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ABSTRACT Spacecraft anomaly detection which could find anomalies in the telemetry or test data in
advance and avoid the occurrence of catastrophic failures after taking corresponding measures has elicited
the attention of researchers both in academia and aerospace industry. Current spacecraft anomaly detection
systems require costly knowledge and human expertise to identify a true anomaly. Moreover, some new
problems and challenges such as large volume of test data, imbalanced data distribution and the scarcity
of faulty labeled samples have emerged. In this work, we propose an unsupervised anomaly detection
algorithm combining Gated Recurrent Unit (GRU) based Recurrent Neural Network (RNN) and Extreme
Value Theory (EVT). First, we develop a two-layer ensemble learning based predictor framework which
stacks three GRU-based networks with different architectures to learn and capture the normal behavior
of multiple channels of data. Then, the prediction errors are calculated and smoothed using Exponentially
WeightedMoving Average (EWMA) algorithm. Next, we propose a detection rule setting anomaly threshold
automatically through EVT which does not assume any parent distribution on the prediction errors. To the
best of our knowledge, it is the first attempt that stacked GRU-based predictors with EVT has been employed
into the spacecraft anomaly detection. Through extensive experiments conducted on public datasets as well
as real data sampled from a launch vehicle, we show that the proposed detection algorithm is superior to
other state-of-the-art anomaly detection approaches in terms of model performance and robustness.

INDEX TERMS Anomaly detection, GRU, extreme value theory, RNN, spacecraft.

I. INTRODUCTION
Spacecraft is a very sophisticated and complicated system
which consists of many subsystems and components such
as structure system, engine, control system and teleme-
try system. It is essential to monitor the health status and
strengthen the stability and reliability of spacecraft because
it often operates in the harshest outer space environment.
Anomaly detection strives to discovery patterns and data
that do not adapt to expected behaviors [1], [2]. Anomalies
which are unexpected instance data greatly deviating from
normal behaviors defined by the most of a dataset usually
do not occur abruptly and there exists subtle and impercep-
tible changes in telemetry data of spacecraft [3]. Anomaly
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detection technology should detect these changes and anoma-
lies in advance to further prevent the potential cascading
downtime which may result in catastrophic and unforeseen
damages to spacecraft. Therefore, anomaly detection plays
a significant role in real-time managing health status and
promoting reliability of spacecraft [4], [5].

At present, one of the most used anomaly detection meth-
ods is Out-Of-Limit (OOL) [6], [7], where a pre-defined
threshold is set and once a monitored value strays outside
of this threshold, and then an anomaly is detected. Although
OOLmethods are simple and easy to implement, they require
large amount of domain knowledge and human expertise to
set thresholds and are difficult to identify contextual anoma-
lies when the values are less than the pre-defined threshold.
Therefore, in the recent years there have been many anomaly
detection algorithms which make great improvements over
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OOL, such as density-based approaches [8], [9], statistical
methods [10], [11], k-nearest neighbormethods [12], [13] and
Support Vector Machine (SVM) based methods [14], [15].
However, these methods perform well only when the size of
data is small. With the missions of spacecraft are becom-
ing more and more complex, the volumes of telemetry data
increase rapidly. For instance, the Synthetic Aperture Radar
satellite generates nearly 85 terabytes of data per day [16].
Therefore, it becomes almost unlikely for the aforementioned
anomaly detection methods to adapt to such big telemetry
data to identify anomalies in the real or near real time.

Another challenge for spacecraft anomaly detection is that
the telemetry data are quite imbalanced [4], which means
that there are large number of normal samples but insuf-
ficient or even no labeled abnormal samples in telemetry
dataset, resulting from the fact that spacecraft usually works
in normal condition and failures seldom occur. It is time-
consuming and labor-intense to label thousands of telemetry
data, which can lead traditional approaches to overfit and not
be able to detect anomalies accurately. Moreover, most of
these anomaly detection methods are single channel models
designed to only be able to detect anomalies for each teleme-
try channel individually. However, a single model may not
perform well for all the telemetry channels, and it is much
more reasonable and preferred to detect anomalies using
multivariate channels rather than using univariate channel
for several reasons. First, it needs more hardware resources
and time to train and maintain models for each telemetry
channel. Second, in real application scenarios, engineers are
encouraged to concern more about the status of spacecraft as
a whole than each channel.

