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ABSTRACT Face morphing attack detection is a challenging task. Automatic classification methods and
manual inspection are realised in automatic border control gates to detect morphing attacks. Understanding
how a machine learning system can detect morphed faces and the most relevant facial areas is crucial. Those
relevant areas contain texture signals that allow us to separate the bona fide and the morph images. Also,
it helps in the manual examination to detect a passport generated with morphed images. This paper explores
features extracted from intensity, shape, texture, and proposes a feature selection stage based on the Mutual
Information filter to select the most relevant and less redundant features. This selection allows us to reduce
the workload and know the exact localisation of such areas to understand the morphing impact and create
a robust classifier. The best results were obtained for the method based on Conditional Mutual Information
and Shape features using only 500 features for FERET images and 800 features for FRGCv2 images
from 1,048 features available. The eyes and nose are identified as the most critical areas to be analysed.

INDEX TERMS Morphing, differential morphing attack detection, feature selection.

I. INTRODUCTION

In recent years, ID verification systems have been exposed to
variations of presentation attacks. For instance, they compare
the user selfie with a photo ID extracted from the user ID card
or passport. The critical challenge is to ensure whether the
ID card image has been tampered with in the digital or
physical domain. Image tampering is a significant issue for
such scenarios and biometric systems at large [1], [2].

One of these approaches is related to the passports, and the
Morphing attack on face recognition systems based on the
enrolment of a morphed face image, which is averaged from
two-parent images and allowing both contributing subjects to
travel with the passport [2]-[4].

Morphing attack detection is a new topic aimed to detect
unauthorised individuals who want to gain access to a ““valid”
identity in other countries. Morphing can be understood as a
technique to combine two o more look-alike facial images
from one subject and an accomplice, who could apply for a
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valid passport exploiting the accomplice’s identity. Morph-
ing takes place in the enrolment process stage. The threat
of morphing attacks is known for border crossing or iden-
tification control scenarios. It can be broadly divided into
two types: (1) Single Image Morphing Attack Detection
(S-MAD) techniques (a.k.a as No-Reference MAD) and Dif-
ferential Morphing Attack Detection (D-MAD) methods. The
S-MAD is more challenging among these two types as the
decision needs to be taken on a single image without a trusted
image available for the same subject [5]. S-MAD can be
organised according to different approach: Textures, Shape,
Quality, Hybrid features, Residual noise and Deep learning.

A morphing attack’s success depends on the decision of
human observers, especially a passport identification expert.
The real-life application for a border police expert who com-
pares the passport reference image of the traveller (digital
extracted from the embedded chip) with the facial appearance
of the traveller [6] is too hard because of the improvements of
the morphing tools and because of the difficulty for the human
expert to localise facial areas, in which morphing artefacts are
present.
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This work proposes to add an extra stage of feature selec-
tion after feature extraction based on Mutual Information M7
to estimate and keep the most relevant and remove the most
redundant features from the face images to separate bona
fide and morphed images on a S-MAD scenario. The high
redundancy between features confuses the classifier.

The contributions of this work are described as follows:
a) Identify the most relevant and less redundant features
from faces that allow us to separate bona fide from morphed
images. b) Localise the position of the most relevant areas
on the images. c) Visualise the areas that contain morphing
artefacts d) Reduce the algorithm’s complexity, sending fewer
features to the classifier. e) Analysis of the feature level
fusion, the intensity, shape, and texture information. All these
contributions may help to guide the manual inspection of
morphed images.

This paper is organised as follows: a summary background
in features selection and MI is presented in section III-B.
The relate work is describe in Section II. The methods
are described in Section III. The database are described
in section IV and the experiments and results are presented
in section V and conclusion are presented in section VII.

Il. RELATED WORK

Face morphing attack has captured the interest of the research
community and government agencies in Europe. For instance
the European Union (EU) funded the image Manipulation
Attack Resolving Solutions (iMARS) project,! developing
new techniques of manipulation and detection of morphed
images.

Ferrera et al. [2] were the first to investigate the face
recognition system’s vulnerability with regards to morphing
attacks. He has evaluated the feasibility of creating deceiving
morphed face images and analysed the robustness of commer-
cial face recognition systems in the presence of morphing.

Scherlag et al. [3] studied the literature and developed a
survey about the impact of morphing images on face recog-
nition systems. The same author [4] proposed a face repre-
sentation from embedding vectors for differential morphing
attack detection, creating a more realistic database, different
scenarios, and constraints with four automatic morphed tools.
He also reported detection performances for several texture
descriptors in conjunction with machine learning techniques.

Indeed, the NIST Face Recognition Vendor Test (FRVT)
applied to MORPH images [7] evaluates and reports the
performances of different morph detection algorithms organ-
ised in three tiers according to the morph images quality.
Tier 1 evaluates low-quality morph images; Tier 2 considers
automatic morph images; and Tier 3 for high-quality images.
Further, the NIST report is organised w.r.t local (crop faces)
and global (passport-photos) morphing algorithms. This fact
confirms and shows that morphing images is a problem con-
sidering many scenarios.

Uhttps://cordis.europa.eu/project/id/883356
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Most of the state-of-the-art approaches use machine learn-
ing and deep learning to detect and classify morph images.
Also, they are utilising embedding vectors from deep learning
approaches to detect and classify the images. This paper
focused on the machine learning method. In this scenario,
popular texture-based methods include local binary patterns
(LBPs) [8], [9], Local Phase Quantisation (LPQ) features [10]
and Binarised Statistical Image Features (BSIF) [11]-[13]
has been used. Furthermore, these texture features have
also been extracted for different colour channels to obtain
a robust detection performance. Several variants of LBPs
and a histogram of oriented gradients (HOG) have also been
explored in the literature [14]. A summary of S-MAD lit-
erature was added. See Table 1. The use of texture-based
methods has shown good performance on S-MAD. However,
those approaches did not analyse the most relevant features
and their localisation on the original images. An efficient
feature selection method may help to improve this limitation.

TABLE 1. Summary S-MAD state of the art.

