃qqq

d
k + λżzzk )

=
1
2
sssTk Ṁksssk + sssTk (τττ k − Ckq̇qqk − Fkq̇qqk −GGGk )

+sssTkMk (−q̈qqd − ¨̃qqq
d
k + λżzzk )

=
1
2
sssTk Ṁksssk − sssTk Cksssk −

1
2
sssTk Fksssk + sss

T
k Cksssk

+
1
2
sssTk Fksssk + sss

T
k (τττ k − Ckq̇qqk − Fkq̇qqk −GGGk )

+sssTkMk (−q̈qqd − ¨̃qqq
d
k + λżzzk ) (8)

By Property 2, 1
2sss
T
k Ṁksssk − sssTk Cksssk −

1
2sss
T
k Fksssk = 0 holds.

Thus, (8) may be rewritten as

V̇k = sssTk Cksssk +
1
2
sssTk Fksssk + sss

T
k (τττ k − Ckq̇qqk − Fkq̇qqk −GGGk )

+sssTkMk (−q̈qqd − ¨̃qqq
d
k + λżzzk ). (9)

By defining qqqzk = [qz1,k , qz2,k , · · · , qzn,k ]T = qd + q̃dk −
λ
∫ t
0 zzzk (υ)dυ and performing some simple algebraic opera-

tions, we can further simplify (9) as follows:

V̇k = sssTk Cksssk +
1
2
sssTk Fksssk + sss

T
k (τk − Ckq̇qqk − Fkq̇qqk −GGGk )

−sssTk [Mkq̈qqzk + Ckq̇qqzk +
1
2
Fk (q̇qqzk + q̇k )+GGGk ]

+sssTk [Ckq̇qqzk +
1
2
Fk (q̇qqzk + q̇k )+GGGk ]

= sssTk τk − sss
T
k Ck (q̇qqk − q̇qqzk − sssk )−

1
2
sssTk Fk (q̇qqk − q̇qqzk

−sssk )− sssTk [Mkq̈qqzk + Ckq̇qqzk + Fk (
1
2
q̇qqzk +

1
2
q̇qqk )

+GGGk ]. (10)

According to the definition of sssk , (10) now implies

V̇k = sssTk τk − sss
T
k [Mkq̈qqzk + Ckq̇qqzk + Fk (

1
2
q̇qqzk +

1
2
q̇qqk )+GGGk ]

(11)

By Property 3, it follows from (11) that

V̇k = sssTk τk − sss
T
k [8(qqqk , q̇qqk , q̇qqzk , q̈qqzk )ϑϑϑ

+W (qqqk , q̇qqk , q̇qqzk , q̈qqzk )ηηη(t)] (12)

On the basis of (12), we design an adaptive ILC law as

τττ k = −γ1sssk +8kϑϑϑk +Wkηηηk , (13)

where γ1 > 0, ϑϑϑk is determined by a combined time-domain
and iteration-domain learning law (14), and ηηηk is determined

by a difference learning law (15).

(1− µ)ϑ̇ϑϑk = −γ28T
k sssk + µ(ϑϑϑk−1 − ϑϑϑk ),

ϑϑϑk (0) = ϑϑϑk−1(T ), ϑϑϑ−1(t) = 0, (14)

where γ2 > 0, 1 > µ > 0, and ϑϑϑk is used to estimate ϑϑϑ .

ηηηk = satη̄(ηηηk−1)− γ3W
T
k sssk , ηηη−1 = 0, (15)

where γ3 > 0, ηηηk is used to estimate ηηη(t). In (15) and what
follows, the saturation function sat·̄(·̂) is defined as follows:
For a scalar b̂ used to estimate unknown variable b,

satb̄(b̂) = sign(b̂) min(|b̂|, b̄), (16)

where b̄ is the upper bound e of |b|, sign(·) represents a
signum function. For a vector b̂ = [b̂1, b̂2, · · · , b̂m]T ∈ Rm,

satb̄(b̂) := [satb̄(b̂1), satb̄(b̂2), · · · , satb̄(b̂m)]
T .

