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ABSTRACT This paper mainly focuses on the third harmonic current suppression for symmetrical six-
phase fault-tolerant permanent magnet synchronous motor drives. First, a brief motor model is established
to analyze the source of the third harmonic current. Resonant controller is always appreciated in terms of
harmonic current suppression. However, its performance is highly dependent on the precise motor speed,
which makes it not suit for variable-speed applications. Fortunately, adaptive filter can skip this problem.
Then a current controller based on the adaptive filter is designed to eliminate the third harmonic current.
However, the dynamic response of the controller designed is unsatisfactory. Besides, the steady edge of the
controller is rather narrow, which limits the operation range of the motor. Then some improvements are made
to the structure of the controller as well as the adaptive algorithm. Finally, several groups of experiments are
conducted to compare both steady performance and dynamic performance of the controller based on adaptive
filter and the improved controller. The experiments results coincide with the analysis and several conclusions
are drawn. Besides, the proposed controller also applies to the elimination of other harmonic currents.

INDEX TERMS Adaptive filter, current controller, harmonic suppression, least mean square.

I. INTRODUCTION
High reliability has been one of the most important features
of modern motor drives in the recent few decades. Modular
motor drives and multiphase motor drives are the two main
solutions in terms of fault-tolerant control. Modular motor
drives are famous for their simple control method when the
motor operates under fault conditions. Modular motor drives
closed the corresponding modular where fault appears to
realize fault-tolerant control and this may generate asymmet-
ric radial magnetic force. Besides, this control method also
scarifies the torque production ability to some extent. As to
the multiphase motor drives, the asymmetric radial magnetic
force can be eliminated by choosing the proper winding
arrangement. Besides, they offer higher fault-tolerant ability
when compared with three-phase motor drives [1], [2]. More-
over, permanent magnet synchronous motors (PMSMs) are
widely used in industrial applications for their high-power
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density, which makes multiphase PMSM a good choice for
safety-critical applications [3], [4]. Among all the multiphase
motor drives, Six-phase (6Ph) PMSM is one of the most
interesting ones since it can take full advantage of the well-
developed three-phase PMSM drives [5]. Moreover, it can
also achieve the tradeoff between the hardware complexity
and fault-tolerant ability of the system. Ref. [6] makes a
detailed analysis about the fault-tolerant ability of three kinds
of six-phase PMSMs shown in Fig. 1. The result points out
that the symmetrical 6Ph motor with one isolated neutral
point has the best performance on the assumption that the sum
of phase current is equal to zero. In practice, this assumption
is commonly met to ensure the stability of dc-link voltage
and preserve the hardware configuration of the system [7].
Therefore, symmetrical 6Ph PMSMwith one isolated neutral
point is a promising choice in terms of fault-tolerant control.

However, this structure of motor and system provides
a path for the third harmonic current when motor oper-
ates under healthy conditions. Though it is reported in
[8], [9] that the torque production of the multiphase motor
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could be improved by injecting the third harmonic current.
Nonetheless, this method only applies to some kinds of
multiphase motors, e.g., five-phase, asymmetrical six-phase
motors where the third harmonic space current can produce
a rotating magnet motive force (MMF). As to the symmetri-
cal six-phase motor drives, the MMF produced by the third
harmonic space current is pulsating which brings six-times
torque ripples. Considering this, it is necessary to eliminate
the third harmonic current when motor is operated under
healthy conditions. Besides, in order to further improve the
fault-tolerant ability of the system, fractional slot concen-
tratedwinding (FSCW) is commonly adopted inmotor design
[10], [11]. This winding design is characterized by the high
independence of each phase winding. On the other hand, the
decoupling between dq space and the third harmonic space
also disappears in the interior PMSM, which means that
current of dq space can induce a third harmonic voltage on the
third harmonic space and produces the third harmonic current
consequently. On the contrary, the third harmonic current can
also induce a 6th harmonic voltage on dq space [12], [13].
Namely, it is more urgent for interior PMSM equipped with
FSCW to eliminate the third harmonic current under healthy
conditions.

Up to now, many control strategies aiming to eliminate
harmonic current have been proposed and they can also
be used in the elimination of the third harmonic current.
A PWM modulation method based on the redistribution of
zero voltage vector is proposed in [14]. This method can
effectively reduce the third harmonic voltage produced by
the inverter. Nonetheless, it cannot eliminate the harmonic
current produced by the PM. Besides, a proportional-integral
(PI) controller is used to output the given third harmonic
voltage, which may degrade the control performance because
PI controller cannot track the ac signal with zero steady
error. Proportional-resonant (PR) controller famous for its
perfect ability to track ac signals is used in [15], [16] to
eliminate the harmonic current. In general, resonant con-
troller is commonly realized by the method of two integra-
tors and these two integrators should be discretized in real
systems, which moves the resonant frequency away from
the given value [17]. A compensation method is proposed
in [18] to correct the deviation. However, the performance
of this method is highly dependent on the precise of the
speed detection because the resonant frequency as well as
the compensation are all calculated by the electrical angular
frequency. In fact, to realize the implementation of field-
oriented control (FOC), the rotor position is detected via
sensors [19]. The rotor speed can be acquired by taking the
derivative of rotor position to time and then filtering by a low-
pass filter, which can hardly avoid bringing errors [20]. This
makes the PR controller more suitable for power grid rather
than variable frequency applications. Quasi-PR controller is
proposed to reduce the effect motor speed has on the PR
controller [21]. However, it takes the expense of sacrificing
the infinite gain at the resonant frequency, which results in a
steady error. An all-pass filter is used in [22] to construct a