In this research, in order to mitigate and balance the
challenges mentioned above, we propose an unsupervised
deep learning-based anomaly detection model using Gated
Recurrent Units (GRU) [17] based Recurrent Neural Net-
works (RNNs) [18], [19] and Extreme Value Theory (EVT)
[20], [21] to identify anomalies in telemetry data of space-
craft. Our core idea is to forecast the time series of spacecraft
by designing a two-layer ensemble learning based predictor
framework with GRU, and subsequently apply EVT rule on
prediction errors. Our approach is an unsupervised algorithm
which tries to learn and capture the normal behavior of mul-
tiple channels data by leveraging superior performance of
GRU. The bigger a prediction error is, the more likely it will
be regarded as an anomaly. The main contributions of this
paper are summarized as follows:

1) We propose an unsupervised anomaly detection algo-
rithm. To the best of our knowledge, this algorithm is the
first multivariate time series anomaly detectionmethodwhich
combines GRU based neural networks and EVT in spacecraft.

2)We propose an ensemble learning based predictor frame-
work based on diverse GRUs and is robust to multiple
channels of telemetry data.

3) We introduce EVT to process the prediction errors and
propose a dynamic threshold setting method without making
any critic assumptions about the prediction error distribution.

4) We conduct extensive experiments and compare our
approach with other state-of-the-art anomaly detection meth-
ods on different dataset. Experimental results demonstrate
that our method achieve the best performance among all the
baseline methods.

The remainder of this paper is organized as follows.
Related researches are reviewed in Section 2. Section 3
details the proposed anomaly detection methods. Experimen-
tal results and discussions are conducted in Section 4. Finally,
conclusions are drawn in Section 5.

II. RELATED WORK
The telemetry data of spacecraft are time series, and the
anomalies could be divided into three categories – point, con-
textual, and collective [22]. Point anomalies are observations
that differ significantly from the majority of data; contex-
tual anomalies are regarded as anomalous only in a specific
context and collective anomalies demonstrate that a set of
observations are anomalies as a whole, but any single value
in that sequence may be not by itself. Since contextual and
collective are much more difficult to detect and both require
temporal information, we merge them into the contextual
category in this article.

Several anomaly detection approaches have been explored
and exploited for spacecraft, among which expert-
systems [6], [7], [23], [24] are the simplest and most
widely used methods. The notable expert-system called
Intelligent Satellite Control Software DOCtor (ISACS-DOC)
is successfully implemented in Hayabusa, Geotail, and
Nozomi missions [24]. The Out-Of-Limits (OOL) [6], [7]
method using a pre-defined threshold to detect anomalies is a
simple form of expert-system and still be adopted by a large
number of spacecraft due to low computation expense, ease
of interpretability, and easy applicability. Envelop Learning
and Monitoring using Error Relaxation (ELMER) [25] is
an improved OOL method which uses neural network to
periodically set new threshold bounds. However, it is usu-
ally hard for expert-system to detect contextual anomalies
and it requires sufficient and accurate knowledge of space-
craft [16]. A myriad of machine learning methods which
automatically learn and extract knowledge from telemetry
data have been introduced to spacecraft anomaly detection,
such as k nearest neighbors-basedmethods [12], [13], cluster-
based methods [26], [27], Support Vector Machine (SVM)
based methods [14], [15], [28], and Artificial Neural
Networks (ANN) based methods [4], [16], [29], [30],
among others. The k nearest neighbor-based method is
used by XMM-Newton satellite [6] as well as the Space
and the International Space Station [31]. Cluster based
methods which identify values falling outside of well-
defined clusters as anomalous are adopted by NASA.
The Centre National d’Etudes Spatiales (CNES) uses
One-Class Support Vector Machine (OS-SVM) to sepa-
rate anomalies from nominal data [32]. Although machine
learning methods show great improvement over expert-
system based approaches, each has its own shortcomings
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FIGURE 1. The overall structure of the proposed method.

related to computational expense, model complexity, or
generalizability.