It should be noted that, in the above robotic adaptive ILC
algorithm, the initial systems error at each iteration is allowed
to be any bounded error. Hence, the adaptive ILC algorithm
may be used in the cases of any bounded initial state.
Remark 3: In fact, (14) may be regarded as the superposi-

tion of

µϑϑϑk = µϑϑϑk−1 − µγ28
T
k sssk , ϑϑϑ−1(t) = 0 (17)

and

(1− µ)ϑ̇ϑϑk = −(1− µ)γ28T
k sssk ,

ϑϑϑk (0) = ϑϑϑk−1(T ), ϑϑϑ−1(T ) = 0. (18)

(17) is equivalent to the iteration-domain adaptive learning
law

ϑϑϑk = ϑϑϑk−1 − γ28
T
k sssk , ϑϑϑ−1(t) = 0, (19)

(18) is equivalent to the time-domain adaptive learning law

ϑ̇ϑϑk = −γ28
T
k sssk , ϑϑϑk (0) = ϑϑϑk−1(T ), ϑϑϑ−1(T ) = 0, (20)

Hence, the adaptive learning law (14) is actually a com-
bination of a time-domain adaptive learning law and an
iteration-domain adaptive learning law. The combined adap-
tive leaning strategy has the following advantages:
(i) Compared with the time-domain adaptive learning law

(18), the combined adaptive learning law (14) can obtain
higher convergence speed of the tracking error.
(ii) Compared with the iteration-domain adaptive learning

law (17), the combined adaptive learning law (14) can guar-
antee that ϑϑϑk is bounded, while iteration-domain adaptive
learning design (17) only guarantee ϑϑϑk to be L2 bounded.
More details on the combined adaptive learning strategy,

see [29].
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V. CONVERGENCE ANALYSIS
In this section, we will establish the following global conver-
gence results on the proposed adaptive ILC scheme.
Theorem 1: For the closed-loop robotic systems com-

posed of (3), adaptive ILC law (13) and learning laws
(14)−(15), the tracking error converges in the sense that

lim
k→+∞

q̃qqk (t) = 0, t ∈ [tε,T ]; (21)

and all signals in the closed-loop robotic systems are guaran-
teed to be bounded.

Proof: Part A: Calculating difference of Lk (t)
First, substituting (13) into (12) yields

V̇k = −γ1sssTk sssk + sss
T
k 8kϑ̃ϑϑk + sssTkWkη̃ηηk , (22)

where ϑ̃ϑϑk = ϑϑϑk − ϑϑϑ, η̃ηηk = ηηηk − ηηη, 8k ,
8(qqqk , q̇qqk ,qqqzk , q̇qqzk ),Wk , W (qqqk , q̇qqk ,qqqzk , q̇qqzk ). Calculating
the definite integral to (22), we have

Vk = Vk (0)− γ1

∫ t

0
sssTk ssskdτ +

∫ t

0
sssTk (8kϑ̃ϑϑk +Wkη̃ηηk )dτ.

(23)

Then, we define a nonnegative functional as

Lk = Vk +
µ

2γ2

∫ t

0
ϑ̃ϑϑ
T
k ϑ̃ϑϑkdτ +

(1− µ)
2γ2

ϑ̃ϑϑ
T
k ϑ̃ϑϑk

+
1
2γ3

∫ t

0
η̃ηηTk η̃ηηkdτ. (24)

While k > 0, according to (23) and (24), the difference of
Lk (t) between two adjacent iterations is

Lk − Lk−1

= Vk − Vk−1 +
µ

2γ2

∫ t

0
(ϑ̃ϑϑ

T
k ϑ̃ϑϑk − ϑ̃ϑϑ

T
k−1ϑ̃ϑϑk−1)dτ

+
(1− µ)
2γ2

(ϑ̃ϑϑ
T
k ϑ̃ϑϑk − ϑ̃ϑϑ

T
k−1ϑ̃ϑϑk−1)

+
1
2γ3

∫ t

0
(η̃ηηTk η̃ηηk − η̃ηη

T
k−1η̃ηηk−1)dτ

= −γ1

∫ t

0
sssTk ssskdτ +

∫ t

0
sssTk (8kϑ̃ϑϑk +Wkη̃ηηk )dτ

+
µ

2γ2

∫ t

0
(ϑ̃ϑϑ

T
k ϑ̃ϑϑk − ϑ̃ϑϑ

T
k−1ϑ̃ϑϑk−1)dτ

+
(1− µ)
γ2

∫ t

0

˙̃
ϑϑϑTk ϑ̃ϑϑkdτ +

(1− µ)
2γ2

ϑ̃ϑϑ
T
k (0)ϑ̃ϑϑk (0)

