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ABSTRACT More than a quarter of all Americans are estimated to have multiple chronic conditions (MCC).
It is known that shared modifiable lifestyle behaviors account for many commonMCC.What is not precisely
known is the dynamic effect of changes in lifestyle behaviors on the trajectories of MCC emergence. This
paper proposes dynamic functional continuous time Bayesian networks to effectively formulate the dynamic
effect of patients’ modifiable lifestyle behaviors and their interaction with non-modifiable demographics
and preexisting conditions on the emergence of MCC. The proposed method considers the parameters of
the conditional dependencies of MCC as a nonlinear state-space model and develops an extended Kalman
filter to capture the dynamics of the modifiable risk factors on the MCC evolution. It also develops a tensor-
based control chart based on the integration of multilinear principal component analysis and multivariate
exponentially weighted moving average chart to monitor the effect of changes in the modifiable risk factors
on the risk of new MCC. We validate the proposed method based on a combination of simulation and a real
dataset of 385 patients from the Cameron County Hispanic Cohort. The dataset examines the emergence
of 5 chronic conditions (Diabetes, Obesity, Cognitive Impairment, Hyperlipidemia, Hypertension) based
on 4 modifiable lifestyle behaviors representing (Diet, Exercise, Smoking Habits, Drinking Habits) and
3 non-modifiable demographic risk factors (Age, Gender, Education). For the simulated study, the proposed
algorithm shows a run-length of 4 samples (4months) to identify behavioral changes with significant impacts
on the risk of new MCC. For the real data study, the proposed algorithm shows a run-length of one sample
(one year) to identify behavioral changes with significant impacts on the risk of new MCC. The results
demonstrate the sensitivity of the proposed methodology for dynamic prediction and monitoring of the risk
of MCC emergence in individual patients.

INDEX TERMS Extended Kalman filter (EKF), functional continuous time bayesian network (FCTBN),
multivariate exponentially weighted moving average (MEWMA) control chart, multiple chronic conditions
(MCC), multilinear principal component analysis (MPCA).

I. INTRODUCTION
A. MOTIVATION
The evolution of multiple chronic conditions (MCC) follows
a complex stochastic process. This path of evolution is often
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influenced by several factors, including inter-relationship
of preexisting conditions, patient-level modifiable and non-
modifiable risk factors [1]. MCCs are associated with 66%
of the total healthcare costs in the United States, and
approximately one in four Americans and 75% of Americans
aged 65 years are burdened with MCC [2], [3]. Furthermore,
people with MCCs have an increased risk of mortality [4].
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FIGURE 1. The overall scheme of the proposed approach for dynamic prediction and monitoring of the emergence and progression of MCC. The
proposed scheme has three major components: (1) A Functional CTBN (FCTBN) to take into account the impact of the patients’ non-modifiable
risk factors on the MCC emergence and progression, (2) a dynamic FCTBN (D-FCTB) for prediction of FCTBN parameters based on the changes in
the modifiable lifestyle behavioral risk factors using Extended Kalman Filter, and (3) A tensor-based control chart for monitoring the changes in
the D-FCTBN parameters.

What makes MCC one of the biggest challenges of the 21st

century in healthcare [5], is the complex dynamic nature of
MCC which is affected not only by the preexisting chronic
conditions and non-modifiable demographic risk factors,
such as age, gender, ethnicity, etc., but also the modifiable
lifestyle behavioral risk factors, such as diet, exercise, etc.

B. BACKGROUND AND PROBLEM STATEMENT
Several aspects of MCC have been studied in literature over
the years. Lippa et al. [6] conducted a structured clinical
interview of a sample of 255 previously deployed Post-
9/11 service members and veterans. They found over 90%
of them suffer from psychiatric conditions. Approximately
half of them had three or more conditions, and 76.9% of
them suffered from four clinically relevant psychiatric and
lifestyle behavioral factors, including deployment trauma,
somatic, anxiety, and substance abuse. Alaeddini et al. [7]
identified major transitions of four MCC that include
hypertension (HTN), depression, PTSD, and back pain in
a cohort of 601,805 Iraq and Afghanistan war Veterans
(IAVs). They also developed a Latent Regression Markov
Mixture Clustering (LRMCL) algorithm that can predict the
exact status of comorbidities about 48% of the time. In a
separate study, Cai et al. [8] developed algorithms to identify
the relationships between factors influencing hepatocellular
carcinoma after hepatectomy. Lappenschaar et al. [9] and
Faruqui et al. [10] separately used a large dataset to develop
a multilevel temporal Bayesian network (MTBN) to model
the progression of MCCs. Several studies have also covered
the prevalence of MCC and their rate of increase [11]–[20];
health consequences of MCC and their complications
[21]–[25]; cost and quality of life [26]–[32]; patient support,
intervention and complications [33], [34]; and assessment,

prediction, and decision making [7], [10], [35], [36].
However, most of the preexisting literature is cross-sectional,
considers single chronic conditions, or studies a short period
of time. Moreover, while these methods describe general
comorbidity phenotypes, they do not provide insight into
the complex interactions between preexisting MCC, non-
modifiable demographic risk factors, and modifiable lifestyle
behaviors of an individual patient on the complex evolution
pathway of MCC. In particular, they do not effectively
capture the impact of modifiable lifestyle behaviors of
individual patients on dynamics of MCC emergence, and
progression [10].

C. PROPOSED APPROACH
In this study, we first represent the complex stochastic
relationship between MCC as a functional continuous time
Bayesian network (FCTBN) [37] to take into account the
impact of the patients’ risk factors on the MCC emergence
and progression (Figure 1- First Component: Functional
CTBN to model the impact of patients’ non-modifiable
risk factors on the conditional dependencies of MCC as
Poisson regression). We then develop a dynamic FCTBN
(D-FCTBN) to capture the dynamic impact of modifiable risk
factors and their interaction with preexisting conditions on
the emergence of new MCC. This is done by formulating
the conditional dependencies of FCTBN using a non-
linear state-space model based on Extended Kalman Filter
(EKF) (Figure 1- Second Component: Dynamic prediction of
FCTBN parameters based on the changes in the modifiable
lifestyle behavioral risk factors and their interaction with
preexisting conditions using extended Kalman filter (EKF)).
Next, we develop a tensor-based control chart to monitor
the changes in the estimated parameters of the proposed
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D-FCTBN model, which may have a potentially significant
impact on the risk of developing a new MCC (Figure 1 -
Third Component: Tensor-based control chart to monitor the
changes in the parameters of the DFCTBN model). Finally,
we validate the proposed approach using a combination of
simulation and real data from the Cameron County Hispanic
Cohort (CCHC). The overall schema for the proposedmethod
is shown in Figure 1.