Recently, given the rapid advancement of computing
capacity and neural network architecture, deep learning has
begun to be applied in anomaly detection in spacecraft with
high-dimension and large volumes of data. Su et al. [30] pro-
poses a model called DAGMM which reduces the dimension
of input data to extract hidden characteristics using Autoen-
coder (AE) and estimates the density of the characteristics
using Gaussian Mixture Model (GMM). Recurrent neural
networks as well as its variants Long Short-Term Memory
(LSTM), Gated Recurrent Units (GRU) have shown powerful
capability to maintain memory of long-term dependencies
and model complex nonlinear feature interactions. Therefore,
LSTM and GRU are especially suitable for anomaly detec-
tion with time-series [16]. Malhotra et al. [33] used LSTM
to construct a predictor to model normal behavior of time
series, and subsequently use the prediction error to detect
anomalous behaviors. The LSTM-based anomaly detection
method in [33] gave better detection results than other meth-
ods, but this method assumed that the prediction errors must
fit a normal distribution. In [16], Hundman et al. proposed a
LSTM-based predictor and a nonparametric anomaly thresh-
olding approach without assuming the distribution of predic-
tion errors to detect telemetry data of the SoilMoisture Active
Passive (SMAP) satellite and the Mars Science Laboratory
(MSL) rover. The main disadvantage of this paper is that it
is a single channel model and we should train many models
for multiple telemetry channels which will cost more training
time and require more computation expense. Tariq et al.
proposed an anomaly detection algorithm using amultivariate
convolution LSTM with mixtures of probabilistic principal
component analyzers and demonstrated the effectiveness of
the method with the real Korea Multi-Purpose Satellite 2
(KOMPSAT-2) data in [34].

Literatures in [4], [16] are prediction-based anomaly detec-
tion algorithms which usually apply several rules on the
prediction errors to identify anomalies. In [33], the pre-
diction errors from the training data were assumed to fit
a Gaussian distribution of which the mean, µ, and vari-
ance, σ^2 are computed using the Maximum Likelihood

Estimation (MLF). Then an anomaly score is calculated and
a low score indicates that the corresponding observation may
be an anomaly with relatively high probability. In litera-
ture [35], it models the prediction error distribution as a nor-
mal distribution, and applies a threshold to the Gaussian tail
probability (Q-function) to decide whether or not to declare
an anomaly. However, the assumption that prediction errors
follow Gaussian distributions does not always hold. There-
fore, in [16], a novel dynamic anomaly threshold is set that,
when all the observations above the thresholds are removed,
would lead to the largest percent decrease in mean and
standard deviation, but this method would cause many false
positives.

III. METHOD
A. OVERALL STRUCTION
Spacecraft usually consists of many subsystems, each of
which generates several channels of telemetry data. There-
fore, it is very difficult to detect the root causes of anomalies
due to the correlation among these channels. Moreover, a sin-
gle predictor may not performwell for other channels. Hence,
in this section, we design a multivariate telemetry channels
anomaly detection model.

The overall structure of our proposed anomaly detection
algorithm is illustrated in Fig.1, and it includes two steps:
model training and detection. The model training procedure
is often conducted offline at an acceptable frequency, such
as weekly or monthly. First, we leverage the Z-score normal-
ization to process the raw telemetry dataset and then divide
the dataset into training data and test data in the preprocess-
ing module. Second, the training data are used to train the
ensemble learning based prediction framework which learn
and capture the normal behaviors of multivariate time series.
Third, the prediction errors are calculated and smoothed.
Then, the threshold setting module automatically sets thresh-
olds for prediction errors using EVT. Once the model training
procedure is completed, the well-trained model is stored for
the detection procedure. The test data could be fed into the
model online and outputs prediction errors. We use the EVT
method to decide whether a test observation is anomalous or
not.
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B. DATA PREPROCESSING
In this study, we mainly observe multivariate time series
X =

{
x(1), x(2), . . . , x(N )

}
, where each step x(t) ∈ Rm

in the time t (1 ≤ t ≤ N ) is an m-dimensional vector{
x(t)1 , x

(t)
2 , . . . , x

(t)
m

}
, in which each element corresponds to

a specific output channel of spacecraft, and the total number
of output channels is m. The time series is shown in Fig. 2,
where each row in the matric represents the data of a single
channel.