−
(1− µ)
2γ2

ϑ̃ϑϑ
T
k−1ϑ̃ϑϑk−1 +

1
2γ3

∫ t

0
(η̃ηηTk η̃ηηk − η̃ηη

T
k−1η̃ηηk−1)dτ

−Vk−1 + Vk (0). (25)

Through direct algebraic operations yields

ϑ̃ϑϑ
T
k ϑ̃ϑϑk − ϑ̃ϑϑ

T
k−1ϑ̃ϑϑk−1

= (2ϑϑϑ − ϑϑϑk − ϑϑϑk−1)T (ϑϑϑk−1 − ϑϑϑk )

= (2ϑϑϑ − 2ϑϑϑk + ϑϑϑk − ϑϑϑk−1)T (ϑϑϑk−1 − ϑϑϑk )

≤ −2(ϑϑϑk−1 − ϑϑϑk )T ϑ̃ϑϑk . (26)

Combining (14) with (26), we have

−sssTk 8kϑ̃ϑϑk +
µ

2γ2
(ϑ̃ϑϑ

T
k ϑ̃ϑϑk − ϑ̃ϑϑ

T
k−1ϑ̃ϑϑk−1)+

(1− µ)
γ2

ϑ̇ϑϑ
T
k ϑ̃ϑϑk

=
1
γ2

[
γ2sssTk 8k − µ(ϑϑϑk−1 − ϑϑϑk )+ (1− µ)ϑ̇ϑϑk

]T
ϑ̃ϑϑk

= 0. (27)

Substituting (27) into (25) leads to

Lk − Lk−1

= Vk (0)− γ1

∫ t

0
sssTk ssskdτ +

∫ t

0
sssTkWkη̃ηηkdτ

+
(1− µ)
2γ2

ϑ̃ϑϑ
T
k (0)ϑ̃ϑϑk (0)−

(1− µ)
2γ2

ϑ̃ϑϑ
T
k−1ϑ̃ϑϑk−1 − Vk−1

+
1
2γ3

∫ t

0
(η̃ηηTk η̃ηηk − η̃ηη

T
k−1η̃ηηk−1)dτ. (28)

According to the relationship (a − b)T (a − b) ≤ (a −
satb̄(b̂))

T (a − satb̄(b̂)) and (15), the following inequality is
satisfied:

1
2γ3

(η̃ηηTk η̃ηηk−η̃ηη
T
k−1η̃ηηk−1)+sss

T
kWkη̃ηηk

=
1
2γ3

(ηηη−ηηηk )
T (ηηη−ηηηk )−(ηηη−ηηηk−1)

T (ηηη−ηηηk−1)+sss
T
kWkη̃ηηk

≤
1
2γ3

(ηηη−ηηηk )
T (ηηη−ηηηk )−(ηηη−sat(ηηηk−1))

T (ηηη−sat(ηηηk−1))

+sssTkWkη̃ηηk

=
1
2γ3

(2ηηη−ηηηk−satη̄(ηηηk−1))
T (satη̄(ηηηk−1)−ηηηk )+sss

T
kWkη̃ηηk

≤−
1
γ3
η̃ηηTk (satη̄(ηηηk−1)−ηηηk )+sss

T
kWkη̃ηηk = 0. (29)

After substituting (29) into (28), the following expression is
obtained:

Lk − Lk−1 ≤ Vk (0)− γ1

∫ t

0
sssTk ssskdτ +

(1− µ)
2γ2

ϑ̃ϑϑ
T
k (0)ϑ̃ϑϑk (0)

−
(1− µ)
2γ2

ϑ̃ϑϑ
T
k−1ϑ̃ϑϑk−1 − Vk−1. (30)

According to (4) and (14), we can seeVk (0) = 0 andϑϑϑk (T ) =
ϑϑϑk−1(0) hold, respectively. Therefore, it follows from (30)
that

Lk (T )− Lk−1(T ) ≤ −γ1

∫ T

0
sssTk ssskdτ. (31)

Similarly, it may be concluded that

Lk−1(T )− Lk−2(T ) ≤ −γ1

∫ T

0
sssTk−1sssk−1dτ,

Lk−2(T )− Lk−3(T ) ≤ −γ1

∫ T

0
sssTk−2sssk−2τ,

...