pair of orthogonal signals and then the amplitude and phase
of the third harmonic current can be got. PI controller outputs
the amplitude of the given voltage and the phase of voltage is
900 ahead of the current. This method suffers from the same
problem as the PR controller because rotor speed is used to
construct the all-pass filter. Besides, it is impossible that the
amplitude of the third harmonic current equals zero perfectly
in real systems, which causes the fact that the output of the
PI controller will rise with time and finally lose its function.
vector PI (VPI) controller is proposed in [23]. Though it
offers satisfactory performance in terms of harmonic current
elimination, it only applies to applications where a pair of
orthogonal axis exists, which is unsuitable for symmetrical
6Ph motors.

FIGURE 1. three kinds of six-phase motors.

The adaptive filter has been performing as a good tech-
nique in harmonic detection [24]. Moreover, it can also
become a potential technique in harmonic elimination though
there are still two barriers in front which are also the two
objectives of this paper. In modern motor drives, a volt-
age source inverter (VSI) is commonly used to output the
phase voltage. Then the first objective is how to get the
given voltage when we get knowledge of the harmonic cur-
rent. The least mean square (LMS) is widely used in the
adaptive algorithm for its feature of simplicity [25]. How-
ever, the convergence rate of LMS is relatively low, which
can hardly meet the command of motor drives. Therefore,
the second objective is to improve the convergence rate
of LMS.

This paper is organized as follows: the model of 6Ph
PMSM studied is established firstly. The source of the
3rd harmonic current is analyzed and the negative influence
produced by the 3rd harmonic current is also analyzed accord-
ingly. Then by adjusting the structure of the adaptive filter,
we can make the adaptive filter work as a current controller
to eliminate the harmonic current. However, the dynamic
performance of the controller is poor. Moreover, the steady
edge of the controller is narrow, which limits the operation
range of the motor. To solve this problem, by analyzing the
iteration formula of the controller, an extra proportional factor
is added into the iteration formula, which not only improves
the dynamic performance of the controller but also broadens
the steady edge of the controller. Finally, several groups of
experiments are conducted to verify the effectiveness of the
improved controller.
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II. MODEL OF SIX-PHASE MOTOR CONSIDERING THE
THIRD HARMONIC PM FLUX LINKAGE
The motor studied in this paper adopts fractional slot con-
centrated winding and PMs are embedded in the rotor. The
motor is fed by a 6Ph power inverter. Moreover, the eddy
effects, motor saturation and cogging effects are neglected
when establishing the motor model.

FIGURE 2. cross-section of the studied motor.

The studied 6Ph PMSM is shown in Fig. 2 which con-
sists of two three-phase windings, i.e., the ABC winding
and XYZ winding. There is a 60 electrical degree spatial
shift between these two windings. This type of winding will
produce fundamental, third, fifth, and seventh harmonic back
electromotive force (EMF). However, this paper mainly deals
with the elimination of the third harmonic current. Moreover,
the proposed current controller also applies to the suppression
of the fifth and seventh harmonic currents. Therefore, only the
third harmonic permanent magnet flux is considered when
modeling the 6Ph motor. The voltage and flux equation for
the 6Ph PMSM at phase coordinate can be expressed as:Us = RsIs +

dψs
dt

ψs = LsIs + ψpm
(1)

ψpm = ψpm1


cos θ

cos (θ − 2α)
cos (θ + 2α)
cos (θ − 3α)
cos (θ − 5α)
cos (θ − α)

+ ψpm3


cos 3θ
cos 3θ
cos 3θ
− cos 3θ
− cos 3θ
− cos 3θ

 (2)

Ls = diag
([
la lb lc lx ly lz

])
la = lx = l + l2 cos (2θ + 3α)
lb = ly = l + l2 cos (2θ + 5α)
lc = lz = l + l2 cos (2θ + α)

(3)

where Rs = diag[rrrrrr]T is the phase winding resistance
vector; ψpm represents the PM flux; ψpm1 and ψpm3 denote
the amplitude of the fundamental and third harmonic PM
flux respectively; θ indicates the rotor position (electrical);
α equals to π /3 and

Us =
[
Ua Ub Uc Ux Uy Uz

]T
Is =

[
Ia Ib Ic Ix Iy Iz

]T
ψs =

[
ψa ψb ψc ψx ψy ψz

]T (4)

are the arrays related to phase voltage, current, and flux.
Due to the high independence of each phase winding, mutual

inductance is relatively small and they can be ignored when
modeling the motor. l represents the dc component of self-
inductance and l2 denotes the amplitude of the 2nd harmonic
component of self-inductance.