The time series X is transformed into a sequence X ′ ={
Xlb ,Xlb+1, . . . ,XN−lb−la

}
, where lb denotes the length of

historical values used to predict the next la values in the
time t. The formats of inputs and outputs are shown in Fig. 2.
Then, we split the data into training and test datasets after
conducting the Z-score normalization to process the input
data.

FIGURE 2. The input and output of data.

C. GRU-BASED PREDICTOR
LSTMs first proposed in 1990s [18] can learn long-
dependencies and contextual reasoning in time series and
overcome the vanishing gradients problem by replacing
an ordinary neuron by the LSTM unit or block; hence,
LSTMs have become popular in forecasting problems in time
series [4], [16], [21]. However, it is quite difficult to train
LSTMs due to their complex architecture. In order to address
this shortcoming, the LSTM is improved, and the input gate
and the forgetting gate in LSTM are replaced by an update
gate to form a new GRU [17], [36]. The performance of GRU
is as good as LSTM while the structure of GRU is simpler
than that of LSTM, which is shown in Fig. 3. Therefore,
we apply GRU in our predictor model to learn the temporal
dependence in multivariate telemetry data.

In Fig. 3b), the xt and ht−1 are the inputs while the hidden
variable ht is the output, and the GRU can be formulated as
follows:

ht = zt � ht−1 + (1− zt )tanh

� (Whxt + Uh (rt � ht−1)+ bh) (1)

rt = sigmoid(Wrxt + Urht−1 + br ) (2)

zt = sigmoid(Wzxt + Uzht−1 + bz) (3)

where rt , zt represents the reset gate and the update gate,
respectively. W∗,U∗, b∗, ∗ ∈ {h, r, z} denote the parameters
to learn.

FIGURE 3. Architecture of LSTM and GRU.

In the former applications, a specific predictor is trained for
each channel and each predictor is used to forecast values for
that corresponding channel. This is feasible when the number
of channels is small, or channels with analogous data distribu-
tion. However, in spacecraft, there usually have thousands of
telemetry channels, so it is impractical and infeasible to train
a prediction model for each channel due to the computation,
storage and time constraints. Therefore, inspired by ensemble
learning, we propose a GRU-based stacked predictor in this
section, and the framework is illustrated in Fig. 4.

The proposed stacked predictor consists of two layers: a
prediction layer and a decision layer. The prediction layer
contains 3 GRU-based predictors with various GRU-based

FIGURE 4. Architecture of stacked predictor.
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neural network structures and aims to learn the normal behav-
iors of telemetry data. The input data are fed into three
GRU-based predictors simultaneously, and the outputs of
each predictor are what the values are expected to be at the
next several timestamps.

The decision layer combines the predictions of themultiple
GRU models in order to get a more accurate prediction for a
dataset. In this paper, the decision strategy gets the means of
all the predicted values produced by each individual model
as final prediction values. This layer is essential as it enables
the proposed predictor to be a generic and robust model
in the sense that it does not rely on a specific prediction
model. Our proposed model employs various different mod-
els to promote the prediction accuracy. Through this way,
the stacked predictor is robust to multivariate channels of
data.