The proposed methodology has the following
contributions:

1) We propose to formulate the conditional dependencies
of FCTBN as a non-linear state space model based
on EKF to create a dynamic FCTBN (D-FCTBN)
that captures the dynamics of modifiable lifestyle
behavioral risk factors on the structure and parameters
of the MCC network.

2) We propose a tensor-based control chart to proactively
monitor the evolution of the D-FCTBN network
parameters over time, and signal when there is a
significant change in the estimated parameters of the
MCC network, which can result in an increased risk of
developing new chronic conditions.

3) We validate the proposed methodology for dynamic
prediction and monitoring of the emergence of
multiple chronic conditions based on a combination of
simulation and a real dataset from the Cameron County
Hispanic Cohort (CCHC).

The remainder of the paper is structured as follows.
Section II presents the preliminaries and background for the
CTBN and FCTBN. Specifically, Section II-A describes the
details of the CTBN, and Section II-B explains the functional
CTBN and the regularized regression model for learning its
structure and parameters. Section III details the proposed
approach for developing the Dynamic FCTBN (D-FCTBN)
and the tensor-based control chart for monitoring the
evolution of D-FCTBN. In particular, Section III-A describes
the details of the proposed EKF model for modeling the
dynamics of edges of the D-FCTBN based on the changes
in the modifiable risk factors and their interaction with
preexisting conditions. Also, Section III-B describes the
building blocks of the proposed tensor-based control chart
for monitoring the estimated parameters of the proposed
D-FCTBN. Section IV presents the study population, the
resulting model structure and parameters, and the tensor-
based control chart to detect network changes. Finally,
Section V provides the concluding remarks.

II. RELEVANT BACKGROUND
In this section, we review some of the major components of
the proposed approach, including the CTBN for modeling
MCC evolution as a finite-state continuous time conditional
Markov process over a factored state [38]–[40], and
functional CTBN (FCTBN) [37] for extending CTBN
edges based on Poisson regression of some exogenous risk
factors.

A. CONTINUOUS TIME BAYESIAN NETWORK (CTBN)
1) CTBN COMPONENTS
Continuous time Bayesian networks (CTBNs) are Bayesian
networks that models time explicitly by defining a graphical
structure over continuous time Markov processes [38]. Let
X = {x1, x2, . . . ., xn} denotes the state space of a set of
random variables with discrete states xi = {1, . . . , l}, such as
MCC likeDiabetes, Obesity, Hypertension, Heyperlipidemia,
and Cognitive Impairment. A CTBN consists of a set of
conditional intensity matrices (CIM) under a given graph
structure [38], [41]. The components of a CTBN are -

1) An initial distribution (P0x), which formulates the
structure of the (conditional) relationship among the
random variables and is specified as a Bayesian
network, where each edge xi → xj on the network
implies the impact of the parent condition xi on the
child condition xj.

2) A state transition model (QXi|u), which describes the
transient behavior of each variable xi ∈ X given the
state of parent variables u, and is specified based on
CIMs -

QX |u =


−qx1|u qx1x2|u . . . qx1xn|u
qx2x1|u −qx2|u . . . qx2xn|u
...

...
. . .

...

qxnx1|u qxnx2|u . . . −qxn|u


where qxixj|u represents the intensity of the transition from
state xi to state xj given a parent set of node u, and
qxi =

∑
j6=i qxixj . Conditioning the transitions on parent

conditions sparsifies the intensity matrix considerably, which
is especially helpful for modeling large state spaces. When
no parent variable is present, the CIM will be the same as the
classic intensity matrix.

The probability density function (f ) and the probability
distribution function (F) for staying at the same state (say,
xi), which is exponentially distributed with parameter qxi , are
calculated as-

f (qx , t) = qxiexp(−qxi t), t ≥ 0 (1)

F(qx , t) = 1− exp(−qxi t), t ≥ 0 (2)

After transitioning, which takes an expected transition
time of 1

qxi
, the variable X shifts to state xj with probability

θxixj =
qxixj
qxi

. While a Markov process provides a
straightforward framework for modeling the temporal
behavior of a random variable with finite states, it doesn’t
scale up well for large state spaces i.e. the size of intensity
matrix,QX grows exponentially with the number of variables.

2) CTBN PARAMETER ESTIMATION
Given a dataset D = {τh=1, τh=2, . . . ., τh=H } of H observed
transitions, where τh represents the time at which the
hth transition has occurred, and G is a Bayesian network
defining the structure of the (conditional) relationship among
variables, we can use maximum likelihood estimation (MLE)
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(equation (3)) to estimate parameters of the as defined in
Nodelman et al [38], [40]-

Lx(qx|u : D) =
∏
u

∏
x

qM [x|u]
x|u exp(−qx|uT [x|u]) (3)

where, T [x|u] is the total time X spends in the same state x,
and M [x|u] the total number of time X transits out of state x
given, x = x ′.The log-likelihood function can be then written
as-

lx(qx|u : D) =
∑
u

∑
x

M [x|u] ln(qx|u)− qx|uT [x|u] (4)

Maximizing Equation 4, provides the maximum likelihood
estimate (MLE) of the conditional intensities as shown in
Equation 5-

q̂x|u =
M [x|u]
T [x|u]

(5)

The above estimation is true for the cases with complete data.
For the cases including incomplete dataset, the expectation
maximization (EM) algorithms can be used [39], [42].