L1(T )− L0(T ) ≤ −γ1

∫ T

0
sssT1 sss1dτ. (32)
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The sum of the two sides of above k inequalities in (31)
and (32) is

Lk (T )− L0(T ) ≤ −γ1
k∑
j=1

∫ T

0
sssTj sssjdτ,

which implies

Lk (T ) ≤ L0(T )− γ1
k∑
j=1

∫ T

0
sssTj sssjdτ. (33)

Part B: Boundedness of L0(t)
Taking derivative of L0(t) with respect to t yields

L̇0 = −γ1sssT0 sss0 + sss
T
080ϑ̃ϑϑ0 + sssT0W0η̃ηη0 +

µ

2γ2
ϑ̃ϑϑ
T
0 ϑ̃ϑϑ0

+
(1− µ)
γ2

˙̃
ϑϑϑT0 ϑ̃ϑϑ0 +

1
2γ3

η̃ηηT0 η̃ηη0. (34)

By using learning law (14), we obtain

(1− µ)ϑ̇ϑϑ0 = −γ2W T
0 sss0 + µ(ϑϑϑ−1 − ϑϑϑ0)

= −γ280sss0 − µϑϑϑ0. (35)

Then, combining (35) with (34), we have

L̇0 = −γ1sssT0 sss0 + sss
T
0W0η̃ηη0 +

1
γ2

(γ2sssT080ϑ̃ϑϑ0 +
µ

2
ϑ̃ϑϑ
T
0 ϑ̃ϑϑ0

+(1− µ) ˙̃ϑϑϑT0 ϑ̃ϑϑ0)+
1
2γ3

η̃ηηT0 η̃ηη0.

= −γ1sssT0 sss0 + sss
T
0W0η̃ηη0 +

1
γ2

(
µ

2
ϑ̃ϑϑ
T
0 ϑ̃ϑϑ0 − µϑϑϑ0ϑ̃ϑϑ0)

+
1
2γ3

η̃ηηT0 η̃ηη0. (36)

Due to

1
2
ϑ̃ϑϑ
T
0 ϑ̃ϑϑ0 − ϑϑϑ0ϑ̃ϑϑ0 =

1
2 (ϑϑϑ0 − ϑϑϑ)T (ϑϑϑ0 − ϑϑϑ)− ϑϑϑT0 (ϑϑϑ0 − ϑϑϑ)

= −
1
2ϑϑϑ

T
0ϑϑϑ0 +

1
2ϑϑϑ

Tϑϑϑ, (37)

we rewrite (36) as follows:

L̇0 = −γ1sssT0 sss0 + sss
T
0W0η̃ηη0 +

1
γ2

(γ2sssT080ϑ̃ϑϑ0 +
µ

2
ϑ̃ϑϑ
T
0 ϑ̃ϑϑ0

+(1− µ) ˙̃ϑϑϑT0 ϑ̃ϑϑ0)+
1
2γ3

η̃ηηT0 η̃ηη0.

= −γ1sssT0 sss0 −
µ

2γ2
ϑϑϑT0ϑϑϑ0 +

µ

2γ2
ϑϑϑTϑϑϑ + sssT0W0η̃ηη0

+
1
2γ3

η̃ηηT0 η̃ηη0. (38)

On the other hand, it follows from (14) that

sssT0W0η̃ηη0 +
1
2γ3

η̃ηηT0 η̃ηη0

=
1
γ3

(−ηηηT0 (ηηη0 − ηηη)+
1
2
(ηηη0 − ηηη)

T (ηηη0 − ηηη))

=
1
γ3

(−
1
2
ηηηT0ηηη0 +

1
2
ηηηTηηη). (39)

Substituting (39) into (38) yields

L̇0 = −γ1sssT0 sss0 −
µ

2γ2
ϑϑϑT0ϑϑϑ0 −

1
2γ3

ηηηT0 +
1
2γ2

ϑϑϑTϑϑϑηηη0

+
1
2γ3

ηηηTηηη. (40)

Based on (40), it is clear that L0(t) is bounded for t ∈ [0,T ].
Part C: Convergence property of the closed-loop system