D. AUTOMATIC PREDICTION ERROR THRESHOULD
SETTING USING EVT
The stacked predictor is trained on the training dataset with-
out any abnormal samples, so it learns and captures the nor-
mal behavior of the telemetry data. The prediction errors e(t)
are defined as the absolute differences between the ground
truth observations yt and their corresponding predicted values
ŷt at time t .

e(t) =
∣∣yt − ŷt ∣∣ (4)

All the prediction errors in training dataset form a vector
e = [e(1), e(2), . . . , e(t), . . . , e(n)]. Since there are abrupt
changes in the output channels of spacecraft, there exist
spikes in prediction errors; therefore, it is necessary and use-
ful to dampen these spikes using the Exponentially Weighted
Moving Average (EWMA) method [37]. The smoothed pre-
diction errors are calculated in (5).

es (t) = βes (t − 1)+ (1− β)e (t) (5)

In order to find the anomalies, we set the anomaly threshold
using the EVT. The goal of EVT is to find the law of extreme
values in es (t) rather than the data distribution of es (t),
so it makes no assumptions about the data distribution of
prediction errors when finding extreme values. These extreme
laws have the following mathematical form

Gγ :x 7−→ exp
(
− (1+ γ x)−

1
γ

)
, γ ∈ R, 1+ γ x > 0.

(6)

The above equation is called Extreme Value Distribution
(EVD), in which the parameter γ is the extreme value index
determined by original distribution. In order to evaluate the
probability of anomalies using EVD in telemetry data, the
parameter γ should be estimated. The Peaks-Over-Threshold
(POT) algorithm is an efficient and effective method to
compute γ .
Assuming that the cumulative distribution function of the

random variable X is F(x), if and only if a function σ exists,

for all x ∈ R s.t. 1+ γ x > 0:

F̄θ (x) = 1− Fθ (x)

= P (X − θ > x|X > θ) ∼ (1+
γ x
σ (θ )

)
−

1
γ (7)

where θ is the initial threshold and selected as the 98%
quantile, γ and σ are shape and scale parameters of a Gener-
alized Pareto Distribution (GPD). This result shows that the
excesses over a threshold θ , denoted as X − θ , are likely
to follow GPD. The Peaks-Over-Threshold (POT) approach
attempts to fit a GPD to the excessesX−θ . Similar to [20], the
value of parameters γ̂ and σ̂ could be estimated byMaximum
Likelihood Estimation (MLE). Therefore, the final threshold
ε is computed by:

ε ' θ +
γ̂

σ̂

[(
qn
Nθ

)−γ̂
− 1

]
(8)

where q represents the desired probability and usually lies
between 10−5 and 10−3, n denotes the total number of values,
Nθ is the number of peaks, i.e., the number of Xi s.t. Xi > θ .
The EVT, by using the POT algorithm, enables us set

dynamic threshold such that P(X > ε) < q without any
strong assumption on the original distribution of X and with-
out any clear knowledge about this distribution. We apply
this method to detect anomalies in the telemetry data of
spacecraft. We compute a first threshold εtr in the smoothed
prediction errors from training dataset. This training proce-
dure is illustrated in the algorithm 1.

Algorithm 1 Set a First Threshold εtr in Training Dataset
Input: The smoothed prediction errors of training dataset es−tr, the
risk probability q.

Begin:

1: Set the initial threshold θ ;

2: Calculate the number of values Nθ excess over θ ;

3: Calculate the estimated values of γ̂ and σ̂ using MLE;

4: Calculate threshold εtr using equation 4;

5: Return εtr and θ

End

Then for the prediction errors of the test dataset, we could
find whether the values are anomalous or not. If a value in
es−te exceeds the threshold εtr, then we consider the corre-
sponding input data as abnormal. The anomalies are not used
to update the model. In other cases, either the value exceeds
the initial threshold (peak case) either it is a normal value
(normal case). In the peak case, we update the threshold. This
procedure is shown in Algorithm 2.

IV. EXPERIMENTS
In this work, we are the first to introduce GRU-based stacked
predictor as well as extreme value theory into the anomaly
detection of spacecraft telemetry data. All experiments are
based on the environment of TensorFlow 2.0, python 3.6+.
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FIGURE 5. The general architecture of GRU-based predictor.