B. FUNCTIONAL CTBN (FCTBN)
1) FCTBN WITH CONDITIONAL INTENSITIES AS
POISSON REGRESSION
In reality, the progression of state variables, such as chronic
conditions, not only depends on the state of their parents,
such as preexisting chronic conditions but some exogenous
variables, such as patient level risk factors like age, gender,
etc.

Using Poisson regression to represent the impact of
exogenous variables on the conditional dependencies, the rate
of transition between any pair of MCC states can be derived
as [37]-

log qxi,xj|u = β0xi,xj|u + z1β1xi,xj|u + . . . . . .+ zmβmxi,xj|u (6a)

= zβxi,xj|u (6b)

where, z = {z1, z2, . . . , zm} is the set of exogenous variables
(e.g. patient-level risk factors such as age, gender, race,
education, marital status, etc.), and βkxi|u =

∑
j6=i βkxixj|u

,

k = 0, . . . ,m is the set of coefficients (parameters) associated
with the exogenous variables.

Also, the rate of staying in the same state is modeled as-

log qxi|u = β0xi|u + z1β1xi|u + . . . . . .+ zmβm,xi|u (7a)

= zβxi|u (7b)

When the state space of the random variables is binary,
as in our case study on MCC transitions, where MCC
states include having/not having each of the conditions, the
conditional intensities in Qxi|ui , can be estimated just using
Equation 7a because for Markov processes with binary states
qxi|u = −

∑
j6=i q(xixj|u). This feature considerably simplifies

the estimation of the functional CTBN conditional intensity
matrix based on Poisson regression.

2) PARAMETER ESTIMATION
Having the dataset D =

{
τ(p=1,h=1), . . . , τ(P,H)

}
of MCC

trajectories, where τ(p,h) represents the time at which the
hth (MCC) transition of the pth patient has occurred, we use
maximum likelihood estimation to estimate parameters of the
proposed FCTBN. The likelihood of D can be decomposed
as the product of the likelihood for individual transitions. Let
d = 〈z,u, xi|u, td , xj|u〉 be the transition of patient p with
risk factors z and preexisting conditions u, who made the
transition to state xj|u after spending the amount of time td =
τ(p,h) − τ(p,h−1) in state xi|u. By multiplying the likelihoods
of all conditional transitions during the entire trajectory for
all patients p = 1, . . . ,P, and taking the log, we obtain the
overall log-likelihood function as-

lN (q : D) =
∑
p

∑
h

∑
u

∑
xj

∑
xi{

td p
[
xixj|u

]
exp

(
zp,hβxixj|u

)}
(8)

which is a convex function and can be maximized efficiently
using a convex optimization algorithm such as Newton-
Raphson to estimate parameters βxi|u. Given the structure of
the functional CTBN, i.e. the parent set for each variable
(node), the maximum number of parameters to be estimated
in Equation 8 will be ¯̄x × ¯̄z × 2max( ¯̄u)+1, where ¯̄x is the
number of state variables (conditions), ¯̄z is the number of
exogenous variables (risk factors) presents in the system,
and max( ¯̄u) is the maximum number of parents considered
(preexisting diseases for each condition). Therefore, as in
classical Bayesian networks, the number of parents has
a direct and exponential influence on the computational
efficiency of the estimation process and should be limited to a
small number. We propose to assume the conditional effect of
parents is multiplicative, i.e. qxi|u1,u2 = qxi|u1 .qxi|u2 , to make
the conditional effect of the risk factors additive given the
set of parents, i.e. βxixj|u=u1,...uk = βxixj|u1 + . . . + βxixj|uk .
This assumption, which is on a par with the Noisy-OR
[43], [44] and the CT-NOR [45], reduces the maximum
number of parameters to be estimated to ¯̄x × ¯̄z × 2 ×
(max( ¯̄u)+ 1)). Further details of FCTBNmodel can be found
in [37].

3) ADAPTIVE GROUP REGULARIZATION FOR STRUCTURE
LEARNING OF THE FCTBN
The parameter estimation approach presented above requires
the parent set of each condition to be known, which is
equivalent to knowing the Bayesian network structure. Given
that FCTBN has a special structure based on a conditional
intensity matrix that allows for cycles, group regularization
can be used to penalize groups of parameters pertaining to
each specific conditional transition (each edge) [37] as-

min−lN (q : D)+ k
∑
xi|u

λj‖βxi|u‖ (9)

where, ‖βxi|u‖ =
√∑

u
∑

xi (βxi|u .β
T
xi|u) is the L1-norm of

the group of parameters associated with each conditional
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FIGURE 2. Illustration of the impact of lifestyle behavioral risk factors dynamics on the conditional
intensities/dependencies and risk trajectory of developing new MCC conditions, i.e. Diabetes, at three
time points, including baseline, 5-year follow up, and 10-year follow up, using extended Kalman filter;
The nodes with thick outlines represent the preexisting or developed conditions over time. (The nodes,
OB: Obesity, HP: High Blood Pressure, DI: Diabetes, HL: Hyperlipidemia, and CI: Cognitive Impairment).

transition. k is the groups size which is based on the
number of coefficients in the Poisson regression for each
conditional intensity. λj = λ‖β̃ j‖

−1 is the tuning parameters
(of the adaptive group regularization) that control the
amount of shrinkage, where λ is inversely weighted based
on the unpenalized estimated value of the regression
coefficients β̃ j [46].

III. PROPOSED APPROACH
In this section, we first propose an extended Kalman filter
to capture the effects of the dynamics of modifiable risk
factors on the parameters, edges, and structure of the FCTBN
(D-FCTBN). Next, we develop a tensor-based control chart to
monitor the evolution of the dynamic FCTBN (D-FCTBN).

