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ABSTRACT Common gait deviations in cerebral palsy can be divided into spastic hemiplegia and spastic
diplegia gait patterns. These gait deviations require the use of a large amount of data obtained by clinical gait
analysis through video, kinematic, kinetic, electromyographic sensors, and plantar pressure data to assess
patient gait characteristics. In this paper, we use predictive forward dynamics to investigate the effects of
the biarticular hamstrings (HAMS), gastrocnemius (GAS) and biceps femoris short head (BFSH) on the
knee joint in gait cycle. We attempted to explore the characteristics for reproducing the patient’s gait by
modifying the parameters of model muscles. We applied mild, moderate and severe muscle weakness or
contracture to the HAMS, GAS and BFSH muscle groups, respectively, and trained the model to walk at
a self-selected speed, showing that with the more severe contracture, the non-swinging phase presented
more severe knee hyperflexion and stronger knee torque, and the sensitivity for change is ranked by
GAS>BFSH>HAMS. In swing phase, HAMS and GAS contractures aggravate the knee angle, whereas
contractures of BFSH have a weak effect on knee angle. Mild HAMS muscle weakness accelerated walking
speed, while moderate and severe HAMS muscle weakness hindered walking speed instead. BFSH muscle
weakness is more sensitive to knee joint torque. Finally, a variable parameter impedance controller for
the lower limb exoskeleton rehabilitation robot is developed. We apply the knee joint angle and torque
parameters optimized by predictive forward dynamics simulation as the expected values for the robot to
achieve customized tuning of the motion trajectory for the exoskeleton rehabilitation robot and meet the
different rehabilitation stages.

INDEX TERMS Knee dyskinesia walking gait, predictive forward dynamic, impedance controller, lower-
limb rehabilitation exoskeleton robot.

I. INTRODUCTION
Patients with neurological disorders caused by disease or
injury, such as stroke and spinal cord injury, commonly
present with muscle weakness or contractures which lead
to lower extremity dyskinesia [1]. Pathological gait with
irregular muscle groups directly causes insufficient force or
torque in the lower limb joints [2]. Song and Geyer [3]
found that due to muscle-related changes, a slower preferred
walking speed emerged in elderly people as they improved
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their walking ability. Common gait deviations in cerebral
palsy can be divided into gait patterns of spastic hemiplegia
(drop foot, horseshoe in different knee positions) and spastic
diplegia (true horseshoe, jumping, pronounced horseshoe and
squatting) [4]. Traditional rehabilitation is not only physically
exhausting for the therapist, but 44% of the patients who
are rehabilitated by physiotherapy will have future prob-
lems [5]. Campbell and Trudel [6] investigated the asso-
ciations between knee flexion contracture with a range of
extension, function, pain, and stiffness of the contralateral
knee. Rose et al. [7] found no significant relationship between
time and body mass index for worsening knee flexion range,
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knee flexion in intermediate stance, peak knee extension
in stance and hamstring length, and improvement in mean
and maximum hip rotation in children with bilateral cere-
bral palsy and no history of orthopedic surgery in their gait
analysis. By using robotic-assisted rehabilitation devices, it is
possible to reduce the intensive work as well as to facilitate
the customization of rehabilitation based on the diagnosis of
the data obtained [8].

To obtain the reference trajectory, Chen et al. [9] applied a
motion capture system to acquisition the 3D kinematic data
from the lower body for normal walking of healthy people.
Moreover, the joint angles at special timing were derived
from the human exoskeleton system (HES) leg geometry
constraints. They also modified the designed reference tra-
jectories, such as gait period and amplitude, for different
wearers according to their physical characteristics. However,
it is a challenge to determine these characteristics, not to
mention determining the gait reference trajectory for patients
with pathological gait. It was found that inertial or optical
motion capture sensors lack accuracy when estimating joint
angles during motion capture, which could lead to incorrect
data interpretation. Therefore, Tannonus et al. [10] proposed
fusion between inertial and visual motion capture sensors to
improve the estimation accuracy of joint angles. In another
study, Zheng et al. used a human motion capture system:
four high-speed cameras, a testbed, and a computer system to
study the stability of the exoskeleton robot’s climbing posture
using an effective data acquisition area in the view of two
high-speed cameras [11].

The biartical HAMS and the monoarticular GAS and
BFSH muscle groups play the most significant role in knee
motion during thewalking gait cycle [1], [12], [13].Weakness
and contractures of these muscle groups usually occur in con-
ditions such as cerebral palsy, stroke and secondary dysfunc-
tion after knee osteoarthritis surgery [14]–[16]. Carmichael
Ong et al. [1] applied the predictive dynamics simulation
method to investigate how SOL and GAS muscles affect the
plantarflexor of the ankle joint and generalized the relation-
ship between them. Jonkers and De Groote et al. [17] evalu-
ated how gastrocnemius hyperreflexia affects gait kinematics
by using predictive simulations.