Since L0(T ) is bounded, from (33), the following expres-
sion can be obtained:

lim
k→+∞

∫ T

0
sssTk ssskdτ = 0. (41)

On the other hand, from (30) and (31), we have

Lk (t) =
µ

2γ2

∫ t

0
ϑ̃ϑϑ
T
k ϑ̃ϑϑkdτ+

1
2γ3

∫ t

0
η̃ηηTk η̃ηηkdτ−γ1

∫ t

0
sssTk ssskdτ

+
(1− µ)
2γ2

ϑ̃ϑϑ
T
k (0)ϑ̃ϑϑk (0)

≤ Lk−1(T )− γ1

∫ t

0
sssTk ssskdτ

≤ L0(T )− γ1

∫ t

0
sssTk ssskdτ. (42)

Since L0(T ) is bounded, from (42), we can easily obtain the
boundedness of Lk , based on which, the boundedness of sssk ,
ϑ̃ϑϑk and ϑϑϑk can be easily gotten. Then, it follows from the
boundedness of sssk , zzzk and żzzk are guaranteed to be bound.
Applying the boundedness of zzzk and żzzk , we can deduce
that q̃qqk , ˙̃qqqk ,qqqk , q̇qqk , q̇qqzk and q̈qqzk are all bounded. Furthermore,
we can concluded that 8k and Wk are bounded. By the
property of saturation function and the boundedness of Wk ,
we can draw a conclusion that ηηηk is bounded from (15).
By using the above conclusions, we can get the boundedness
ofτττ k from (13). Sinceqqqk , q̇qqk andτττ k are proved to be bounded,
we can easily obtain the boudedness of q̈k from (1). From
the definition of sssk , the boundedness of ṡssk can be deduced,
which means sssk (t) is equicontinuous over [0,T ]. In light of
this conclusion and (41), we obtain

lim
k→+∞

sssk (t) = 0, t ∈ [0,T ]. (43)

Since zzzk (0) = 0 and żzzk (0) = 0, from (43) we can further
conclude

lim
k→+∞

zzzk (t) = 0, t ∈ [0,T ], (44)

which implies

lim
k→+∞

q̃qqk (t) = 0, t ∈ [tε,T ].� (45)

Remark 4: In (30), if Vk (0) 6= 0. It follows that

Lk (T )− Lk−1(T ) ≤ Vk (0)− γ1
∫ T
0 sssTk ssskdτ. (46)

A similar conclusion to (33) is

Lk (T ) ≤ L0(T )+
k∑
j=1

Vj(0)− γ1
k∑
j=1

∫ T

0
sssTj sssjdτ. (47)
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If limk→∞
∑k

j=1 Vj(0) is not bounded, the conclusion
limk→+∞ sssk (t) = 0, t ∈ [0,T ] can not be drawn even if
L0(T ) is bounded. Hence, it is really necessary to deal with the
nonzero initial error during controller design. As far as error-
tracking strategy is concerned, through the reasonable con-
struction of desired error trajectory, limk→∞

∑k
j=1 Vj(0) = 0

holds.

VI. ILLUSTRATIVE EXAMPLE
To verify the effectiveness of the proposed adaptive learning
control scheme, the following two-link robot manipulator
model is considered [22]:

M (qqq,φφφ(t))q̈qq+ C(qqq, q̇qq,φφφ(t))q̈qq+ F(qqq, φ̇φφ(t))q̇qq = τττ (48)

where

M (qqq,φφφ(t)) =
[
m11 m12
m21 m22

]
,

C(qqq, q̇qq,φφφ(t)) =
[
c11 c12
c21 0

]
,

F(qqq, φ̇φφ(t))

=

[
l21+l

2
2+2l1l2 cos(q2) l

2
2+l1l2 cos(q2)

l22+l1l2 cos(q2) l22

]
ṁp

+

[
1 1
1 1

]
İp,

m11 = p1 + 2p2 cos(q2)+ v1(q2)mp(t)+ Ip(t),

m12 = p3 + p2 cos(q2)+ v2(q2)mp(t)+ Ip(t),

m21 = p3 + p2 cos(q2)+ v2(q2)mp(t)+ Ip(t),

m22 = p3 + v3mp(t)+ Ip(t),

c11 = −q̇2(p2 + l1l2mp(t)) sin(q2),

c12 = −(q̇1 + q̇2)(p2 + l1l2mp(t)) sin(q2),

c21 = q̇1(p2 + l1l2mp(t)) sin(q2).