A. AN EXTENDED KALMAN FILTER FOR DYNAMIC
PREDICTION OF FCTBN PARAMETERS
The conditional dependencies (edges) of FCTBN provide
the rate of transitioning from one state to another given the
parents’ state and exogenous variables, i.e., the rate of a
new chronic condition such as obesity emergence during
the next t years given the preexisting conditions such as
diabetes and patient’s level risk factors such as gender,
age, etc. However, in reality, conditional dependencies
dynamically change based on a person’s modifiable lifestyle
behavioral risk factors, i.e., diet, exercise, and interaction

with non-modifiable risk factors and preexisting conditions.
To capture the dynamics of the changes in the conditional
intensities (risk) of MCC, we propose to transform the
parameters (coefficients) of the regression functions, which
represent the edges of the MCC (FCTBN) network, into an
extended Kalman filter (EKF) [47].

EKF consists of an observation equation and a state
transition equation. The observation equation describes the
most recent observation of state variables using system
dynamics, namely Poisson regression coefficients associated
with the emergence and progression of MCC. The transition
equation predicts how the state variables evolve to the next
period, namely how the coefficients associated with MCC
will progress/emerge in the next period (See Fig. 2).

1) OBSERVATION EQUATION
Each edge/connecting in the MCC FCTBN network
represents, the rate of occurrence of a chronic condition
such as diabetes, based on a Poisson regression function
with parameters

[
βxixj|u

]
t . We consider

[
βxixj|u

]
t as the

state variables of the dynamical system which describe
the (noisy) sequences of MCC observations. This results in
the observation equation given by-

[
qxi|u

]
t = exp

(
zt
[
βxi|u

]
t

)
(10)
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The observation equation (10) is non-linear and thus we will
employ the extended Kalman filter (EKF) [48] instead of
general Kalman filters (KF) [49]. EKFs similar to KF follows
a recursive procedure where it performs predictions based on
a given observation and updates the estimates iteratively [48].

2) STATE TRANSITION EQUATION
As a patient changes her lifestyle behaviors, the state
variables of the proposed dynamical model evolve in time
to best predict the MCC emergence and progression. This
results in a state transition equation given by-[

βxi|u
]
t = F

[
βxi|u

]
t−1 + εt (11)

where F is the state transition matrix, and εt is the white
noise assumed to follow a Gaussian distribution with mean
zero and covariance σ 2I. The transition matrix F can be
approximated from stream of data X i|t utilizing the FCTBN
model evaluated at different point in time or by utilizing some
system identification techniques [50].

3) DYNAMIC PREDICTION via EKF
EKF takes the most recent estimate of the state variables
with information of changes in the (modifiable) lifestyle
behavioral risk factors up to time t and uses the system
dynamics to predict the future state of the variables and
prediction of the MCC as [48]-

[βxi|u]t|t−1 = F[βxi|u]t−1|t−1 + σ
2I (12)

Pt|t−1 = F[βxi|u]t−1|t−1F
T
+ Qt (13)

where [βxi|u]t|t−1 and Pt|t−1 are the extended Kalman
prediction of the matrix of estimated coefficients and their
covariance respectively given a set of observations X i,t . The
observation equation is linearized using the Taylor Expansion
to achieve a sub-optimal estimate of the state value.

4) DYNAMIC ESTIMATION via EKF
When new observations of MCC are obtained, the error
between the observation and the EKF predictions is used to
update the posterior mean of the state variable as-

[βxi|u]t|t−1 = [βxi|u]t|t−1 + Kt (Xxi|u,t − Xxi|u,t|t−1) (14)

where Kt is the Kalman gain and calculated using the
following equations-

Pt|t−1 = (I − KtGt )Pt|t−1 (15)

Kt = Pt|t−1Gt (GTt Pt|t−1Gt + Rt )
−1 (16)

where, Gt denotes the Jacobian of g evaluated at [βxi|u]t|t−1
i.e. Gt =

∂g
∂[βxi|u]t

|[βxi|u]t|t−1
= ZTt diag(exp(Zt [βxi|u]t|t−1)),

redand Rt represents the variance of observations and is
estimated based on the underlying network distribution and
the observation prediction. The estimated parameter [βxi|u]t|t
provides a sub-optimal estimate of the network parameters at
time t [48]. The proposed D-FCTBN Algorithm is shown in
Algorithm 1.

Algorithm 1 Dynamic Functional Continuous Time
Bayesian Network (D-FCTBN)
Input:
Attribute Data, Dx = X1,X2, . . . ,Xn
Risk Factor Data, Dz = z1, z2, . . . , zn
Tuning Parameter, λj
Group Size, m
1: Procedure: Learn Structure and Parameters of
FCTBN [37](Dx ,Dz, λj,m)

2: Initialisation→ β

3: for i to p do
4: for j to h do
5: for k to u do
6: for l to x do
7: J (β) :=

∑
p
∑

h
∑

u
∑

xi (zpβxi|u) −∑
p
∑

h
∑

u
∑

xi

{
thdp [xi|u]exp(zpβxi|u)

}
+

m
∑

xi|u λ‖βxi|u‖

8: βm := βm −
∂J (β)
∂βm

9: end for
10: end for
11: end for
12: end for
13: DAG← GMM_Mixture(βm)
14: Procedure: Dynamic estimation of parameters of

FCTBN (D-FCTB)(β,DAG,Dz)
15: for i to N do
16: Xxi|u,t|t−1 = exp

(
zt
[
βxi|u

]
t

)
17: [βxi|u]t|t−1 = F[βxi|u]t−1|t−1 + σ

2I
18: Pt|t−1 = F[βxi|u]t−1|t−1F

T
+ Qt

19: Kt = Pt|t−1Gt (GTt Pt|t−1Gt + Rt )
−1

20: [βxi|u]t|t−1 = [βxi|u]t|t−1 + Kt (Xxi|u,t − Xxi|u,t|t−1)
21: Pt|t−1 = (I − KtGt )Pt|t−1
22: end for
Output: Updated β

B. MONITORING OF EVENTS
In this section, we propose a monitoring scheme to determine
meaningful changes in the exogenous variables (modifiable
risk factors) that can have an impact on the risk of developing
new chronic conditions. For this purpose, we propose a
statistical control chart that automatically signals when
there is a meaningful change in the predicted value of the
coefficients associated with the patient level (modifiable) risk
factors, namely [βxi|u]t|t−1, which is dynamically updated by
the D-FCTBN. The idea behind monitoring the [βxi|u]t|t−1
is that the predicted value of the risk factors coefficients are
directly related to the network edges (conditional intensities)
and the risk of developing new MCC conditions.