Author Approach Database | Link Dataset
Raghavendra et al. Image Utrecht [15]
[12], [13] degradation/BSIF In house
Debiasi et al. PRNU
[16], [17] Analysis FRGCv2 (18]
Zhang et al. SPN Utrecht
[19] analysis FEI (201 115]
Ulrich et al. PRNU
[21] analysis FRGCv2 [18]
Debiasi et al. PRNU Synthetics
[22] analysis CelebA Images
Venkatesh et al. Denoise FRGC (23]
[5] CNN PUT
Raghavendra et al. Luminance MAFI [12]
[24] component
Makrushin et al. double Utrench
[25] compresion FEI (201 [15]
Neubert et al. double Utrench
[26] compresion FEI (201 115]
Selb([);(;]et al. Reflection analysis In house N/A
0i av‘[l‘li)“] etal. LPQ Outex 28]
Ulrlc[g]et al. LBP In house N/A

Regarding feature selection, raw input data often has very
high dimensionality and a limited number of samples in
image understanding. In this area, feature selection plays an
essential role in improving the object identification process’s
accuracy, efficiency, and scalability. Since relevant features
are often unknown a priori in the real world, irrelevant
and redundant features may be introduced to represent the
domain. However, using more features implies increasing
computational cost in the feature extraction process, slow-
ing down the classification process and increasing the time
needed for training and validation, leading to classification
over-fitting. As is the case in most image analysis problems,
with limited sample data, irrelevant features may obscure the
distributions of the small set of relevant features and confuse
the classifiers.

Peng et al. [29] develop a general framework to analyse the
interaction between the redundancy and the relevance of the
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FIGURE 1. Framework proposed with feature selection stage.

features in a machine learning method to look at the most
valuable features based on MI.

Guyon et al. [30] proposed the Conditional Mutual Infor-
mation Maximisation (CMIM) to estimate the relationship of
the relevance of the features among three pairs of features.

Vergara and Estevez [31] proposed an improvement for
CMIM [30] approach based on the selection of the first
relevant feature. The traditional method maximised the con-
ditional mutual information to select relevant features. This
author proposes the average of the M1 to reduce the difference
among chosen features.

Tapia et al. [32], [33] used the measures of M1 to guide the
selection of bits from the iris code to be used as features in
gender prediction. Also, in [33] used complementary infor-
mation to create clusters of the most relevant features based
on information theory to classify gender from faces.

According to those previous works, we believed that M1 is
suitable for detecting morphed images to localised and detect
the artefact present in morphed images using an efficient
number of features.

lll. METHODS

Figure 1 shows the proposed framework used in this paper,
where a feature selection stage is added after traditional
feature extraction approaches.

A. FEATURE EXTRACTION
Three different features were extracted from the morphing
face images: Intensity, Texture and Shape.

1) INTENSITY
For raw data the intensity of the values in grayscale were used
and normalised between 0 and 1.

2) UNIFORM LOCAL BINARY PATTERN

For texture, the histogram of uniform local binary pattern and
Binary Statistical Image Feature were used [11], [34]. LBP is
a gray-scale texture operator which characterises the spatial
structure of the local image texture. Given a central pixel in
the image, a binary pattern number is computed by comparing
its value with those of its neighbours. The original operator
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used a 3 x 3 windows size. LBP features were computed from
relative pixels intensities in a neighbourhood, as is show in the
following equation:

LBPp R(x,y) = U h(I(x,y), I(x",¥)) ey
(x’,y")eN(x,y)

where N (x, y) is vicinity around (x, y), U is the concatenation
operator, P is number of neighbours and R is the radius of the
neighbourhood.

The uniform Local Binary Pattern (uLBP) was used as
texture information. The uLBP was introduced, extending the
original LBP operator to a circular neighbourhood with a dif-
ferent radius size and a small subset of LBP patterns selected.
In this work we use, ‘U2’ which refers to a uniform pattern.
LBP is called uniform when it contains at most 2 transitions
from Oto 1 or 1 to 0, which is considered to be a circular code.
Thus, the number of patterns is reduced from 256 to 59 bins.

The reasons for omitting the non-uniform patterns are
twofold. First, most of the LBP in natural images are uniform.
It was noticed experimentally that uniform patterns account
for a bit less than 90% of all patterns when using the (8,1)
neighbourhood. In experiments with facial images, it was
found that 90.6% of the patterns in the (8,1) neighbourhood
and 85.2% of the patterns in the (8,2) neighbourhood are
uniform [35]. The second reason for considering uniform
patterns is the statistical robustness. Using uniform patterns
instead of all the possible patterns has produced better recog-
nition results in many applications. On one hand, there are
indications that uniform patterns themselves are more stable,
i.e. less prone to noise and on the other hand, considering
only uniform patterns makes the number of possible LBP
labels significantly lower and reliable estimation of their
distribution requires fewer samples. See Figure 2.

The Binary Statistical Image Feature (BSIF) was also
explored as texture method. BSIF is a local descriptor
designed by binarising the responses to linear filters. The
filters learn from thirteen natural images using indepen-
dent component analysis (ICA). The code value of pixels
is considered a local descriptor of the image intensity pat-
tern in the pixels’ surroundings. The value of each element
(i.e., bit) in the binary code string is computed by binarising
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FIGURE 2. Example of LBP images. Left: Grayscale image. Middle:
Traditional LBP (256 bins). Right: LBP with uniform pattern
implementation (59 bins).

the response of a linear filter with a zero threshold. Each bit
is associated with a different filter, and the length of the bit
string determines the number of filters used. A grid search
from the 60 filters available in BSIF implementation was
explored. The filter 5 x 5 and 9 bits obtained the best results
estimated from the baseline approach. The resulting BSIF
images were used as an input of the classifiers.

3) INVERSE HISTOGRAM ORIENTED GRADIENT

From Shape, the inverse Histogram of oriented gradients [36],
[37] were used. The Histogram of oriented gradient was pro-
posed by Dalal and Triggs [37]. The distribution directions of
gradients (oriented gradients) are used as features. Gradients,
x, and y derivatives of an image are helpful because the
magnitude of gradients is large around edges and corners
(regions of abrupt intensity changes). We know that edges
and corners contain more information about object shape
than flat regions. However, this descriptor presents some
problems. For instance, when we visualise the features for
high-scoring false alarms in the object detection area, they
are wrong in image space. They look very similar to true
positives in feature space. To avoid this limitation that con-
fuses the classifiers, we used the visualisation proposed by
Vondrik et al. [36] to select the best parameters that allows us
to visualise the artefacts contained in morphed images. This
implementation used 10 x 12 blocks and 3 x 3 filter sizes.
One example is shown in Figure 3.