In this paper, we model pathological gait by predicting
forward dynamics, using minimizing the total cost of trans-
port within a self-selected speed while ensuring head stability
as a high-level goal. The gait controller utilizes a combination
of state machines and low-level control laws to determine
the excitation, calculate the optimal motion trajectory to per-
form a given task. We attempted to explore the character-
istics for reproducing the patient’s gait just by modifying
the parameters of model muscles. Therefore, mild, moderate
and severe muscle weakness or contractures were applied
to the HAMS, GAS and BFSH muscle groups, respectively,
and the models were trained to walk at self-selected speeds.
Finally, we developed an impedance control model for the
lower limb exoskeleton rehabilitation robot: we adopted the
knee joint angle and torque parameters optimized by using

predictive forward dynamics simulation as the expected val-
ues for the robot in order to achieve customized tuning for the
robot motion trajectory. The framework not only realizes pro-
gressive rehabilitation training but also reduces the wearer’s
resistance.

II. METHODS
Our control framework consists of a predictive forward simu-
lation framework and a lower limb exoskeleton rehabilitation
robot based on a variable impedance controller (see Fig. 1).
The neural model used in the predictive forward simula-
tion platform is a closed-loop controller. The excitation is
based on the following information from the sensor feedback:
Joint position/velocity with PD control, the muscle spindles
model adopts the Hill-type [16], [18], and the neural delay.
Our musculoskeletal model uses Carmichael F. Ong’s [1]
18 Hill-type muscle-tendon units (MTU), nine for each leg.
We implement the musculoskeletal model in OpenSim 3.3
(NCSRR, USA) and the predictive forward simulation in
Simulated Controller Optimization environment (SCONE,
https://scone.software). The kinematics and kinetics mod-
eling for lower limb exoskeleton rehabilitation robot, and
the design of impedance controller are implemented using
MATLAB (MathWorks, Natick, Massachusetts, USA).

A. OVERVIEW OF THE FRAMEWORK
The predictive forward simulation framework has three main
data files: Model.osim, InitialFile.par and Measures.scone
(see Fig. 1). The model files are the muscle-tendon geometry
and the muscle-tendon actuated model, and the initialization

FIGURE 1. Flow chart of lower limb exoskeleton rehabilitation robot
framework based on predictive forward simulation. The yellow blocks
indicate the stored files of the model. The blue lines represent the need
for human intervention and manipulation. In this paper, one of the main
tasks is to establish the modification rules for the knee joint in gait cycle.
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files defined the initial values and thresholds of parameters.
For instance, by changing the pelvis velocity along the x-axis
direction, it is possible to have the model walk at different
speeds.

Hence, the model speed range can be changed in the
Measures.scone file, which can be optimized based on the
parameters, and the model can self-adjust the speed. The file
Model.osim is modified in OpenSim 3.3, and all other com-
ponents are called and executed in SCONE. InitialFile.par
stored 90 free parameters, due to the CMA-ES of gait con-
troller may take tens of hours to optimize the new model,
hence, we perform pre-optimize before optimizing, and use
the optimized parameters as the InitialFile.par for the new
model, and the result show that it dramatically reduced the
optimization scope and the optimization time.

The lower limb exoskeleton rehabilitation robot based on
variable parameter impedance controller is mainly composed
of robot kinematics and dynamics modeling, impedance con-
troller design and parameter tuning. The yellow blocks (see
Fig. 1) indicate the stored files of the model. The blue lines
represent the need for human intervention and manipulation.
In this paper, one of the main tasks is to establish the modi-
fication rules for the knee joint in gait cycle. The predictive
simulation of knee joint motion for different pathological gait
patterns can be thus reproduced, so that customized pattern
adjustment of the exoskeleton robot is achieved. The phys-
iotherapist increases the bias value based on this simulation
pattern, allowing the rehabilitation robot to gradually train the
affected limb and avoid secondary damage to the patient.

B. MODELING
The predictive forward dynamics simulation framework
relies on a musculoskeletal model. We use OpenSim 3.3
to implement the development and parameterization for the
musculoskeletal model. To model the human lower limb
motion more realistically, our exoskeleton robot designed the
center of gravity of the rod in [19] at the center of the rod
instead of at the joint.