Here, mp(t) and Ip(t) are the payload mass and iner-
tia, respectively, Ip(t) = 1

2mp(t)R
2,mp = k1t , where k1

represents the constant water flow rate in or out of the
vessel, R is the radius of the cylindrical vessel. φφφ(t) =
[p1, p2, p3,mp(t), Ip(t)]T , where p1, p2, p3 are the constant
coupled parameters of the robot manipulator that contain
masses and inertias of the links and the motors. l1 and l2 are
the lengths of two links, v1 = l21 + l22 + 2l1l2 cos(q2) and
v2 = l22 + l1l2 cos(q2).
The desired trajectory qqqd = [0.8 cos(t), 0.5 cos(π t2 )], t ∈

[0,T ],T = 5. The initial state of the system is qqqk (0) = [1+
0.1r1, 0.8 + 0.1r2], dqqqk (0) = [0.05r3, 0.05r4], where r1−r4
are random numbers between 0 and 1. Some other parameters
are set in the simulation as T = 5, p1 = 3.4, p2 = 0.2, p3 =
0.15, l1 = 1, l2 = 0.6,mp = 0.3t, Ip = 0.01mp/2,R =
0.1 m, k1 = 0.3 kg/s.

After constructing the desired error trajectory according
to Section 3, we develop the control law and learning laws
according to (13)-(15) with tε = 0.6, λ = 5, γ1 = 5,
γ2 = 2, γ3 = 2, µ = 0.9, η̄ = 30. ϑϑϑk is used to
estimate ϑϑϑ = [p1, p2, p3]T according to combined adaptive

learning law (14),ηηηk is used to estimateηηη = [mp, Ip, ṁp, İp]T

according to difference learning law (15). Through proper
parameter reorganization, we get

8(qqqk , q̇qqk , q̇qqzk , q̈qqzk ) =
[
αz1 αz2 αz3
0 αz4 αz5

]
,

W (qqqk , q̇qqk , q̇qqzk , q̈qqzk ) =
[
ωz1 ωz2 ωz3 ωz4
ωz5 ωz6 ωz7 ωz8

]
, (49)

where

αz1 = q̈z1,k ,

αz2 = 2q̈z1,k cos(q2,k )+ q̈z2,k cos(q2,k )− q̇2,k sin(q2,k )q̇z1,k
−(q̇1,k + q̇2,k ) sin(q2,k )q̇z2,k ,

αz3 = q̈z2,k ,

αz4 = q̈z1,k cos(q2,k )+ q̇1,k sin(q2,k )q̇z1,k ,

αz5 = q̈z1,k + q̈z2,k ,

ωz1 = (l21 + l
2
2 + 2l1l2 cos(q2,k ))q̈z1,k + (l22 + l1l2 cos(q2,k ))

×q̈z2,k − l1l2[q̇2,k sin(q2,k )q̇z1,k + (q̇1,k + q̇2,k )

× sin(q2,k )q̇z2,k ]

ωz2 = q̈z1,k + q̈z2,k ,

ωz3 = (l21 + l
2
2 )ξz1 + 2l1l2ξz1 cos(q2,k )+ l22ξz2

+l1l2ξz2 cos(q2,k ),

ωz4 = ξz1 + ξz2,

ωz5 = (l22 + l1l2 cos(q2,k ))q̈z1,k + l
2
2 q̈z2,k

+q̇1,k l1l2 sin(q2,k )q̇z1,k ,

ωz6 = q̈z1,k + q̈z2,k ,

ωz7 = l22ξz1 + l1l2ξz1 cos(q2,k )+ l
2
2ξz2,

ωz8 = ωz6,

ξz1 =
1
2
q̇z1,k +

1
2
q̇1,k ,

ξz2 =
1
2
q̇z2,k +

1
2
q̇2,k .