B. FEATURE SELECTION

Feature selection (FS) is the process in which groups of
features (Filter method) derived from image areas and tex-
tures respectively pixels (in raw images) from facial images
out of a dataset are selected based on some measure or
the correlation such as F-statistic, Logistic regression or M/
between the features and the class of the labels. See Figure 4.
It is closely related to feature extraction, a process in which
feature vectors are created from the facial image. This takes
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FIGURE 3. Example images of inverse HOG. Left: Morphed images.
Middle: Traditional HOG. Right: Inverse HOG.

place through domain transformation or manipulation of the
data space and can be considered as selecting a subset of
features.

Figure 4 shows a random morphed image with three dif-
ferent correlation metrics. The heat maps show the most
correlated features in blue and the less correlated in red. All
the features (relevant and redundant) are present in the image.

FS can be classified into three main groups: Filters, Wrap-
pers, and Embedding methods [30]. A filter does not have
a dependency with classifiers when looking for the most
relevant features as it. Filters estimates the correlation values
according to the MI values. Conversely, wrappers search for
the most relevant features according to the classifier. There-
fore, if the classifier changes, then the relevant features vary.
The embedding method is looking to estimate an optimisation
function according to the data and the classifier.

Log Reg

G @?E

F-Statistic Mutual Info
T T
< e

FIGURE 4. Example of morph image with different correlation metrics.
Red pixels represent the less correlated features.

For this work, we propose to use a filter methods based
on MI as correlation metrics to estimate the most relevant
features to classify bona fide versus morphed face images.

C. MUTUAL INFORMATION

MI is defined as a measure of how much information is
contained jointly in two variables or how much information
of one variable determines the other variable [38]. MI is the
foundation for information theoretic feature selection since it
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provides a function for computing the relevance of a variable
with respect to the target class [30]. The MI between two
variables, x and y, is defined based on their joint probabilistic
distribution p(x, y) and the respective marginal probabilities

p(x) and p(y) as:

MIGx,y) =Y pi, ylog sl @

ij

A categorical MI is used in this paper, which can be
estimated by tallying the samples of categorical variables in
the data building adaptive histograms to compute the joint
probability distribution p(x, y) and the marginal probabilities
p(x) and p(y) based on the Fraser algorithm [39] for bona fide
and morphing images. According to that, if more than two
pairs of features reach the same value then, the information
is redundant and must be minimised (Eq.3).

Redyi = —— Y MI(fi ) ()

2
IS 1% s

Conversely, if a couple of features is not contained in any,
other pair of features is considered relevant and therefore
can help to disentangle and separate the two classes. This
information must be maximised (Eq.4).

1
Relyy = < ﬁng(c; fi) 4)

If a feature extracted from an image is randomly or uni-
formly distributed in different classes (bona fide or morph),
then the MI between these classes is zero. If a feature
is strongly differently expressed for other classes (morph),
it should have a large MI. Thus, we use MI as a measure of
the relevance of features presented in the images.

When 2 features are highly dependent on each other, The
following protocol was used:

o Each image of size M x N was flattened to I x M x N
for each class (bona fide and morphed).

o The matrix A is formed by K flattened images of size
1 x M x N features, and the class vector (c).

o MI for each pair of column of matrix A is estimated.

o The relevance (RI) and redundancy (Rd) are estimated
from matrix A.

o The trade-off between the relevance and redundancy
(Rel and Red) matrices is estimated, sorted and indexes
according to the MI values.

o A vector v with the index value of each column (feature)
with the higher relevance and less redundant is formed.

e Only the N columns according to with index value are
selected.

o A small matrix from A features and v images is con-
formed in the step of 100 features up to 1,000 features
to be evaluated for the classifier.

Different implementations have been proposed in state-of-
the-art [30] to estimate the trade-off between relevance and
redundancy. Estimate all the combinations 2V to remove all
the redundancy is not possible because of high dimensionality
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problem. Then, the following methods based on MI and
Conditional MI have been used and are described as follows:

D. MINIMUM REDUNDANCY MAXIMAL

RELEVANCE (mRMR)

Two forms of combining relevance and redundancy oper-
ations are reported in [29]; MI difference (MID), and
MI quotient (MIQ). Thus, the mRMR feature set is obtained
by optimising MID and MIQ simultaneously. The trade-off
both conditions requires to integrate them into a single crite-
rion function [29] as follows:

SRROG) = MI(e; fi) — é > MI(fi; fs), )

where, MI(c; fi) measures the relevance of the feature f; to
be added for the class ¢, and the term %Zﬁes MI(fi; f5)
estimates the redundancy of the fiy, feature with respect to
the previously selected features f; to belong to set S.

E. NORMALISED MUTUAL INFORMATION FEATURE
SELECTION (NMIFS)

Estevez et al. [40] proposed with the Normalised Mutual
Information (NMIFS) an improved version of mRMR based
on the normalised feature of MI. The MI between two ran-
dom variables is bounded above by the minimum of their
entropies H. As the entropy of a feature could vary greatly,
this measure should be normalised before applying it to a
global set of features as follows:

FVIFS (%) = Mi(e fi) — - > Miy(fi fs) (6)
§ fieS
where, M1y is the normalised MI by the minimum entropy
of both features, as defined in:
Miy(fifo) = — P __ @
min(H (fi), H (fs))
F. CONDITIONAL MAXIMISATION MUTUAL
INFORMATION (CMIM)
The CMIM criterion is a tri-variate measure of the informa-
tion associated with a single feature about the class, condi-
tioned upon an already selected feature [41]. It loops over
the chosen features and assigns each candidate to feature a
score based upon the lowest Conditional Mutual Information
(CMTI) between the features selected, the candidate feature,
and the class [30], [41]. Then, the selected feature is the one
with the maximum score.

arg maxger {MI(fi; c)for S = ¥}
CMIM = { arg maxscr s {minges MI(fi; c/fj)} (8)
for S # .