1) MUSCULOSKELETAL MODEL
The musculoskeletal model used for the predictive dynamic
simulation is based on an adult, 1.8m height and 75.2kg
weight, used to simulate lower limb gait. Themusculoskeletal
geometry uses a trunk and two three-segment legs (see Fig. 2)
to present the human body which is a muscle reflex model
proposed by Geyer and Herr [20].

Considering the peak isometric forces, the muscle groups
with similar functions in the lower limbs were combined into
one MTU, so we obtained 9 MTU representing each leg:
gluteus maximus (GMAX), biarticular hamstrings (HAMS),
iliopsoas (ILPSO), rectus femoris (RF), vastus (VAS), biceps
femoris short head (BFSH), gastrocnemius (GAS), soleus
(SOL), and tibialis anterior (TA) [21]–[23]. The tendon slack
length for each MTU was calculated using experimental
data [23]. Previous studies in [24], [25] found that represent-
ing muscle paths as a single line tends to overestimate length

FIGURE 2. Predictive forward framework for dynamic optimization.
Relationship between gait controller, muscle model, contact model,
measurement feedback and forward simulation. We implement
musculoskeletal model in OpenSim 3.3 and use SCONE for forward
prediction simulation.

changes, so we set the maximum muscle fiber contraction
velocity to 15 optimal fiber lengths per second (lm0 /s). The
tendons are modeled as nonlinear springs that generate torque
when the joint is hyperflexed or hyperextended. Ligaments
generate torque when the hip is flexed over 120◦ or extended
over 30◦, the knee is flexed over 140◦ or extended over 0◦, the
ankle is dorsiflexed over 20◦ or plantarflexed over 40◦ [1].
We apply the Hill-type model [15] with three elements in

each MTU model: contractile element (CE), parallel-elastic
element (PE), and serial-elastic element (SE) (see Fig. 3). The
following relations hold true for our model:

FMT = FT = FMcosα, (1)

FT = kT (LMT − LMcosα − LST ) , (2)

FM = afl (LM ) fv
(
L̇M
)
+ fPE (LM ) , (3)

at+1 = 100h (ut − at)+ at , (4)

where FMT , FT and FM are complete musculotendi-
nous actuator, tendon force and muscle force, respectively.
LMT ,LM ,LST are the complete length of the model unit,
muscle length and tendon slack length. kT denotes the ten-
don stiffness properties. Muscle excitation, u, represents the
neural signals from the central nervous system and is a value
between 0 and 1, representing the discharge rate of neurons.
The excitation-activation model is represented by the first-
order delay of equation (4). The model used the time delay
(td ) parameters of [1].

For all positive feedback and PD control laws, the parame-
ter for time delay, is set for each muscle depending on the
most proximal joint over which the muscle crosses based
on values from previous simulation work using reflex-based
controls [20], [26]: time delay is 5ms for the hip, 10ms for
the knee, and 20ms for the ankle. The time delays of 20ms,
10ms, and 5ms represent long, medium and short neural
signal delays. They are not tuned but estimated from the time
gaps between M-wave and H-wave of H-reflex experiments
(for details see [27]). When considered with a first-order
activation time constant of 10ms, this delay better represents
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the short-latency TA suppression (56 to 74 ms) observed in
experiments [28]. Muscle activations are calculated from the
muscle excitations using a first-order dynamic model, with
activation and deactivation time constants of 10ms and 40ms,
respectively [29]. Muscle activation, a, and muscle excitation
are represented by the differential equation (4), where h is
the step size (1/2400 s), at and ut denote the muscle acti-
vation and excitation values at the t-th timestep. fPE (LM )
is passive-element force-length curve [30] for inputs that
are not normalized. The relationship between muscle force-
muscle fiber length, fl (LM ), and muscle force-muscle fiber
length velocity, fv

(
L̇M
)
, is based on the relevant conclusions

of [30], [31].

FIGURE 3. The architecture of the adopted Hill-type muscle-tendon
actuator model. PE is the passive elastic element, CE is the muscle
contractile element, and SE is the serial-elastic element that represents
the tendon. FT is the complete musculotendinous actuator. LMT , LM , are
the complete length of the model unit and muscle length.

2) KINEMATIC AND KINETIC MODELING FOR LOWER LIMB
EXOSKELETON REHABILITATION ROBOT
The lower limb exoskeleton rehabilitation robot system is
a complex nonlinear highly coupled dynamic system [32].
The model of the robot has three parts: robot kinematics
model, dynamics model and variable parameter impedance
controller.

FIGURE 4. Two link model for dynamic analysis of lower limb exoskeleton
robot. It includes link lengths (l1, l2), the center of gravity for link lengths
(lc1, lc2), the approximate mass of the lower limbs (m1, m2), the angles
between the rotational point (q1, q2), counterclockwise negative.