The simulation results are shown in Figs. 1-15. From
Figs. 1-4, we can see that after 20 iterations, q1, q̇1, q2 and
q̇2 converge to q1,d , q̇1,d , q2,d and q̇2,d for t ∈ [tε,T ],
respectively. The profiles of position/velocity errors and cor-
responding desired error trajectories in the 20th iteration are
shown in Figs. 5-8. Figs. 9-12 show the profile of differences
between robotic system error and the desired error trajectories
at the 20th iteration. Figs. 5-12 indicate that q̃1, ˙̃q1, q̃2, ˙̃q2
follow q̃d1 ,

˙̃qd1 , q̃
d
2 ,
˙̃qd2 over the interval [tε,T ], respectively.

Figs. 13-14 give the torque input for link 1 and link 2 at the
20th iteration, respectively. Fig. 15 illustrates the learning
converge profile of output error in the robotic closed loop
system, where Jk , maxt∈[tε ,T ](|q̃1,k (t)| + |q̃2,k (t)|).

For comparison, we present two simulation examples as
below:
Comparison A: Traditional D-type learning law [41] is

adopted to simulation as follows:

τττ k = τττ k−1 + 0[qqqd − qqqk ]T , (50)
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FIGURE 1. Position trajectory of joint 1 (error-tracking ILC).

FIGURE 2. Velocity trajectory of joint 1 (error-tracking ILC).

FIGURE 3. Position trajectories of joint 2 (error-tracking ILC).

where 0 =
[
0.9 0
0 0.9

]
is the learning gain. The position

trajectories at the 20th iteration are shown in Figs. 16-17.
The maximum position error of 100 iterations is illustrated
in Fig. 18, where the definition of Jk is the same as above,
we can see the tracking error can not converge to zero or the
small neighborhood of zero even if after so many iterations.
From Figs. 16-18, we can see that traditional D-type ILC
algorithms are not suitable for the robotic control systemwith
arbitrary initial errors.

FIGURE 4. Velocity trajectory of joint 2 (error-tracking ILC).

FIGURE 5. Position error q̃1 and its desired q̃d
1 (error-tracking ILC).

FIGURE 6. Velocity error ˙̃q1 and its desired ˙̃qd
1 (error-tracking ILC).

Comparison B: An initial-rectification adaptive ILC algo-
rithm is adopted to the following simulation. This algorithm
has been verified to be effective for robotic manipulators with
time-invariant parameters in [42].

τττ k = −γ4sssrk +Wr (qqqk , q̇qqk , q̇qqk,r , q̈qqk,r )θθθk , (51)

θθθk = satθ̄ (θ̂θθk−1)− γ5Wr (qqqk , q̇qqk , q̇qqk,r , q̈qqk,r )sssrk , θθθ−1 = 0,

(52)

where sssrk = (q̇qqk−q̇qqk,r )+λ(qqqk−qqqk,r ),qqqk,r = [q1,k,r , q2,k,r ]T .
q1,k,r (t) and q2,k,r (t) are formed according to (53).
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FIGURE 7. Position error q̃2 and its desired q̃d
2 (error-tracking ILC).

FIGURE 8. Velocity error ˙̃q2 and its desired ˙̃qd
2 (error-tracking ILC).

FIGURE 9. The difference between q̃1 and q̃d
1 (error-tracking ILC).

qi,k,r (t) = ξi · qri,k (t)+ (1− ξi) · qi,d (t), i = 1, 2, (53)

in which

ξi =

{
1, if t ∈ [0, tε),
0, if t ∈ [tε,T ],

(54)

and qri,k (t) = Ai,5t5 + Ai,4t4 + Ai,3t3 + Ai,2t2 + Ai,1t + Ai,0,
with Ai,0 = qi,k (0),Ai,1 = q̇i,k (0),Ai,2 = 0, Ai,3 =
10
t3ε
%1 −

4
t2ε
%2 +

1
2tε
%3, Ai,4 = − 15

t4ε
%1 +

7
t3ε
%2 −

1
t2ε
%3,

FIGURE 10. The difference between ˙̃q1 and ˙̃qd
1 (error-tracking ILC).

FIGURE 11. The difference between q̃2 and q̃d
2 (error-tracking ILC).

FIGURE 12. The difference between ˙̃q2 and ˙̃qd
2 (error-tracking ILC).