G. CONDITIONAL MAXIMISATION MUTUAL
INFORMATION-2 (CMIM?2)

The CMIM criterion selects relevant variables and avoids
redundancy. However, it does not necessarily choose a vari-
able that is complementary to the already chosen variables.
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FaceFusion FaceMorpher

FRGCv2 Subject 1

FaceFusion FaceMorpher

OpenCV-Morph

UBO-Morpher Subject2

UBO-Morpher

OpenCV-Morph Subject 2

FIGURE 5. Examples of different morphing algorithms for two subjects in the FERET and FRGCv2 databases.

A variable with high complementarity information (max) to
the already selected variable will be had by a high (CMI).
In general, in problems where the variables are highly com-
plementary (or dependent) to predict ¢, the CMIM algorithm
will fail to find that dependence among the variables. The
CMIM — 2 [31] was proposed in order to improve CMIM
and changes the max function for the average function (1/d).
Then, the selected feature is the one with the average score.

MI(x,y) = 1/d Y MI(f; c | f. ©)

fies

IV. DATABASES
The FERET and FRGCv2 databases were used to create the
morph images based on the protocol described by [4]. The
AMSL Face Morph image dataset was also used to evaluated
the best algorithm. A summary of the databases is presented
in Table 2. All the images were captured in a controlled
scenario and include variations in pose and illumination.
FRGCv2 presents images more compliant to the passport
portrait photo requirements. The images contain illumination
variation, different sharpness and changes in the background.
The original images have the size of 720 x 960 pixels. For
this paper, the faces were detected, and images were resized
and reduced to 180 x 240 pixels. These images still fulfill the
resolution requirement of the intra-eye distance of 90 pixels
defined by ICAO-9303-p9-2015.

The AMSL Face Morph image dataset (London DB)
was created based on images from Face Research Lab
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London set.? This dataset includes genuine neutral and smil-
ing faces as well as morphed face images. Also, all the
images are ICAO compliant. The images were down-scaling
to 531 x 413 pixels. These images present high-quality face
morphed images [26].

The o value to define the contribution of each subject to
morph image results was 0.5 for all the morph images. The
morphing tools used are describe in Table 3.

Figure 5 shows examples of the morphing portrait images
and the different output qualities with the artefact in their
background. For instances FaceOpenCV implementation.

TABLE 2. Number of images used for FERET, FRGCv2 database and Face
Research London dataset. Column 1, show the name of the dataset.

Database N° Subjects  Bonafide = Morphs
FRGCv2 533 984 964
FERET 529 529 529
Face Res. London DB 102 102 2,175

TABLE 3. Morphing tool software and number of images created by each
method. The number of images is per dataset (FRGCv2/FERET).

Database N° Subjects  Bona fide = Morphs
FaceFusion 533/529 984/529 964/529
FaceMorpher 533/529 984/529 964/529
OpenCV-Morph 533/529 984/529 964/529
UBO-Morpher 533/529 984 /529 964/529
AMSL-FaceMorph 102 204 2,175

2https://figshare‘corn/articles/datasethace_Research_Lab_London_
Set/5047666
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The following algorithms were used to create morph

images:

o FaceFusion is a proprietary morphing algorithm,
developing for IOS app.® This algorithm to create
high-quality morph images without visible artifact.

o FaceMorpher is an open-source algorithm to create
morph images.* This algorithm introduce also some
artifacts in the background.

o OpenCV-Morph, this algorithm is based on the OpenCV
implementation.® The images contain visible artefacts in
the background and some areas of the face.

o Face UBO-Morpher [42]. The University of Bologna
developed this algorithm. The resulting images are of
high quality without artefact in the background.

o AMSL-FaceMorph [26]. The images were created on
Face Research Lab London Set with an in-house
method. The resulting images are of high quality without
artefact in the background.

As we mentioned before, after creation of the morphed
images, all the faces were cropped using a modified dlib face
detector implementation.® Figure 6 shows examples of the
FERET cropped face database. We can observe that cropped
images represent a more challenging scenario because all
the background artefacts of the morphing process result
were removed. However, some artefacts remain and can be
observed in the images, for instances for the FaceMorpher
and OpenCV-Morph implementations.

) )

FIGURE 6. Examples of FERET cropped images. From left to right: Bona
fide, FaceFusion, FaceMorpher, OpenCV-Morph, UBO-Morpher
implementations.

V. EXPERIMENTS AND RESULTS
This section presents the quantitative results of the pro-
posed scheme based on feature selection for automated
single-morph attack detection. In addition to the proposed
system, we evaluated six different contemporary classi-
fiers such as K-Nearest Neighbors (KNN), Logistic regres-
sion (LOGIT), Support Vector Machine (SVM), Decision
Tree (DT), Random Forrest (RF), and Multilayer Perceptron
(MLP). Overall, Random Forest and SVM reached the best
results. See Figure 7. To compare and to estimate the baseline
method, only the Random Forest classifier was used.

The experiments, tested a leave-one-out (LOO) protocol
and an RF classifier with 300 trees. These datasets allow

3 www.wearemoment.com/FaceFusion/

4https://github.com/alyssaq/facefmorpher
5 www.learnopencv.com/face-morph-using-opencv-cpp-python
6https://WWW.pyimagesea.lrch.com/201 8/09/24/opencv-face-recognition/
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subject-disjoint results to be computed; that is, no subject has
an image in both the training and the testing subset.

The FERET and FRGCv2 databases were partitioned to
have 60% training and 40% testing data for feature selection.
The selection of features was made using only the training
set. The London DB was used only for test as an unknown
scenario. The output of the four methods delivers the index of
each column of the matrix A that represents the more relevant
features. The number of features were evaluated in steps of
100 features up to the end of the vector.