TABLE 1. Parameters for simulation.

Planar mechanical structure with two rotating joints (see
Fig. 4). The notation is solved by: for i = 1, 2, qi denotes
the joint turning angle, which is also used as a generalized
coordinate,mi denotes the mass of link i, li denotes the length
of link i, lci denotes the distance between the previous joint
and the center of mass of link i, and Ii denotes the rotational
inertia of link i about the axis that passes through its center of
mass and points out of paper.

We use the Denavit-Hartenberg joint variables as gener-
alized coordinates and thus are able to efficiently derive the
Jacobian matrix expressions to calculate the kinetic energy as{

vc1 = Jvc1 q̇
vc2 = Jvc2 q̇,

(5)

with:

Jvc1 =

−lc1sinq1 0
lc1cosq1 0

0 0

 , (6)

Jvc2 =

−l1sinq1 − lc2sin (q1 + q2) −lc2sin (q1 + q2)
l1cosq1 + lc2cos (q1 + q2) lc2cos (q1 + q2)

0 0

 .
(7)

The inertia matrix is

D (q) = m1JTvc1Jvc1 + m2JTvc2Jvc2 +
[
I1 + I2 I2
I2 I2

]
, (8){

cosαcosβ + sinαsinβ = cos(α − β)
cos2θ + sin2θ = 1,

(9)

equation (8) combined with the trigonometric constant equa-
tion (9) is obtained as

D (q) =
[
m1l2c1 + m2

(
l21 + l

2
c2 + 2l1l2cosq2

)
+ I1 + I2

m2
(
l2c2 + l1lc2cosq2

)
+ I2

m2
(
l2c2 + l1lc2cosq2

)
+ I2

m2l2c2 + I2

]
, (10)

Calculating the Christoffel symbols, we get

C (q, q̇) =
[
−0.4q̇2sinq2 −0.4sinq2(q̇1 + q̇2)
0.4q̇1sinq2 0

]
. (11)

The gravity moment vector g (q) is given by

g (q) =
[
(m1 + m2) l1cosq2 + m2l2cos(q1 + q2)

m2l2cos(q1 + q2)

]
. (12)
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FIGURE 5. The gait controller combines state machines and low-level control laws to determine the excitation, using the right leg as an example.

The dynamic equation of the lower limb exoskeleton reha-
bilitation robot is

τ = D (q) q̈+ C (q, q̇) q̇+ g (q)+ τd , (13)

where q ∈ R2 is the angular displacement of the joint,
D (q) ∈ R2×2 is the inertia matrix of the robot, C (q, q̇) ∈ R2

denotes the Centrifugal and Coriolis forces, g (q) ∈ R2 is the
gravity term, τ ∈ R2 is the control torque and τd ∈ R2 is
the applied perturbation. Simulation parameters for the robot
(see Table 1).

C. CONTROLLER
1) GAIT CONTROLLER FOR PREDICTIVE FORWARD
SIMULATION FRAMEWORK
We trained a planar musculoskeletal model actuated by 18
MTU actuators to walk by optimizing the parameters of a gait
controller. The parameters are evaluated using a combination
of high-level state machines and low-level control laws to
calculate muscle excitation. The high-level state machine has
two states in stance: early stance (ES), mild stance (MS), and
three states in swing: pre-swing (PS), swing (S), and landing
preparation (LP). Five transitions are generated between the
five states, where the transitions associated with landing and
standing are determined by comparing the ground reaction
force of the ipsilateral foot to the threshold. In contrast, the
transitions related to swing are determined by comparing the
horizontal distance of the ipsilateral foot from the pelvis to
the threshold. The five transitions are ES to MS, where the
horizontal distance between the ipsilateral foot and the pelvis
is less than the threshold; PS to S, where the ground reaction
force of the ipsilateral foot is below the threshold; S to LP,
where the horizontal distance between the ipsilateral foot
and the pelvis is greater than the threshold; LP to ES, the
ground reaction force of the ipsilateral foot is greater than
the threshold; MS to PS, which is not controlled by the free
parameter, occurred when the contralateral leg entered the ES
state. The transition for each state is determined by the activa-
tion of the low-level control law. The low-level control laws
include signal constants, feedback based on muscle length,
muscle velocity and muscle force, and PD control based on

the pelvic tilt angle. The positive and negative feedback is
denoted by (+) and (-), respectively (see Fig. 5).