Given the dynamic prediction of D-FCTBN (MCC
network) parameters for a time point t|t − 1, the coefficients
form a 3-dimensional tensor including the parents, children,
and risk factors dimensions (modes). To effectively monitor
the tensor of predicted coefficients for any potential changes,
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FIGURE 3. Visual illustration of multilinear projection; projection in the
1-mode vector space.

we propose to use multilinear principal component analysis
(MPCA) [51] to extract the most salient features of the data
for building the control chart. Compared with some of the
alternative methods such as PCA [52], Unfolded MPCA
(UMPCA) [53], [54], Robust MPCA (RMPCA) [55], [56],
and Non-negative MPCA (NMPCA) [57], MPCA provides
an appealing combination of ease of implementation,
computational efficiency, and acceptable performance. For
classic PCA, it is not directly applicable to our study data
which are in the form of a 3-dimensional tensor. For UMPCA,
it does not preserve the local structure and correlation in
the data [52]. For RMPCA, it removes possible outliers,
which our control chart is designed to monitor [56]. For
NMPCA, it enforces non-negativity constraints which may
affect the extracted pattern from the tensor [58], due to the
nature of the problem. Interested readers may also refer to
Kruger et al [52], Lu et al [51], and Paynabar et al [58] for
comprehensive reviews of tensor feature extraction methods.

1) MULTILINEAR PRINCIPAL COMPONENT ANALYSIS
Lu et al. [51] introduce the MPCA framework for tensor
feature extraction. They decompose the original tensor into
a series of multiple projection sub-problems and solves them
iteratively.

For an in-control training set of N -th order tensor denoted
as A ∈ RI1×I2,×I3,......,×IN , the MPCA projection can be
denoted by y ∈ RI1×I2×I3 , where n = 1, 2, . . . . . . ,N ,
I1, I2 and I3 are the dimensions of the coefficient tensor
and N is the number of updated coefficients attained from
EKF. Lu et al. [51] find the set of orthogonal transformation
matrices, Un

∈ RIn×Pn , n = 1, 2, 3, . . . .,N , where
the dimensionality Pn (Pn ≤ In) for each mode is
predetermined or known for the application of interest. They
have also developed methods for adaptive determination of
Pn in case it’s not pre-determined. The transformation is
performed such that it captures the most variations of the
original tensor. To keep the original estimated values of the
coefficients, in this work we utilized the non-centered version
of the MPCA. Therefore, the low dimensional features after
applying MPCA will be,

Un
= arg max

U(1),U(2),...,U(N )

N∑
i=1

||Zi||
2
F (17)

where, n = 1, 2, 3, Zi = A ×1 U(1)
×2 U(2)

×3 U(3) and A
is non-centered tensor data. In case of centered data, A can

be replaced with Ã, where Ã = A − A. For a new feature
tensor, Anew ∈ RI1×I2,×I3 , the features are calculated as,

Znew = Anew ×1 U(1)
×2 U(2)

×3 U(3) (18)

and residuals of reconstruction can be calculated as

Enew = Anew − Znew ×1 U(1)T
×2 U(2)T

×3 U(3)T (19)

The errors at every time step can also be
vectorized by calculating the norm of all the data,
i.e. Enew_vector = ||Enew||2.

Algorithm 2Monitoring of D-FCTBN Parameters
Input:
Parameter Data, β t
Tuning Parameter, λ,L
1: z← MPCA(β t )
2: Phase I: Building the Control Chart
3: for i to M do
4: # Low Dimensional Feature Extraction
5: Un

= argmaxU(1),U(2),...,U(N )
∑N

i=1 ||Zi||
2
F

6: Zi = A×1 U(1)
×2 U(2)

×3 U(3)

7: end for
8: zi = λxi + (1− λ)zi−1
9: # Control Limit
10: CL = µ(zi)
11: UCL = CL + Lσ

√
λ

(2−λ) [1− (1− λ)2i]

12: LCL = CL−Lσ
√

λ
(2−λ) [1− (1− λ)2i]

13: Phase II: Monitoring
14: for i to T do
15: # New Feature for the Test Data
16: znew = Anew ×1 U(1)

×2 U(2)
×3 U(3)

17: # Residuals of reconstruction for monitoring
18: Enew = Anew − Znew ×1 U(1)T

×2 U(2)T
×3 U(3)T

19: if Enew ≥ UCL or Enew ≤ LCL then
20: Enew← Out-of-control Signal
21: end if
22: end for
Output: Detection of Out-of-Control Signal

2) MONITORING SCHEME
Here, we propose a tensor-based control chart to monitor
the changes in the D-FCTBN network edges caused by
changes in the patient modifiable risk factors, namely
lifestyle behavioral changes. Given the estimate of FCTBN
parameters σ 2I and [βxi|u]t|t−1 based on Section II-B, for any
new observation of patients (modifiable and non modifiable)
risk factors and MCC conditions, the tensor of new network
parameters (risk factors’ coefficients) are predicted using the
EKF detailed in Section III-A, and the relevant features are
extracted using MPCA discussed in Section III-B1.
When there is no significant change in the patients’

lifestyle behaviors, the reconstruction error in Equation 19
will be small, as patients’ historical/past behavior can
accurately estimate the D-FCTBN parameters. However,
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when there is a significant change in the patients’ lifestyle
behaviors, the distribution of reconstruction error will
change, and the observed value will supposedly increase.
Therefore, for new predictions of the D-FCTBN parameters,
[βxi|u]t+1|t ≈ Anew ∈ RI1×I2,×I3 , the reconstruction error can
be used to identify potential high-impact changed in patients
modifiable risk factors. The proposed monitoring scheme
is based on a Multivariate Exponential Weighted Moving
Average (MEWMA) [59] control chart of the vectorized
reconstruction error:

Zi = λxi + (1− λ)Zi−1 (20)

where 0 ≤ λ ≤ 1 and Z0 = 0. In case of MEWMA the
quantity plotted on the control chart is -

T 2
i = ZTi S

−1
I Zi (21)

where the covariance matrix is,

S−1I =
λ

2− λ
[1− (1− λ)2i]S (22)

which is equivalent to the variance of the univariate EWMA,
and S is the sample covariance matrix calculated of the
features estimated by N in-control samples [60]. The control
limits of control chart can be calculated as follows (for the
univariate case)-

UCL = µ0 + Lσ

√
λ

(2− λ)
[1− (1− λ)2i]

CL = µ0

LCL = µ0−Lσ

√
λ

(2− λ)
[1− (1− λ)2i] (23)

Where, L is the width of the control limits, σ 2 is the variance
of the data, and i represents the observation number in the
MEWMAstatistics. The factor λ

(2−λ) [1−(1−λ)
2i] approaches

λ
(2−λ) as i increases per iteration. Therefore, for Phase I
analysis of the MEWMA control chart, a few samples are
required until the control limit approaches their steady-state
values. It is also to be mentioned, a small choice of λ provides
more sensitivity in detecting subtle changes in the lifestyle
behavioral risk factors. Any observations that fall outside
the control limits are considered out-of-control signals. The
proposed algorithm for monitoring the parameters of the
D-FCTBN is shown below2.

IV. RESULTS AND DISCUSSION
Long-lasting diseases, otherwise known as chronic
conditions, can be considered a degradation process
that progresses over time and contributes to the development
of other new chronic conditions. The presence of two or more
chronic medical conditions in an individual is commonly
defined as multimorbidity, or multiple chronic conditions
(MCC) [10], [35]. Here, we use the proposed dynamic
FCTBN (D-FCTBN) to find the impact of patient level risk
factors, specifically lifestyle behaviors, on the conditional
dependencies of MCC over time. In addition, we use the

FIGURE 4. Flow diagram of sample selection and the final number of
patients included in the analysis.

proposed tensor-based control chart to monitor the risk of
new MCC emergence based on the dynamics of patients’
lifestyle behaviors.

A. STUDY POPULATION AND DEMOGRAPHICS
Our case study is based on the Cameron County Hispanic
Cohort (CCHC) dataset for comorbidity analyses. The CCHC
is a cohort study comprised of mainly Mexican Americans
(98% of cohort) randomly recruited from a population with
severe health disparities on the Texas-Mexico border and
started in 2004. The CCHC is employing a rolling recruitment
strategy and currently numbers 4,546 adults. Inclusion
criteria: (1) participating in the study between 2004 and 2020,
(2) having at least three 5-year follow up visits during that
period. 385 patients met these criteria, which include the
dataset of our study (see Figure 4). The survey includes
participants’ socio-demographic factors (age, gender, marital
status, education, etc.) and lifestyle behavioral factors (diet,
exercise, tobacco use, alcohol use, etc.).

B. DIAGNOSED HEALTH CONDITION AND PATIENT
ASSOCIATED RISK FACTORS
For this study, we considered some of the most common
MCCs present in the Hispanic community, including
diabetes, obesity, hypertension, hyperlipidemia, and mild
cognitive impairment. The positive criteria (considering the
condition to be active) for the conditions selected as below-

• Diabetes: Fasting Glucose >=126 mg/dL,
HbA1c>=6.5%, or take diabetes medication [61].

• Obesity: Body mass index (BMI, kg/m2)>=30 [62].
• Hypertension: Systolic blood pressure (BP)>=
130mmHg, Diastolic BP>=80 mmHg, or take anti-
hypertensive medication [63].

• Hyperlipidemia: Total cholesterol > 200 mg/dL,
triglycerides >=150 mg/dLl, HDLC < 40 mg/dL (for
male)/ HDLC < 50 mg/dL (for female), LDLC >=130
mg/dL, or take medication for hyperlipidemia [64].

• Mild Cognitive Impairment: Mini-Mental State Score
< 23 (out of 30) [65].
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FIGURE 5. The estimated parameters of FCTBN based on the optimal value of tuning parameters. The matrix contains all the possible
combinations of parent and child interaction. For example, the first row set (first 32 rows) of the matrix represents the parameters learned
child node 1 while considering the parents’ node are 2, 3, 4, and 5. The right side of the Figure shows all the possible condition possible (1 for
the presence of a condition and 0 for no presence of no condition).

For the risk factors, the dataset includes the participant’s
non-modifiable risk factors based on socio-demographic
information (age, gender, and education history) and
modifiable risk factors based on lifestyle behavioral risk
factors (diet, exercise, tobacco use, alcohol use). Diet and
exercise are categorized according to the U.S. Healthy Eating
Guideline, and U.S Physical Activity Guideline [66].

C. FCTBN STRUCTURE AND PARAMETER LEARNING
To identify the optimal value of the tuning parameter (λ)
of the adaptive group regularization method for FCTBN
structure and parameter learning, we use cross-validation
error based on several λ values. We attain the structure
of FCTBN and the parameters using the optimal value
of λ = 102. Figure 5 provides the heatmap of the
estimated parameters for the based FCTBN model. These
learned parameters will be used as the initial parameters of
EKF for estimating the dynamic FTCBN and monitoring
possible changes in the risk of acquiring a new MCC
condition.

D. D-FCTBN DYNAMIC ESTIMATION AND
PREDICTION USING EKF
The estimated parameters of FCTBN provide the
baseline/initial values of the D-FCTBN. As new (dynamic)
observations of patient’s (modifiable) risk factors and
MCC status are made available, we use EKF to capture the
dynamics of a patient’s modifiable risk factors and MCC
update, as detailed in Section III-A. Figure IV-D, visualizes
the changes in estimated parameter of the D-FCTNB for
time, t + 1 given the parameter information at time t and
base parameter, βt+1|t using the proposed EKF module for
5 patients over 11 consecutive year. The proposed model
provides a near-optimal approach to estimate and update the
D-FCTBN parameters, which are shown as heatmaps, given
the dynamics of patient’s modifiable lifestyle risk factors.