The performance of the detection algorithms is reported
according to metrics defined in ISO/IEC 30107-3. The Attack
Presentation Classification Error Rate (APCER) is defined as
the proportion of attack presentations using the same attack
instrument species incorrectly classified as bona fide in a
specific scenario. The bona fide Presentation Classification
Error Rate (BPCER) is defined as the proportion of bona fide
images incorrectly classified as a morphing in the system. The
D-EER is the operation point where APCER = BPCER is
reported for the different morphing methods.

40

Decision-Tree

20 | morphs_facefusion (44.24%)
morphs_facemorpher (39.40%)
morphs_opencv (38.54%)

-
o
4

Naive Bayes L
morphs_facefusion (41.16%) .
morphs_facemorpher (40.73%)

morphs_opencv (40.67%)

(S}

BPCER (in %)
N

SVM

morphs_facefusion (26.05%)
0.5 | morphs_facemorpher (22.46%)
morphs_opencv (21.39%)

-

0.2

0.1 === morphs_facefusion (22.55%)

== = morphs_facemorpher (20.78%)

""" morphs_opencv (17.88%)
Equal Error Rate

0102 05 1 2 5 10 20 40
APCER (in %)

FIGURE 7. DET Curves comparing the baseline classifiers using RF. RF and
SVM reached the best results. KNN, LOGIT and MLP are not showed in the
curve because of poor results.

A. EXPERIMENT 1

Four different kinds of features were extracted from
faces. Intensity, HOG, uLBP and BSIF. From raw images,
we used the values of intensity of the pixels normalised
between 0 and 1. For shape, we used the histogram of HOG.
For texture, the histogram of the Uniform Local Binary Pat-
terns (uLBP) and BSIF were used. For the uLBP all radii
values were explored from uLBP81 to uLBP88. The fusion
of LBPs was also investigated, concatenating the LBPS1
up to LBP88 (FusionALL). The vertical (uLBP_VERT) and
horizontal (uLBP_HOR) concatenation of the image divided
into 8 patches also was explored. From BSIF the result-
ing images of filter 5 x 5 — 9bits was used. After feature
extraction, we fused that information at the feature level
by concatenating the feature vectors from different sources
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TABLE 4. Baseline performance reported in % of D-EER for FERET LOO trained on FaceFusion and FaceMorpher.

Train FACEFUSION Train FACEMORPHER
Method FACEMORPHER | OpenCV-Morph | UBO-MORPHER | Average Method FACEFUSION | OpenCV-Morph | UBO-MORPHER | Average
RAW 3747 35.67 41.35 38.16 RAW 49.23 23.53 49.6 40.79
HOG 38.83 40.47 40.4 39.90 HOG4 42.03 37.14 42.07 40.41
LBP1 27.35 32.33 38.53 32.74 LBP1 45.45 32.88 42.67 40.33
LBP2 24.01 27.46 37.31 29.59 LBP2 42.8 30.65 41.79 38.41
LBP3 24.88 26.92 37.03 29.61 LBP3 40.28 26.55 40.45 35.76
LBP4 23.25 24.32 36.24 27.94 LBP4 38.76 25.29 40.91 34.99
LBPS 24.55 26.25 38.7 29.83 LBPS 36.14 30.14 38.85 35.04
LBP6 25.79 26.98 38.95 30.57 LBP6 35.71 27.49 40.27 34.49
LBP7 27.78 28.37 40.42 32.19 LBP7 37.72 26.43 422 35.45
LBP8 28.88 27.73 42.47 33.03 LBPS 38.01 27.21 43.59 36.27
FusionALL 23.71 26.34 38.02 29.36 FusionALL 38.59 30.05 40.33 36.32
LBP_VERT 26.76 30.1 23.98 26.95 LBP_VERT 40.99 24.81 42.68 36.16
LBP_HOR 26.59 28.66 37.69 30.98 LBP_HOR 41.95 25.06 42.71 36.57
FUSION 43.64 44.56 46.88 45.03 FUSION 44.28 32.31 46.68 41.09
BSIF(5x5-9) 32.63 30.94 31.86 31.81 FUSION 40.18 28.21 42.90 37.09
TABLE 5. Baseline performance reported in % of D-EER for FERET LOO trained on OpenCV-Morph and UBO-Morpher.
Train OpenCV-Morph Train UBO-MORPHER
Method FACEFUSION | FACEMORPHER | UBO-MORPHER | Average Method FACEFUSION | FACEMORPHER | UBO-MORPHER | Average
RAW 47.45 20.21 48.82 38.83 RAW 35.55 40.45 37.46 37.82
HOG 43.17 35.7 40.032 39.63 HOG 39.77 35.74 35.82 37.11
LBP1 44.6 25.72 41.68 37.33 LBP1 42.6 27.45 32.93 34.33
LBP2 41.28 24.85 40.28 35.47 LBP2 40.28 25.26 29.86 31.80
LBP3 37.66 23.95 39.52 33.71 LBP3 35.99 2497 25.58 28.85
LBP4 36.08 22.72 38.52 32.44 LBP4 36.03 24.33 26.99 29.12
LBP5 35.76 25.56 38.5 33.27 LBP5 34.31 26.94 28.64 29.96
LBP6 37.03 28.74 40.58 3545 LBP6 37.74 30.36 30.21 32.77
LBP7 37.74 25.51 42.47 35.24 LBP7 38.56 32.08 31.5 34.05
LBPS8 37.66 27.47 42.86 36.00 LBP8 39.79 34.58 32.16 35.51
FusionALL 42.23 22.48 41.36 35.36 FusionALL 41.58 25.78 29.81 32.39
LBP_VERT 40.6 24.77 42.63 36.00 LBP_VERT 38.51 29.6 31.26 33.12
LBP_HOR 41.5 234 42.45 35.78 LBP_HOR 38.66 29.55 31.7 33.30
FUSION 44.85 28.84 45.92 39.87 FUSION 46.17 43.57 44.05 44.60
BSIF(5x5-9) 42.23 29.53 4243 38.06 FUSION 32.88 32.49 29.49 31.62
TABLE 6. Baseline performance reported in % of D-EER for FRGCv2 LOO trained on FaceMorpher and FaceFusion.
Train FACEFUSION Train FACEMORPHER
Method FACEMORPHER | OpenCV-Morph UBO-MORPHER | Average FACEFUSION | OpenCV-Morph | UBO-MORPHER Average
RAW 25.1 23.92 2791 25.64 RAW 41.71 13.97 423 32.66
HOG 26.4 27.02 29.89 27.77 HOG4 30.93 24.03 32.38 29.11
LBP1 17.61 10.8 17.44 15.28 LBP1 22.6 9.57 19.77 17.31
LBP2 14.18 11.4 19.2 14.93 LBP2 20.97 13.13 19.49 17.86
LBP3 10.58 13.36 21.67 15.20 LBP3 20.46 9.53 20.9 16.96
LBP4 11.71 13.58 22.88 16.06 LBP4 20.34 10.32 23 17.89
LBP5 13.43 14.16 25.25 17.61 LBP5 20.73 10.69 25.43 18.95
LBP6 14.61 15.43 28.87 19.64 LBP6 21.38 11.37 26.74 19.83
LBP7 15.88 15.78 26.2 19.29 LBP7 21.91 11.01 26.7 19.87
LBP8 15.96 16.29 26.06 19.44 LBPS 24 12.22 27.42 21.21
FusionALL 10.05 12.38 20.36 14.26 FusionALL 22.44 7.99 21.64 17.36
LBP_VERT 13.81 14.43 20.9 16.38 LBP_VERT 20.96 11.22 22.41 18.20
LBP_HOR 13.45 13.74 19.85 15.68 LBP_HOR 20.57 11 21.1 17.56
FUSION 13.4 16.09 27.68 19.06 FUSION2 27.79 15.21 26.81 23.27
BSIF(5x5-9) 26.12 23.90 25.77 25.26 FUSION 31.54 19.19 31.43 27.38