In the low-level control laws, given the MTU model, the
positive force feedback law, positive length feedback law,
positive length velocity feedback law and Muscle-driven PD
control law are defined as

uF± = ±KF±F̃MT (t − td ) , (14)

uL+ = max
(
0,KL+

[
L̃M (t − td )− L0

])
, (15)

uV+ = max
(
0,KV

[
˜̇LM (t − td )

])
, (16)

uPD = KP[θ (t − td )− θ0]+KV [θ̇ (t − td )], (17)

where F̃MT (t − td ), L̃M (t − td ) and ˜̇LM (t − td ) are the MT
model force normalized by FMT , LM and L̇M with a time-
delay of td , respectively. KP, KV , θ , are proportional coef-
ficients, differential coefficients and joint angles of the PD
controller, respectively. PD controller is to ensure the stability
of the controlled joint movement. The objective function, J ,
quantified high-level tasks of walking:

J = ωcotJcot + ωspdJspd + ωheadJhead , (18)

The goal is to minimize the gross cost of transport (Jcot )
within the specified speed (Jspd ), while ensuring head (Jhead )
stability. To balance the competitive objectives, the weights
were manually adjusted to the following values [1]: ωcot =
1kg/J , ωspd = 10000s−1, ωhead = 0.25s3/m2. These
weights determine the priority of the solution, that is, the
contribution of the Jhead term is greater than the contribution
of Jspd , while ensuring that Jcot is minimal.

The forward dynamics model for gait controller consists
of 70 free optimization parameters, 16 joint offset, four range
thresholds and load thresholds for swing and stance, respec-
tively [33]. The gait controller is implemented in SCONE,
including leg states update, target features update and compu-
tation of the excitation signal (simulating the central nervous
system), with output as u(t − td ). The gait controller com-
putes muscle excitations, u(t), for a musculoskeletal model
to generate a forward simulation. Sensory feedback, based
on the model’s muscle and joint states, is used in a feedback
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loop with the gait controller. The objective function quanti-
fies the performance of each simulation, and a Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) opti-
mization method updates the values of the variables in the
optimization (see Fig. 2).

2) VARIABLE PARAMETER IMPEDANCE
CONTROLLER FOR ROBOT
The lower limb exoskeleton rehabilitation robot system is
a complex nonlinear highly coupled dynamic system [32].
The wearable lower extremity rehabilitation exoskeleton is a
human-machine interactive robotic system, thus requiring not
only the wearer to be comfortable, but the physiotherapist can
adjust the robot’s damping force and stiffness force according
to the patient’s rehabilitation level. The impedance control
relationship is

MË + BĖ + KE = −Fe, (19)

where, Fe represents the contact force with the environment,
τd = −Fe. M , B, and K denote the inertia matrix of the
impedance model, damping matrix and stiffness matrix of the
robot, respectively [34]. E denotes the error between actual
position and desire position (E = qd − q). Considering that
the rehabilitation robot we developed is mainly used in the
passive training stage of the primary training for the affected
limb. Owing to the relatively gentle and comparatively small
joint angular accelerations during this training stage, the iner-
tia matrixD (q) of the robot kinematics and the inertia matrix
M of the impedance model are considered equal. Thus, when
equation (13) is applied to the external environmental forces
to obtain weakly coupled impedance control in joint space,
as shown in the following nonlinear equation:

τ = C (q̇, q) q̇+ g (q)− Bd q̇+ Kd Ė, (20)

where, q ∈ R2 is the joint angular displacement of the joint.
qp ∈ R2 is the desired value of joint angular displacement
and. g (q) ∈ R2 is the gravity term. Bd ∈ R2 is the desired

FIGURE 6. Architectural framework of variable impedance PD controller
based on predictive assessment. The input to the control system is the
predicted joint angles and torque after the optimization [35]. In the
exoskeleton robot model, we assume that the masses, lengths and
momentum of Inertia for shank and thigh are 8kg, 0.5m and 0.4kgm2,
respectively.

damping matrix. Kd ∈ R2 is the desired stiffness matrix. Bd
and Kd are generated by the variable impedance controller
(see Fig. 6). Equation (20) is a simplified spring-damped first-
order dynamic system via a second-order system consist-
ing of spring-damped-mass. This processing eliminates the
torque feedback term and holds the possibility for subsequent
simplification of the robot hardware.

The red dotted box (see Fig. 6) shows the exoskeleton
robot hip and knee joints both applying the impedance control
of equation (20). The variable impedance controller in the
black dotted box (see Fig. 6) allows the physiotherapist to
adjust the impedance parameters Kd and Bd according to the
rehabilitation training needs. For example, the physiothera-
pist can increase the damping coefficient when active training
of the affected limb is required, and similarly, the elasticity
coefficient can be increased when the robot is required to
drive the affected limb for passive training. The rules for
determining the impedance parameters will be investigated
in our next work.