Algorithm 2 Anomaly Detection Method
Input: The smoothed prediction errors of test dataset es−te, εtr, q, θ

Begin:

1: Initialize the anomalous set A ∈ ∅;

2: for k > 0 do

3: εte = εtr

4: if es−te (k) > εte then

5: the corresponding input data are anomalous and add them
into set A

6: else if es−te (k) > θ then

7: update εte using Algorithm1

8: else

9: k = k+ 1;

10: end if

11: end for

12: Return A

End

TABLE 1. The hyper parameters setting of proposed model.

A. DATASETS AND EVALUATION METRICS
In order to compare other anomaly detection methods with
our proposedmodel and demonstrate the overall effectiveness
of our proposed model, we first conduct several experiments
on two public datasets released by NASA Jet Propulsion Lab-
oratory [16]. These two public datasets consist of telemetry

data with labels from the Soil Moisture Active Passive
(SMAP) satellite and Mars Science Laboratory (MSL) rover,
Curiosity. There are 55 and 27 channels in SMAP and MSL
datasets, respectively. Then we implement experiments on
three public datasets to show the superior prediction perfor-
mance of stacked GRU models. Finally, a dataset collected
from a real launch vehicle is used to elaborate verify the
effectiveness of EVT-based detection rule.

Similar to [3], [16], we select Precision, Recall, F1-Score
(denoted as F1) as metrics to evaluate the performance of
our proposed method and other baseline approaches. The
Precision, Recall and F1 are defined as:

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ FN
(10)

F1 = 2×
Precision× Recall
Precision+ Recall

(11)

where TP is the true positive values, FP represents false
positive values, and FN denotes false negative samples.

B. EXPERIMENTAL SETTINGS
As described in section 2.3, a stacked predictor which con-
tains 3 different architectures of GRU-based neural networks
is used to forecast the telemetry time series data of spacecraft.
The general architecture is deep which consists of several
GRU layers and two fully-connected lays, as shown in Fig. 5.
Before training, we employ the Tree-structured Parzen Esti-
mator (TPE) Bayesian Optimization [38] to select the hyper
parameters of our proposed model. The GRUA network con-
tains 2 hidden GRU layers with 32, 64 neurons, respectively,
the GRU B network contains 3 hidden GRU layers with 80,
80, 64 neurons, respectively, and the GRU C network has 4
hidden GRU layers with 48, 80, 80, 64 neurons, respectively.
The rest of hyper parameters are listed in Table 1.

The output of the second fully connected layer is the
prediction of the next la timestamps and in our model we set
la to 5 considering balance between training efficiency and
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FIGURE 6. Anomaly detection results for channel F-7.

model performance. The number of units in the first fully con-
nected layer is set to 64. Early stopping and dropout strategy
are used to avoid over-fitting. The parameters of the model
are trained by adopting Adam optimizer [39] for stochastic
gradient descent with an initial learning rate of 10−3 to min-
imize the Mean Square Error (MSE) loss function.

For the POT parameters, we follow the recommendation
in [20] that the range of q is

[
10−5, 10−3

]
and typically the

initial threshold θ is the 98% quantile.

C. RESULTS ON SMAP AND MSL
1) THE OVERALL RESULTS
Our proposed anomaly detection method is a prediction-
based algorithm which combines GRU-based predictors and
EVT to identify anomalies. Fig. 6 and Fig. 7 illustrate the
detection results for channel F-7 fromMSL dataset and chan-
nel S-1 from SMAP dataset, respectively. The first plots in
Fig. 6 and Fig. 7 contain the true data, the predicted data and
the smoothed errors. The dash lines in the second plots of
Fig. 6 and Fig. 7 represent the dynamic thresholds while the
blue lines denote the smoothed errors, and once the smoothed
error exceeds the thresholds an anomalous point is labeled.
Our proposed approach could detect all the 423 anomalies
with 34 false positives in channel F-7 and all the 448 anoma-
lies without any false positive in channel S-1. Therefore, the
precision and recall in channel F-7 are 92.26% and 100%
while the precision and recall in channel S-1 are both 100%.