(Intensity, HOG, and uLLBP) into a single feature vector that
becomes the input to the classifier (FUSION). The classifier
was trained with each feature extraction method’s selected
features and the fused chosen features.

Tables 4, 5, and Tables 6, 7 show the baseline results for
the intensity, shape and texture feature extraction methods for
FERET and FRGC respectively. This baseline was estimated
using a leave-one-out protocol for all the morphing methods.
The intensity (Raw) and HOG reached the higher D-EER
(worst results). Most of the time, the (FusionALL) obtained
the lower average D-EER results (Best results).
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Table 4 shows the results on the left side for the FERET
database were trained with FaceFusion and tested with
FaceMorpher, OpenCV-Morph, and UBO-Morpher. Right
side, trained with FaceMorpher and tested with FaceFusion,
OpenCV-Morph, and UBO-Morpher.

Table 5 shows the results on the left side for FERET
database were trained with OpenCV-Morph and tested with
FaceFusion, FaceMorpher, and UBO-Morpher. Right side,
trained with UBO-Morpher and tested with FaceFusion,
FaceMorpher and OpenCV-Morph. The same protocol was
applied to Tables 6 and 7 with FRGCv2 database.
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TABLE 7. Baseline performance reported in % of D-EER for FRGCv2 LOO trained on OpenCV-Morph and UBO-Morpher.

Train OpenCV-Morph Train UBO-MORPHER
Method FACEFUSION FACEMORPHER UBO-MORPHER Average Method FACEFUSION FACEMORPHER OpenCV-Morph Average
RAW 40.3 13.07 41.3 31.56 RAW 22.58 23.83 22.24 22.88
HOG 31.21 22.17 32.44 28.61 HOG 27.44 25.38 26.5 26.44
LBP1 20.94 13.29 17.88 17.37 LBP1 20.54 6.32 9.92 12.26
LBP2 20.52 8.43 18.89 15.95 LBP2 20.18 7.38 9.86 12.47
LBP3 19.57 7.26 20.11 15.65 LBP3 19.59 9.54 11.76 13.63
LBP4 20.76 8.05 23.1 17.30 LBP4 18.99 10.69 12.65 14.11
LBP5 20.4 9.1 24.63 18.04 LBP5 20.38 13.28 13.64 15.77
LBP6 21.66 10.66 26.57 19.63 LBP6 21.19 15.7 15.82 17.57
LBP7 22.64 10.68 26.84 20.05 LBP7 20.26 16.85 16.47 17.86
LBP8 23.5 11.94 27.78 21.07 LBP8 22.71 19.37 19.52 20.53
FusionALL 21.55 5.79 21.49 16.28 FusionALL 18.2 7.51 9.52 11.74
LBP_VERT 21.22 9.45 22.33 17.67 LBP_VERT 18.19 13.77 14.07 15.34
LBP_HOR 20.98 9.62 21.97 17.52 LBP_HOR 18.34 13.69 13.9 15.31
FUSION 27.22 11.7 26.31 21.74 FUSION 27.59 11.24 13.22 17.35
BSIF(5x5-9) 33.08 20.54 32.98 28.86 FUSION 24.00 22.94 20.63 22.52

B. EXPERIMENT 2

This experiment explores the application of the proposed
method based on feature selection. The four feature selec-
tion methods, mRMR, NMIFS, CMIM, and CMIM2, were
applied in order to reduce the size of the data and estimate
the position of the relevant features before entering classifiers
from Intensity, HOG, uLBP and BISF. The best 5,000 from
43,200 features were extracted from the raw data (intensity).
The best 1,000 from 1,048 features were extracted from
HOG, and the best 400 features from 472 were selected from
the fusion of uLBP (FusionALL).

Table 8 and 9 show the results for FERET and FRGCv2
databases for single morphed detection from the best feature
selected from HOG applied to FaceFusion, FaceMorpher,
OpenCV-Morph and UBO-Morpher. The results reported
shown an improved in comparison to the baseline in Experi-
ment 1 using the HOG features extracted of the images. The
number of feature was reduced on average down to 10%.
This reduction would enable the application in mobile devices
hardware and also allow us to see the localisation of the most
relevant features.

TABLE 8. D-EER in % of HOG + Fea / FERET. The figures in parenthesis
represent the best number of features for each method.