III. RESULTS AND DISCUSSION
A. VALIDATING THE MODEL’S GAIT OVER
A RANGE OF SPEEDS
We validated the ability of the predictive forward model
and applied the optimization framework to capture the walk-
ing trends at four different speeds: three prescribed speeds
0.6 m/s, 1 m/s and 1.4 m/s, and a self-selected speed. Individ-
ual comparisons of each speed with the experimental data of
Schwartz et al. [36] are (see Fig. 7).
The simulated kinematic and kinetic adaptations, joint

angles matched the trends observed in the experimental
data [36], [37]. The optimized gait generated by walking at
a constant speed of 0.6 m/s had significantly larger hip (see
Fig. 7a) and knee angles (see Fig. 7b) in the late swing phase.
At the prescribed speed of 1m/s, the hip and knee angles were
essentially the same as the self-selected speed in gait cycle,
but in the pre-swing phase, the knee angles (see Fig. 7b)
were smaller compared to the experimental data. With the
prescribed speed of 1.4 m/s, the hip joint angle (see Fig. 7a)
was out of range in the pre-swing phase and the knee joint (see
Fig. 7b) entered flexion earlier, indicating that the optimized
gait speed was increased.

Overall, the generated optimized gait for walking at a
constant speed of 0.6 m/s exhibited greater angles at the
hip, knee, and ankle joints than the other three speed pat-
terns in gait cycle. The self-selected speed was the optimized
gait generated by setting the initial speed in the range of
(0.5-1.5 m/s). The trend for the self-selected gait was most
similar to the prescribed speed of 1m/s. In addition, the ankle
joint (see Fig. 7c) of our model showed a significant early
entry into dorsiflexion compared to the experimental data.
However, this paper mainly focuses on finding the impacts of
HAMS, GAS and BFSH on the knee joint. Therefore, it has
no influence on the subsequent study.

This indicates that the magnitude of the prescribed speed
is not necessarily related to the change of each joint angle
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FIGURE 7. Validating the model’s gait over a range of speeds. Three prescribed speeds 0.6 m/s
(red), 1 m/s (blue) and 1.4 m/s (green), and a self-selected speed (black) were analyzed. Joint
angles for the hip (a), knee (b) and ankle (c) were plotted. Positive joint angles indicate flexion.
Simulated kinematics and kinetics are compared with the experimental data (gray area) collected
by Schwartz et al. [36].

FIGURE 8. Validation for knee joint in gait cycle with muscle contracture. Knee kinematics and kinetics with normal (red),
mild (blue), moderate (green) and severe (purple) contractures in HAMS, GAS and BFSH, respectively, are compared with the
experimental data (gray area) collected by Florent et al. [37], [38]. The gait for knee angles (left column) and knee moments
(right column) are plotted with different severities muscle contractures.
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FIGURE 9. Validation for knee joint in gait cycle with muscle weakness. Knee kinematics and kinetics with normal
(red), mild (blue), moderate (green) and severe (purple) weakness in HAMS, GAS and BFSH, respectively, are compared
with the experimental data (gray area) collected by Florent et al. [37]. The gait for knee angles (left column) and knee
moments (right column) are plotted with different severities of muscle weakness.

TABLE 2. The impact of contracture or weakness for HAMS, GAS and BFSH on knee joint in gait cycle.
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FIGURE 10. Experimental arrangement of muscle activation.

in the optimized gait. The self-selected speed could find a
solution to the optimization framework and be insensitive to
the initial guesses. So, we subsequently used self-selected
speed to validate the relationship between HAMS, GAS and
BFSH and knee joint.

The previous results gave us confidence in the forward
predictive model. We then used the framework to study how
the HAMS, GAS and BFSH muscle groups act on the knee
joint in gait cycles under contracture or muscle weakness.
We modified the optimal fiber lengths of the HAMS, GAS,
and BFSH muscles in the musculoskeletal model to 85%,
70%, and 55% of their original value, respectively, repre-
sented by mild, moderate, and severe degrees of contracture.
Similarly, we modified the maximum isometric forces of
these three muscle groups to 25%, 12.5%, and 6.25% of
their original value, respectively, and expressed them as mild,
moderate, and severe muscle weakness, respectively. Angle
simulation with muscle contracture demonstrates that when
different degrees of contracture is applied to HAMS (see
Fig. 8a), GAS (see Fig. 8b) and BFSH (see Fig. 8c), the knee
joint exhibits hyperflexion during the contact phase with the
ground, and the degree of sensitivity from strong to weak is
GAS>BFSH>HAMS. Contractures of HAMS (see Fig. 8a)
and GAS (see Fig. 8b) results in knee hyperflexion during the
swing phase, but it is noted that when the HAMS contracture