1) STABILITY ANALYSIS OF EKF FOR ESTIMATING
PARAMETERS OF FCTBN
In this section, we will discuss the stability of the EKF
model derived in Section III-A. For the measurement error,
e = Xt−Xt|t−1 Konrad et al. [67] showed that the estimation
error remains bounded if the following conditions hold-

1) ||F(Xt )|| ≤ α,
||Gt (Xt )|| ≤ β,
where, α, β ≥ 0 positive real number for each, t .

2) F is non-singular for every t .
3) The estimation error, e is exponentially bounded in

mean square error. This also bounds the probability to
one. This is only true when the estimates satisfy the
condition ||e|| ≤ ε and the covariance matrices of the
noise terms are bounded via, σ 2I ≤ δI and QI ≤ δI ,
where δ, ε > 0.

EKF model generally needs additional steps to correct
the estimation of the future state. These additional steps
are necessary to make sure estimated parameters do not
diverge over time. We consider mean squared error (MSE)
for stability analysis of EKF. Figure 7 shows the stability
check for the proposed EKF model of D-FCTBN parameters.
As shown in the Figure, the mean square error rapidly
decreases with respect to the time and iterations, showing an
acceptable level of stability for the analysis.

2) PREDICTIVE ANALYSIS OF D-FCTBN
We use the area under the curve (AUC) of the receiver
Operatic Characteristic (ROC) function to evaluate the
performance of the proposed D-FCTBN model against
CTBN and FCTBN using the CCHC study data. Considering
the patients’ preexisting MCC and risk factors in the base
year, which can be any combination of the 5 MCC (including
no condition), 5 socio-demographic factors, and 4 lifestyle
behaviors, each of the comparing methods is used to predict
the future combinations of conditions 5 years from the
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FIGURE 6. A visualization of the estimated parameters of the proposed D-FCTBN using EKF for 5 patients over 11 consecutive periods. The
illustration shows the changes in learned parameters/coefficients with respect to base year (t = 0) as estimated using D-FCTBN Algorithm (The
block of coefficients in Figure 5).

FIGURE 7. The stability check of the D-FCTBN model for estimating the model parameters in the presence of new data. The
Figure shows the MSE of predictions for two patients. The time axis shows the parameters estimated at each time step, and the
iteration axis shows the steps to minimize the error at each time step.

baseline. Table 1 illustrates the AUC performance of the
comparing methods for each of the five conditions (presented
in the columns) for the 5th year from the baseline (presented
in the row).

As can be seen from the table, the proposed D-FCTBN
generally provides competitive accuracy compared to CTBN
and FCTBN for 3 out of the 5 conditions (Diabetes, Cognitive

Impairment, and High Blood Pressure). However, it shows
less predictive power in predicting Obesity and High Blood
Pressure. This drop-in model performance can be explained
from the perspective of the availability of patient level data.
Since only two follow up observations have been available
in the CCHC dataset for most patients, we believe for
some of the conditions such as Obesity and Hyperlipidemia;
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TABLE 1. The AUC performance (of ROC) of the Dynamic FCTBN
(D-FCTBN) model for predicting the future in comparison to FCTBN.

the proposed D-FCTBN didn’t have a sufficient number of
observations to capture the dynamics of patients MCC with
respect to the changes in the modifiable lifestyle behavioral
risk factors.

E. MONITORING EVENTS IN A D-FCTBN
To demonstrate the effectiveness of the proposed tensor-
based control chart for event detection for a change in
D-FCTBN model parameter discussed in Section III-B2,
we setup two experiments, (1) a simulated experiment,
where the patient’s data and the lifestyle behavioral data are
synthetically generated to represent similar characteristics
of the actual data, and (2) a real experiment, where we
use the previously introduced data. In the model setup,
we have three non-modifiable demographic conditions (age,
gender, and years of education) and four modifiable lifestyle
behavioral risk factors (healthy diet, exercise, smoking habits,
and drinking habits). We conducted the experiments in
two stages. We utilize the data generated (the estimated
βt coefficients) to build Phase I of the control chart.
During this period, the lifestyle behavioral risk factors are
controlled (for the simulated data). In Phase II, out-of-
control samples are randomly generated for the simulated
data (by altering the modifiable factors). For each sample,
the monitoring features and the residuals are calculated.
The error features are then plotted on the corresponding
control charts. To demonstrate the generative capability
of the proposed approach, for simulated experiments,
we consider/generate monthly data/observations. However,
for the real experiments, we consider yearly time intervals,
given the availability of data. For the simulated experiments,
two scenarios are considered. In the first scenario, we change
only one of the lifestyle behavioral risk factors, and in the
second scenario, we change two lifestyle behavioral risk
factors simultaneously. Meanwhile, for real experiments,
we consider the case where two lifestyle behavioral risk
factors change.

1) SIMULATED CASE STUDY: CHANGING ONE OF THE
LIFESTYLE BEHAVIORAL RISK FACTORS
We consider the following setup for estimation of the
parameters of the control chart (Phase I). The patient is
considered to have diabetes as the prior chronic condition.
The falls in the age range of 31-35 and is male. The lifestyle
behaviors during the in-control Phase are [Healthy Diet,
Exercise, Smoke, Drink] = [Yes, Yes, No, No]. We assume
no extreme behavioral change during the Phase I period
(12months) and utilize the proposed D-FCTBN (as explained
in Section III-A) to generate the (updated) coefficients. Next,

we use MPCA (as explained in Section III-B) to generate
the control statistics (equation 19) for the MEWMA control
chart. the control statistics are then used to generate the
Phase I control chart. Phase I provides the control limits
of the MEWMA chart to be used for Phase II. Any point
outside these limits is considered as an out-of-control point
in Phase II.