FaceFusion | FaceMorpher | OpenCV-Morph | UBO-Morpher
(bestFea) (bestFea) (bestFea) (bestFea)
o | | o | G | e
v | o | e | e
o | e | e | e | e
oM | Goo | o o0 Go

Table 10 and 11 show the results for FERET and FRGCv2
database for single morphed detection from the best fea-
ture selected from the fusion of uLBP (LBP8,1 up to
LBP 8,8) applied to FaceFusion, FaceMorpher, OpenCV-
Morph and UBO-Morpher. The results reported shown an
improved in comparison to the Experiment 1 using all the
features extracted of the images. The number of feature also
is reduced on average down to 10% for texture features.
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TABLE 9. D-EER in % of HOG + Fea / FRGCv2. The figures in parenthesis
represent the best number of features for each method.

FaceFusion | FaceMorpher | OpenCV-Morph | UBO-Morpher

(bestFea) (bestFea) (bestFea) (bestFea)
mRMR (166%%)) 336%? (1261)3)) égg)
NS | g0 | oo 500 00
o | oo | ooy (1000 500
CMIM2 (69'(?3) (19'35) (1l 6?)%) (Lé'(())g)

TABLE 10. D-EER in % of fusion uLBP + Fea / FERET. The figures in
parenthesis represent the best number of features for each method.

FaceFusion | FaceMorpher | OpenCV-Morph | UBO-Morpher
(bestFea) (bestFea) (bestFea) (bestFea)
wow | | o | L |y
s | me | ne | o |
| e | me | e | o
oM | iy | o (o) o0

TABLE 11. D-EER in % of fusion uLBP + Fea / FRGCv2. The figures in
parenthesis represent the best number of features for each method.

FaceFusion | FaceMorpher | OpenCV-Morph | UBO-Morpher
(bestFea) (bestFea) (bestFea) (bestFea)
o | | b | ke | b
NMIFS (3'83) (12?)?) (jg& (igg)
CMIM (%3(%) (11‘(())(?) é-(%g) (ig(()))
ame | g | d | e | o

Figure 8 shows the accuracy obtained for the UBO-Morpher
tool when features selected were applied from intensity fea-
tures. The UBO-Morpher constitutes a high-quality morphing
implementation and then is used and analysed on FERET and
FRGCv2 databases. Conversely, FaceMorpher is the more
straightforward method to be detected based on the artefacts
present in the images. The mRMR and NMIFS methods
based on MI obtained the lower results. The method based
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FIGURE 8. FRGCv2 feature selection for intensity features. X axis
represents the number of the best features. Y axis represents the
accuracy in %.

on conditional MI (CMIM and CMIM-2) reached the best
results. These results show that the complementary informa-
tion captures the relationship between the feature selected
and the feature candidate in a better way. CMIM with only
400 features and CMIM-2 with 1,000 features reached higher
accuracy and lower D-EER.

Figure 9 shows the accuracy obtained for the
UBO-Morpher tool, when feature selected were applied from
HOG features. Again, The method mRMR and NMIFS based
on MI obtained the lower results. The method based on
conditional MI (CMIM and CMIM-2) reached the best results
with 500 and 600 features respectively.
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FIGURE 9. FRGCv2 feature selection for HOG features. X axis represents
the number of the best features. Y axis represents the accuracy in %.

Figure 10 shows the accuracy obtained for the UBO-
Morpher tool, when feature selected were applied from the
fusion of uLBP. This time NMIFS and CMIM reached the
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FIGURE 10. FRGCv2 feature selection for FusionALL features (uLBP
fusion). X axis represents the number of the best features. Y axis
represents the accuracy in %.

best results with 300 and 400 features respectively. Consoli-
dating the Conditional MI over traditional MI.

Table 12 shows the D-EER for HOG feature with the
best method CMIM?2. Surprisingly, the shape feature (HOG)
reached the best results with the lower D-EER using CMIM
and FRGCv2 database. FaceMorpher reached the lower
D-EER with 1.8% with a BPCER10 of 0.3% and BPCER20
of 1.0%. Conversely, FaceFusion and London DB reached the
higher D-EER of 5.8% and 9.4% respectively. The second
column shows, the comparison (D-EER) between the HOG
results from baseline using all the HOG features versus the
proposed method with feature selected from HOG.

TABLE 12. D-EER in % for the best results reached by CMIM using HOG.

FRGCv2 - HOG HOG / Fea+HOG BPCERI10 BPCER20
(D-EER)
FaceFusion 27.7/5.8 3.7 7.7
FaceMorpher 29.1/1.8 0.3 1.0
OpenCV-Morpher 28.6/2.0 0.0 0.0
UBO-Morpher 26.4/4.0 2.0 4.4
London DB 39.8/9.4 2.8 9.8

Table 13 shows the D-EER for FusionALL (uLBP Fusion)
feature with the best method CMIM. For FRGCv2 database
the best results with the lower D-EER using CMIM-2. Face-
Morpher again reached the lower D-EER with 1.3% with
a BPCERI10 of 0.3% and BPCER20 of 1.0%. Conversely,
UBO-Morpher reached the higher D-EER of 9.4% with a
BPCERI10 of 2.9% and BPCER20 of 13.8%. The second
column shows, the comparison (D-EER) between the Fusion-
ALL results from baseline using only the fusion of uLBP
features versus the proposed method with feature selected
from uLBP.

Figure 11 show the DET curves obtained for the four
feature selected method for the three feature selected (Inten-
sity, Texture and Shape). The UBO-Morpher constitutes
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TABLE 13. D-EER in % for the best results reached by CMIM using
FusionALL (uLBP fusion).

FRGCv2-uLBP uLBP / Fea+uLBP BPCERI10 BPCER20
(D-EER)
FaceFusion 14.2/9.2 7.4 20.0
FaceMorpher 17.3/1.3 0.3 1.0
OpenCV-Morpher 16.2/4.0 1.3 44
UBO-Morpher 11.7/9.4 2.9 13.8
London DB 30.9/8.4 33 10.8
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FIGURE 11. DET curves for FRGCv2 and FERET using feature selection
method with 300 features. Top: RAW. Middle: HOG. Bottom: uLBP Fusion
(FusionALL).

a high-quality morphing implementation and is applied on
FERET and FRGCv2 databases. Conversely, FaceMorpher is
the more straightforward method to be detected based on the
artefacts present in the images. The features selection applied
to intensities values reached the lower results. Even these
results improve the baseline, the D-EER are not competitive
with the literature. Conversely, uLBP and HOG improve a lot
in comparison with the baseline and reached results compet-
itive with the literature as is shown in Tables 12 and 13.