is severe (see Fig. 8a), the knee flexion during the swing
phase is instead significantly relieved. The more severe GAS
contracture (see Fig. 8b), the more severe knee flexion. The
moment simulation results indicate (see Figs. 8(d)-(f)) that all
three muscle contractures cause the knee torque to increase,
and as the contracture becomes more severe, the knee torque
becomes greater. Muscle weakness in the GAS (see Fig. 9b)
and BFSH (see Fig. 9c) muscle groups had little effect on
knee flexion, but mild muscle weakness in the HAMS (see
Fig. 9a) had an accelerating effect on walking speed, while
moderate and severe HAMSmuscle weakness hinderedwalk-
ing speed instead. The effect of muscle weakness in BFSH is
more sensitive to the knee moment (see Fig. 9f ): the more
severe the muscle weakness of BFSH, the weaker the knee
moment in the whole gait cycle.

On the basis of these results, we assessed the level of
influence by HAMS, GAS and BFSH muscle groups on
knee joints in gait cycle (see Table 2). (+) represents the
enhancement effect, (-) represents obstruction. The number
indicates the intensity. The larger the number, the heavier the
impact. The assessment reference value reflects the extent of
impact by HAMS, GAS and BFSH muscle groups on knee
joint in gait cycle.

The physical therapist is able to modify the MTU
parameters in the predictive forward simulation framework
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referencing Table 2. The contracture effect of the MTU actu-
ators is obtained by modifying the optimal fiber length of
the muscle model, similarly, the muscle weakness effect of
the MTU actuators is obtained by modifying the maximum
isometric force of the muscle model. It is experimentally
demonstrated that each change in MTU parameters has a
different effect on the optimization of knee gait. We aim
to reproduce the gait simulation of the affected limb using
the forward predictive simulation framework to obtain real-
time data on knee joint angle and knee joint moment in gait
cycle. The parameters modified by the physiotherapist are
used as the desired values for the lower limb exoskeleton
rehabilitation robot controller to realize the robot’s spatial
motion to track the movement of the affected limb offline.
In addition, physiotherapists can adjust the damping and
stiffness parameters offline through the patient’s condition,
so that the robot can not only quickly follow the affected
limb trajectory, but also adjust the damping force and stiff-
ness force to realize active rehabilitation training or passive
rehabilitation training.

B. EXPERIMENTAL VALIDATION OF MUSCLE ACTIVATION
In the gait cycle, muscle actuators are directly reflected by
muscle activation on its surface [26]. Therefore, we col-
lected experimental data on muscle activation in the HAMS,
GAS and BFSH muscle groups of the normal human right
leg in gait cycle. The height and weight of the subject are
approximately 175 cm and 80 kg, respectively. Electromyo-
grams (EMG) sensor use DTing XS01 type dry electrode
biosensor (see Fig. 10) and the sampling frequency is
1000 HZ , the signal-to-noise ratio is 59.5 dB, the sampling
accuracy is 12Bit , the amplification is 700 times. DTingXS01
is easy to measure but not easily fixed to the skin. Therefore,
we fix the sensor with nylon straps and tape to avoid relative
displacement to the skin. The EMG sensor communicates
with the handheld device via Bluetooth in real-time to record
and generate image information.

Considering that the intensity of muscle activation
increases with exercise time, the surface EMG signal is
enhanced. Therefore, we intercepted the EMG signals of
these three muscle groups in the latter part of the experiment
for analysis, for it was found that the cycle changes of EMG
signals were relatively stable in the latter part of the experi-
ment (see Fig. 10). We then used the muscle on-off time to
indicate the muscle activation, and compared the binarized
processed EMG signals with simulated muscle activation
(normal gait, self-selected speed) (see Fig. 11).

The simulated muscle activity presented many of the sig-
nificant features observed in the experiments. During early
stance and landing preparation, it was the increase in body
weight that made the HAMS very active. In mid-stance,
when the knee joint needs to be driven to start flexion, the
GAS behaves quite actively. While the swinging phase, the
BFSH was active, allowing maximum knee flexion. There
were some differences between our simulated data and exper-
imental EMG, in which the activity of HAMS and BFSH

FIGURE 11. Muscle activation in normal gait at self-selected speed.

during landing preparation was lower than the experimental
data. The activation sequence of the three muscle groups also
ensured a continuous flexion-extension of the knee joint in
gait cycle.

C. SIMULATION OF ROBOT KNEE JOINT TRACKING
The approximate clinical gait knee flexion angle and torque
parameters obtained using the predictive forward simulation
framework are used as inputs to the lower limb exoskele-
ton rehabilitation robot controller with variable impedance
parameters. The input values and impedance parameters
allowed for adjustment by the physiotherapist depending on
the rehabilitation situation.