Ai,5 = 6
t5ε
%1−

3
t4ε
%2+

1
2t3ε
%3, %1 = qi,d (tε)− q̇i,k (0)tε−qi,k (0),

%2 = q̇i,d (tε) − q̇i,k (0), %3 = q̈i,d (tε). The definition of
W (qk , q̇k , q̇k,r , q̈k,r ) in (51) and (52) is given as follows:

Wr (qqqk , q̇qqk , q̇qqk,r , q̈qqk,r ) =
[
wr1 wr2 wr3
wr4 wr5 wr6

]
, (55)

with

wr1 = q̈1,k,r + g/l1 cos q2,k ,

wr2 = q̈1,k,r + q̈2,k,r ,
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FIGURE 13. Torque input τ1 (error-tracking ILC).

FIGURE 14. Torque input τ2 (error-tracking ILC).

FIGURE 15. Jk (error-tracking ILC).

wr3 = 2q̈1,k,r cos q2,k + q̈2,k,r cos q2,k − q̇2,k q̇1,k,r sin q2,k
−(q̇1,k + q̇2,k )q̇2,k,r sin q2,k + g/l1 cos(q1,k + q2,k ),

wr4 = 0,

wr5 = wr2,

wr6 = q̇1,k q̇1,k,r sin q2,k + q̈1,k,r cos q2,k + g/l1 cos(q1,k
+q2,k ).

The control parameter and learning gains are set as γ4 =
5, γ5 = 2. The initial system state, tε, λ and l1 are set as the
same as above. The position trajectories at the 20th iteration

FIGURE 16. Position trajectory of joint 1 (Comparison A).

FIGURE 17. Position trajectory of joint 2 (Comparison A).

FIGURE 18. Jk (Comparison A).

are shown in Figs. 19-20. As shown in Fig.21, the track-
ing error does not converge to zero as the iteration number
increases. From Figs. 19-21, we can see that the initial-
rectification based adaptive ILC algorithm (51) is not suitable
for the robotic control system with time-varying parameters.

Combining Fig. 15, Fig. 18 with Fig. 21, we can see that
the proposed adaptive ILC scheme is effective in dealing
with time-varying parameters and arbitrary initial errors for
the robotic systems. The above simulation results verify the
effectiveness of the proposed error-tracking adaptive robotic
ILC scheme.
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FIGURE 19. Position trajectory of joint 1 (Comparison B).

FIGURE 20. Position trajectory of joint 2 (Comparison B).

FIGURE 21. Jk (Comparison B).

Remark 5: If the external disturbances and unmodeled
dynamics are considered, the above-discussed robotic sys-
tems may be described as

M (qqqk ,φφφ(t))q̈qqk + C(qqqk , q̇qqk ,φφφ(t))q̇qqk + F(qqqk , φ̇φφ(t))q̇qqk
+GGG(qqqk ,φφφ(t)) = τττ k + dddk , (56)

where dddk represents the sum of external disturbances and
other unmodeled dynamics. By slightly modifying the origin
control law and learning laws(13)-(15), the control algorithm

for (56) may be achieved as

τττ k = −γ1sssk +8kϑϑϑk +Wkηηηk − d̂ddksat1(
sk
υ
), (57)

(1− µ)ϑ̇ϑϑk = −γ28T
k sk + µ(ϑϑϑk−1 − ϑϑϑk ), (58)

ηηηk = satη̄(η̂ηηk−1)− γ3W
T
k sssk , η̂ηη−1 = 0, (59)

d̂ddk = satd̄ (d̂ddk−1)+ γ4|sssk |, d̂dd−1 = 0, (60)

where d̂ddk is used to estimate the upper bound of dddk , υ is a
small positive number, γ4 > 0, and γ1, γ2, γ3 and ϑϑϑk are the
same as that in (13), (14) and (15), respectively.

VII. CONCLUSION
In this paper, an error-tracking adaptive ILC scheme is pro-
posed to solve the trajectory-tracking problem for robotic sys-
temswith time-varying parameters and arbitrary initial errors.
Error-tracking strategy is applied to deal with the initial posi-
tion problem of adaptive ILC. After proper parameterization
to the dynamic model of robot manipulators, unknown time-
invariant parameters and time-varying parameters are esti-
mated according to combined learning law and difference
learning law, respectively. It is rigorously proved that the
proposed adaptive ILC law can achieve perfect tracking per-
formance under arbitrary initial error condition. Numerical
simulations are carried out to verify the effectiveness of our
proposed robotic error-tracking adaptive ILC scheme.
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