To evaluate the performance of the control chart (Phase II)
(after the first 12 months), we modify one or more of
the lifestyle behavioral risk factor/s of the patients at
some (random) points in time. Phase II follows the same
steps as Phase I for generating the control statistic. The
control statistic is compared against the control limits
(estimated from Phase I) to check for any out-of-control
signal. Figure 8(a-c) shows the control chart’s performance
for the case studies (simulated and real data), where the
control chart parameters are set to λ=.15 and L = 1.5, which
is determined based on extensive simulation analysis. Next,
we provide a detailed explanation of each of the case studies.

Case (a): In-control behavior: Figure 8(a) shows the
control chart for an in-control case where there is no lifestyle
behavioral change in either Phase I or Phase II (in 48months).
As a result, the control chart doesn’t produce any out-of-
control signal, which verifies its low type I error.

Case (b): Change in eating habits: Figure 8(b) represents
the case, where the patient changes his diet from healthy
eating to unhealthy eating, i.e. [Healthy Diet, Exercise,
Smoke, Drink] = [No, Yes, No, No]. We introduce this
change in the eating habit in the 17th month. The out-
of-control events can be noticed in the control chart after
three observations (in month 20). The quick diagnosis of the
change in the lifestyle behaviors by the control chart can
be attributed to the significant effect of eating habits on the
parameters of the D-FCTBN.

Case (c): Change in drinking habits: For the next out-
of-control scenario (Figure 8(c)), we assume the patient picks
up drinking alcoholic beverages i.e. [Healthy Diet, Exercise,
Smoke, Drink]= [Yes, Yes, No, Yes]. This change was made
on 17th month. The control chart picks up this change after
four observations (around the 21st month). Similar to eating
habits, the quick detection of the change in the drinking habits
by the control chart can be related to the significant effect of
eating habits on the parameters of the D-FCTBN.

2) SIMULATED CASE STUDY: CHANGING MORE THAN ONE
LIFESTYLE BEHAVIORAL RISK FACTORS
Case (d): Change in drinking and exercise habits: Here,
we consider the same lifestyle behavioral risk factors and set
up as the Phase I analysis mentioned in Section IV-E1.

Meanwhile, for Phase II analysis, we modify two lifestyle
behavioral risk factors (instead of one) simultaneously at
on 19th month. The factors considered for change are
[HealthyDiet, Exercise, Smoke, Drink]= [No, Yes, No, Yes].
As shown in Figure 8(d), the first out-of-control signal is
produced by the control chart in month 39 (after 20 months).
This prolonged time for diagnosis can be because of the
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FIGURE 8. MEWMA Control chart of the reconstruction error obtained from the proposed model. (a) In-control control chart
(simulation case) (b-c) shows case 1 where only one of the lifestyle behavioral risk factors are modified (simulation case),
(d) shows case 2 where we randomly change more than one lifestyle behavioral risk factor (simulation case), and (e) shows
(uncontrolled) changes in more than one lifestyle behavioral risk factor (real case)).

complex interaction between the modifiable risk factors,
which have changed in the opposite directions (stop the
exercise and stop drinking simultaneously).

3) REAL CASE STUDY: CHANGE IN TWO LIFESTYLE
BEHAVIORAL RISK FACTORS
For the real case study, we consider the patients’ data
presented in Section IV-D. Due to the limited number
of consecutive visits data available, we conducted this
experiment in a hybrid setting. The considered patient has
Hyperlipidemia and Obesity as a prior chronic condition/s.
The lifestyle behaviors during the in-control Phase are
[Healthy Diet, Exercise, Smoke, Drink] = [No, Yes, No,
Not Provided]. We estimate the statistics for 12 years using
the initial learned model and design the MEWMA control
chart limits using the Phase I data. Next, we utilize the

patients’ lifestyle behavioral changes in their follow up visits
for phase II analysis.

Case (e): Real lifestyle behavioral change: Figure 8(e)
shows the control chart with the real patient data in Phase II.
The figure shows the patient’s behavioral change in year
13 to [Healthy Diet, Exercise, Smoke, Drink] = [No, No,
Yes, Not Provided]. Consequently, the chart produces an
out-of-control signal after one observation (at year 14), which
shows the sensitivity of the proposed control scheme when a
significant lifestyle behavioral change or multiple changes in
the same (negative/positive) direction occurs.

V. CONCLUSION
This study proposes a dynamic functional continuous time
Bayesian network (D-FCTBN) for dynamic estimation
and monitoring of the impact of patients’ modifiable
lifestyle behaviors on the emergence of multiple chronic
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conditions. For dynamic estimation, the proposed method
formulates the conditional dependencies of FCTBN as a
nonlinear state space model using an extended Kalman filter
(D-FCTBN). For monitoring, the proposed method first
utilizes a low-rank tensor decomposition method based on
multilinear principal component analysis (MPCA) to extract
main features of the D-FCTBN parameters, which form a
three-dimensional tensor, and then develops a multivariate
exponentially weighted moving average (MEWMA) control
chart to monitor the reconstruction error. We hypothesize
that any out-of-control signal from the proposed MEWMA
control chart, resulting from a large reconstruction error,
accounts for a change in the patient’s modifiable risk
factors that significantly change the risk of developing
a new MCC. The prediction accuracy of the proposed
D-FCTBN and the sensitivity of the proposed tensor-based
MEWMA control chart has been validated using both real
data from Cameron County Hispanic Cohort (CCHC) and
simulations. The results demonstrate the effectiveness of
the proposed D-FCTBN and tensor-based control chart
for dynamic prediction and monitoring of the impact of
patients’ modifiable lifestyle behaviors on the emergence
of multiple chronic conditions. The proposed D-FCTBN
method provides a dynamic (vs. static) platform for
estimation of MCC progression and the emergence and
can be personalized for individual patients given their
non-modifiable demographic and modifiable lifestyle risk
factors. The proposed tensor-based MEWMA control charts
can also provide a proactive (vs. reactive) framework for
monitoring the meaningful changes in patients’ lifestyles
that increase or decrease the risk of developing new
chronic conditions. Future research will aim to find early
intervention strategies when the control charts detect an
out-of-control situation, which increases the risk of new
chronic condition development.
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