In order to compare and analysed which extracted fea-
ture delivers more useful information for the detection task,
the Figures 12 and 13 shows a comparison of FERET and
FRGCv?2 for best results obtained by CMIM from intensity,
shape (HOG) and texture (uLBP). Both figures have shown
that HOG reached a lower D-EER in both databases. This
result shows that the shape algorithms also can detect mor-
phing images as a complement of textures. The exploration
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FIGURE 12. D-EER for comparison of the features selected using CMIM
from intensity, shape and texture for FERET database. R: represents RAW.
H: represents HOG and L, represents uLBP.
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FIGURE 13. D-EER for comparison of the features selected using CMIM
from intensity, shape and texture for FRGCv2 database. R: represents
RAW. H: represents HOG and L, represents uLBP.

parameters to find the most representative inverse HOG fea-
tures and their visualisation allows us to improve the results.
This is shown in Figure 3.

C. EXPERIMENT 3

This experiment explores the application of the best result
methods based on feature selection using the open-access
AMSL Face dataset. Experiments 1 and 2 were performed
using a leave one out protocol. Then this experiment follows
the same rule. Table 12 and 13 show the results of London DB
when features were extracted using the best feature selected
for FRGCv2 and FERET with CMIM method. We can see
that FRGCv2 generalise better than FERET with a Fusion
of uLBP and HOG features. The number of images used for
training makes the difference in the generalisation problem.
London DB morphed scenario is very challenging with more
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FIGURE 14. Localisation of the feature selected by mRMM, NMIFS, CMIM and CMIM2 for different morphing algorithm. Left: FRGC. Right:

FERET. Each image shows the best 5.000 features.

than 2,000 morph images. Overall the quality of London
DB is very similar to the UBO-morph database. For the fea-
ture selected from HOG, the D-EER decreased from 39.8%
(baseline) to 9.4%, reached a BPCER10 of 2.8%. For the
chosen feature from the fusing uLBP, the D-EER decrease
from 30.9% (baseline) to 8.4% obtained a BPCER10 of 3.3%.

VI. VISUALISATION

Once we select the best features, it is possible to recover the
coordinates of the features into the images. Then, we can
visualise the attributes for each method. Figure 14 shows
the localisation of the most relevant features for FRGCv2
and FERET morph random image. The 5,000 features were
divided into five equal parts and assigned to five different
colours. The most relevant features from 1 to 1,000 are rep-
resented as red pixels. From 1,001 to 2,000 are pink. 2,001
to 3,000 are green. 3,001 to 4,000 are light green, and 4,001
to 5,000 are represented as blue. Figure 15 show the best
feature selected for CMIM method. The Red pixels represent
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the most relevant and less redundant features. Conversely,
the green pixels are the most redundant and confuse the
classifiers. It is essential to highlight that the pixels in colours
represent the best features selected, which means the most
relevant and less redundant from the four methods: mRMR,
NMIFS, CMIM, and CMIM2, from 1,000 up to 5,000. The
CMIM features are distributed in all the images and only
concentrate in some areas. The CMIM focalised the features
in the most relevant areas. The eyes and the nose areas are
selected as relevant to detect morphed images.

Regarding the areas selected, the feature selection methods
look for the best features that allow separated the two classes
(Bona fide and Morphs). Many images, even crop faces are
used still have some artefacts in the background or the bor-
der of faces. Then the FS found these areas as applicable
to classify the images. These results can be visualised as
a wrong selection because the features are outside of the
faces. However, if these areas are observed in detail, the
artefacts are still present, then the Bona fide and morphed
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FIGURE 15. All features selected by CMIM sorted by ranking. Left: FERET morphed image. Middle: FRGC morphed image. Right: AMSL

morphed image.

images can be separated. It is essential to point out that the
feature selection method measures the relationship among all
features. Then, the interaction of the best features selected
should be analysed in context (all together) and should not be
visualised individually.

Figure 15 shows all the features (43,200) according to
the relevance index. This index was associated with four
colours in the following order: Red, Pink, Green and Light
Green. Those images clearly show the most critical areas and
where the modification on the face was performed to create a
morphed image for FRGCv2, FERET and London DB.

VII. CONCLUSION

After analysing all the results, we can conclude that morphing
based on the FERET and London DB databases are more
challenging to detect than the FRGC database. The leave-
one-out protocol is essential to estimate the actual perfor-
mance of the proposed method. In the literature, the test
set typically contains images from the same morphing tools.
The feature selection reduces the number of features used
drastically to separate bona fide for morphed images and
reduce the D-EER in all the cases. For the feature selected
from HOG, the D-EER decreased from 26.4% (baseline) to
4.0% for UBO-Morpher, reached a BPCER10 of 2.0%. For
the chosen feature from the fusing uLBP, the D-EER decrease
from 11.7% (baseline) to 8.4% obtained a BPCER10 of 2.9%.
These results are very competitive with the state of art. These
results can be confirmed with the good performance obtained
with London DB. For the feature selected from HOG, the
D-EER decreased from 39.8% (baseline) to 9.4%, reached a
BPCERI10 of 2.8%. For the chosen feature from the fusing
uLBP, the D-EER decrease from 30.9% (baseline) to 8.4%
obtained a BPCER10 of 3.3%. The localisation of the features
enabled us to select the most relevant and less redundant
features. The nose and eyes are identified as relevant areas
in the face for manual analysis of morphed images. This
tool may help the border police detect morphing images and
address the areas to be analysed for the artefacts. In summary,
the shape feature (HOG) results outperform the texture per-
formance as is shown in Figures 12 and 13. In future work,
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we will apply this method to embedding features extracted
from the face-recognition system in order to choose the best
features. Also, we will prepare the algorithm to be evaluated
in the NIST platform.

DISCLAIMER

This text reflects only the author’s views, and the commission
is not liable for any use that may be made of the information
contained therein.
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