In order to demonstrate the effectiveness and superiority
of our proposed algorithm, we compare it with three state-
of-the-art methods for time series anomaly detection: Hierar-
chical Temporal Memory (HTM) model [35], LSTM-based
model with nonparametric anomaly thresholding approach
(LSTM-NAT for abbreviation) [16], Stacked predictor with
dynamic thresholding algorithm (SP-DTA for short) [3]. The
results of precision, recall, F1 of these baseline models
and the proposed method on SMAP and MSL are showed
in Table 2 and Fig. 8. The precision and F1 metrics of
our method outperform all baseline methods, and the recall
metrics are only lower than the best baseline approach on
SMAP dataset. Our approach gets the highest F1 scores with
87.4% which exceeds the best baseline approach by 3.6% on
MSL dataset. All these results show the superiority of our
proposed method compared to the state-of-the-art methods.
Then, we analyze the performance of these approaches in
detail.

HTM [35] which operates in real-time is a theoretical
framework for time series learning in the cortex. HTM out-
puts the value of current input and computes the prediction
error and likelihood. Then this likelihood of an anomaly
L which is defined using the tail probability Q determines
whether an anomaly is identified. L = 1− Q(µs−µW

σ 2W
) where

µs denotes a short time average, µW and σ 2
W represents mean

and variance of a time window W, respectively. This method
usually imposes a strong assumption on the prediction errors
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FIGURE 7. Anomaly detection results for channel S-1.

TABLE 2. Performance comparison of baseline models with proposed method.

that they should follow a normal distribution which does not
always hold in real application scenarios. As a result, HTM
method does not perform well on these two datasets with the
lowest F1 scores (56.6% for MSL) among all the methods.

Hundman et al. in [16] proposed a LSTM-based network
to detect anomalies with a complementary unsupervised and
nonparametric anomaly thresholding approach in telemetry
data from SMAP and MSL spacecraft. One of disadvantages
of this method is that it could not detect contextual anomalies
well, which explains why this method gets the lowest preci-
sion 85.5% for SMAP. Another limitation is that a specific
model needs to be created for each telemetry channel, thus it
would need to train many models for various telemetry chan-
nels, which is infeasible and impractical in real application
due to computation constrains.

Stacked predictor in [3] stacks three LSTM-based pre-
dictors with different architectures and a Support Vector
Machine (SVM) based predictor to forecast the input values,
then a dynamic thresholding algorithm is applied to optimally
extract anomalous data. This method could enhance gener-
alization and adaptability, so it is suitable for multivariate

telemetry channels. However, this method will need more
time to search the best thresholds for the prediction error
sequences than other approaches and it is difficult to deter-
mine the optimal bandwidth of Gaussian kernel. This explains
its worse performance than our proposed method.

Our proposed method is a prediction model which pro-
motes the forecasting performance by adopting stacked
GRU-based predictor. Unlike HTM and SP-DTA, our method
applies no assumption on the probability distribution of
prediction errors and employs EVT to automatically set
threshold. Compared with LSTM, the architecture of GRU
is simpler while the performance of GRU is as good as
LSTM; therefore, the GRU-based model proposed is more
efficient and effective than other baseline models. Moreover,
our model trains on the entire dataset instead of training
a specific model for each channel, which great promotes
efficiency and reduce training time.

2) EFFECT OF GRU
The prediction-based anomaly detection algorithms usually
consist of two steps. First, a well-designed prediction model
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FIGURE 8. Metrics of proposed method and all baseline models.

is constructed to learn the normal representatives of time
series data and forecast the future time series. Then a specific
detective rule is performed to identify anomalous time series
on the prediction errors. Thus, training an effective and effi-
cient predictive model is vital because it directly determines
the prediction errors. Considering the superior performance
of RNN in processing temporal or sequential data, in this
section, the prediction performances of GRU and LSTM
which are two main variants of RNN are compared in two
dimensions of prediction accuracy on the test set and training
time on the training set. We select commonly used datasets
in the field of anomaly detection for comparative analysis:
Numenta Machine Temperature dataset [40], Power Demand
dataset [41], and ECG dataset [42]. For fairness, the GRU and
LSTM based networks have the same architecture and hyper
parameters. The experimental results are shown in Table 3
below.