We performed simulations for the variable parame-
ter impedance controller with gravity compensation in
MATLAB (MathWorks, Natick, Massachusetts, USA). Three
sets of impedance parameters (Bd = 10Ns/m, Kd =
5000N/m, Bd = 50Ns/m, Kd = 500N/m and Bd =
50Ns/m, Kd = 5000N/m) were set and external sinusoidal
perturbations disturbance was applied during 35%-40% of
the gait cycle. The robot knee joint angle trajectory tracking
and torque tracking in gait cycle were obtained separately
(see Fig. 12).

The simulation results show that the knee joint angle tra-
jectory tracking and torque tracking of our established robot
controller model are effective. When external perturbations
are applied, both robot knee joint angle tracking and torque
tracking vary greatly with different impedance parameters.
Specifically, the large stiffness of the impedance controller
makes the robot knee joint angle tracking excellent in real-
time, and the large damping of the impedance controller
renders the robot knee joint show more obvious elasticity
when it receives external resistance.

The knee moment for the optimized gait is consistent with
the overall trend of the experimental data, however, between
35% and 45% of the gait cycle (from the right foot leaving the
ground to the start of swing). It might be caused by the error
between the model center of gravity and the normal human
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FIGURE 12. Knee joint angle trajectory tracking and torque tracking. The
parameters obtained from the uninjured walking simulation (gray area)
are compared to the angular tracking (top) and moment tracking (bottom)
of the robot knee joint with three different impedance parameters,
Damping Bd (Ns/m) and Stiffness Kd (N/m).

model center of gravity position during the motion. During
80% to 100% of the gait cycle (from right heel touching the
ground to left toe off the ground), the simulation deviated
from the experiment, and the model trunk tilted forward
prematurely. The knee joint angle in the optimized gait of a
normal human is smaller than the experimental data in the
stance phase. The optimized model exhibited leg stiffness in
the stance phase, probably owing to the inadequate design
of the model muscle actuators, which could not mimic com-
pletely the effect of human lower limb muscle groups on the
knee joint.

IV. CONCLUSION
In this paper, a lower limb exoskeleton rehabilitation robot
framework based on predictive forward simulation was pro-
posed, which mainly consists of a clinical gait assessment
framework based on predictive simulation and a variable
parameter impedance robot control framework including
gravity compensation. The paper established a musculoskele-
tal model for predictive forward simulation and opted for
self-selected speed to investigate the impact relationships of
the model’s HAMS, GAS and BFSH muscle groups on the
knee joint in gait cycle, respectively. On this basis, it was
proposed that the parameters of the predictive simulation
muscle model were appropriately modified according to the
affected limb diagnosis combined with the impact relation-
ships of the model muscle groups on the knee joint to obtain
the simulation model and the optimized parameters of each
joint to obtain the maximum matching of the clinical gait.
Real-time parameters of knee joint angle and torque in gait
cycle were applied as the expected values of impedance con-
troller for exoskeleton rehabilitation robot in this paper, and
different angle trajectory tracking and torque tracking effects
of the robot were obtained by adjusting damping matrix and
stiffness matrix parameters of impedance controller.

We developed an impedance controller with variable
parameters for the lower limb exoskeleton rehabilitation
robot. Although gravity compensation is taken into account,
we equate the inertia matrix of the impedance model and the
inertia matrix of the robot model, however, in the later stage
of rehabilitation training, the acceleration of the rehabilitation
robot will increase with the strength enhancement of the
affected limb, and the performance of our impedance con-
troller will decline. To achieve the ideal impedance control,
it is necessary to meet the requirements of obtaining real-time
feedback of the robot joint angle and joint angular veloc-
ity, real-time feedback of the robot joint torque, and torque
control of the robot. Therefore, our impedance controller
is only suitable for the early stage of rehabilitation when
the rehabilitation movement is slow. Actually, for the actual
robots, the selection of impedance parameters varies greatly
due to their different kinetic parameters. Our team is trying to
solve this problem. First, we intend to obtain the mechanical
impedance parameters based on online recognition. Then we
apply fuzzy neural networks to dynamically tune the target
impedance control parameters to adapt to the changes of
the affected limb. In addition, we also plan to design robust
adaptive PD controllers to achieve smooth trajectory tracking
for passive training modes in which the upper bound of the
perturbed signal is known. To realize the ideal impedance
control, we need to satisfy the requirements of obtaining
real-time feedback of the robot’s joint angle and joint angular
velocity, real-time feedback of the robot’s joint torque, and
the robot’s torque control. These are also the main contents
of our next work.
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