From the experimental results in Table 3, we can conclude
that the prediction accuracy of the prediction model imple-
mented with GRU is slightly higher than that of LSTM.When
using a predictive model for anomaly detection, it is usually
necessary to compromise between prediction accuracy and
detection accuracy. A high prediction accuracy on the test
set often results in low detection accuracy. This is because
the prediction-based anomaly detection algorithm determines
whether the corresponding data is abnormal through the mag-
nitude of the prediction error.

In terms of training efficiency, the training time of each
epoch for the GRU model is shorter than that of the LSTM
model, with a maximum reduction of 12.2% in ECG dataset.
From the perspective of processing the large-scale test data of
a launch vehicle, the shorter the training times are, the faster
the data will be processed.

Combined with the above analysis, the GRU-based
prediction model has a faster running rate. Although the
prediction accuracy is slightly higher than that of LSTM,

TABLE 3. Comparison between GRU and LSTM.

it does not impact the results of anomaly detection. Therefore,
we choose GRU to construct the prediction network model.

3) EFFECT OF EVT
In addition to prediction model, another aspect that signifi-
cantly influences the final performance of anomaly detection
is the detection rule. Motivated by the fact that the tails distri-
butions of the prediction errors follow a Generalized Pareto
Distribution (GPD), we propose a detection rule based on
Extreme Value Theory (EVT) which is able to automatically
set thresholds for prediction errors.

In order to assess the performance of our EVT-based
detection rule, we also compare the EVT-based methodol-
ogy to a complementary unsupervised and nonparametric
anomaly thresholding approach [16], a method leveraging
Chebyshev’s inequality [43] and a Gaussian-based threshold-
ing rule [44]. The former three detection rules are not bound
to the underlying distribution of the prediction errors; while
the Gaussian-based rule assume that the prediction errors
should follow a Gaussian distribution.

The experiments are conducted on a real dataset containing
voltage values sampled from a power system of a launch
vehicle. The dataset contains a total of 11 abnormal points,
and values below 34V are defined as abnormal points and
emphasized as red dots in Fig. 8. The abnormal points are
caused by detonating related initiating explosive devices or
controlling the swing of the nozzles during flight, which
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TABLE 4. Comparisons of different detection rules.

leads the voltage values to drop at the corresponding time.
This dataset is fed into the GRU-based stacked predictor to
get prediction errors on which these four detection rules are
implemented, respectively. The results are shown in Table 4.

It can be seen from Table 3 that our EVT-based detection
method could identify 10 anomalies and none false posi-
tive, which outperforms three other baseline detection rules.
Although the Chebyshev’s inequality method could detect
most of anomalies, it also results in many false positives,
which lead to a low precision. TheGaussian-basemethod also
results in many false positives indicating that presuming a
Gaussian distribution on the prediction errors is a very strong
assumption and might not always hold for many application
scenarios. The precision of LSTM-NAT method is 88.9%,
but the recall is 72.3% showing that it would miss many real
anomalies.

V. CONCLUSION
Spacecraft anomaly detection can help to discover and iden-
tify abnormal behaviors in advance and avoid potential cas-
cading downtime. In this paper, to address the problems
of large amount of telemetry data and imbalanced samples
in spacecraft, we propose an unsupervised deep learning-
based anomaly detection methodology using stacked Gated
Recurrent unit (GRU) based recurrent neural networks and
ExtremeValue Theory (EVT). Inspired by ensemble learning,
we proposed a stacked GRU-based network which could
not only promote the prediction performance, but also be
robust to multivariate telemetry data. Moreover, we devise an
EVT-based detection rule to set dynamic thresholds for pre-
diction errors without making any critic assumptions about
the distribution. Through extensive experiments, our pro-
posed approach exceeds state-of-the-art methods on many
large datasets.

To the best of our knowledge, this is the initial exploration
of the GRU based neural networks and EVT in the field of
spacecraft telemetry data anomaly detection. In the future,
wewill focus on how to improve the efficiency and robustness
across multiply related spacecraft and machines by using
transfer learning.
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