According to the theory of space vector decomposition, the
motor model under synchronous rotation frame, namely dq
frame, can be got. The voltage equation and flux equation are
shown in (5).Udq = RdqIdq +

dψdq
dt
− ωTψdq

ψdq = LdqIdq + ψpmdq
(5)

Ldq =
[
L1 0
0 L2

]
a1 =

1
2
a2 =

√
3
2

a3 =

√
2
2

L1 =

 l − a1l2 0 −a3l2 cos 3θ
0 l + a1l2 a3l2 sin 3θ

−a3l2 cos 3θ a3l2 sin 3θ l


L2 =

 l −a3l2 cos 3θ a3l2 sin 3θ
−a3l2 cos 3θ l − a1l2 0
a3l2 sin 3θ 0 l + a1l2

 (6)

where Rdq remains the same as Rs; Ldq represents the
inductance matrix; T is a 6∗6 matrix, indicates the quasi-
orthogonal property of the transformation matrix and can be
expressed by (7):

T =
[
T11 0
0 0

]
T11 =

[
0 1
−1 0

]
(7)

Besides;

Udq =
[
Ud Uq U3 U0 Uz1 Uz2

]T
Idq =

[
Id Iq I3 I0 Iz1 Iz2

]T
ψdq =

[
ψd ψq ψ3 ψ0 ψz1 ψz2

]T (8)

are the arrays related to the voltage, current, and flux; ψpmdq
represents the PM flux in dq frame and can be shown as (9).

ψpmdq =
[√

3ψpm1 0
√
6ψpm3 cos (3θ) 0 0 0

]T
(9)

U3 = 3a3ωl2
(
id sin 3θ + iq cos 3θ

)
−3
√
6ψpm3 sin 3θ

(10)

u3d = −a3l2
d (i3 cos 3θ)

dt
u3q = a3l2

d (i3 sin 3θ)
dt

(11)

It can be inferred from (5), (6), and (9) that sources of
the third harmonic voltage from machine side contains two
portions just as shown in (10). The first is the third harmonic
PM flux which is quite common in PM motors. The other is
the coupled voltage produced by the dq axis current, which
may account for most of the harmonic voltage especially
under heavy load. Besides, due to the nonlinearity of the
converter, there will be some harmonic voltage when out-
putting the phase voltage. Then the third harmonic current
will flow in each phase winding. On the other hand, I3 can
also induce a sixth harmonic voltage in dq space just as shown
in (11), which brings the sixth harmonic current and degrade
the performance of the dq current controller. The bigger I3
is, the bigger is the corresponding sixth harmonic current.
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Therefore, it is necessary to eliminate the third harmonic
current under healthy conditions. In terms of I0, Iz1 and Iz2,
they are almost equal to zero in healthy conditions.

III. THE PROPOSED CURRENT CONTROLLER
As is known to all, PR controller shows potential in tracking
ac signals. However, the resonant frequency bias caused by
the discretization of the controller and the calculation error
of the motor speed are the two main reasons for the poor
performance of PR controllers. The former can be com-
pensated on the condition that the motor speed is precisely
detected. Consequently, the accuracy of motor speed is vitally
important for the normal function of PR controller. Well, it is
possible for the controller based on adaptive filter to skip this
problem. To make it clear how the proposed controller works,
a brief introduction of the adaptive filter is made first.

FIGURE 3. structure of (a) adaptive filter and (b) the proposed current
controller.

A. STRUCTURE OF THE ADAPTIVE FILTER
The filter mainly consists of five portions, namely input,
output, reference, tap weight and adaptive algorithm just as
shown in Fig. 3. The main objective of the filter is to move the
output close to the reference infinitely. When the filter works,
according to the adaptive algorithm, tap weights are updated
in each control cycle. When the filter reaches a steady-state,
tap weight reaches its optimum. According to (10), it is
reasonable to choose (12) as the input signal. It should be
noted that (10) does not contain the third harmonic voltage
produced by the inverter. Fortunately, it does not affect the
performance of the filter. This is because its effect on the
amplitude and phase of the third harmonic voltage can be
compensated by changing the optimum of tap weight. The tap
weight can be expressed as (13) then the output can be cal-
culated by (14). As to the adaptive algorithm, the least mean
square (LMS) is quite appealing for its feature of simplicity.
The iteration formula of ω(t) can be expressed as (15).

x (t) =
[
sin 3θ cos 3θ

]T (12)

ω (t) =
[
ω1 (t) ω2 (t)

]T (13)

y (t) = x (t)T ω (t) (14)
e (t) = Uref (t)− y (t)

ω (t+1) = ω (t)−
d
(
e (t)2

)
dω (t)

=ω (t)+2µe (t) x (t)
(15)

where µ is the step size which has a great effect on the
performance of the filter. When µ is set at a big value, the
filter has a higher convergence rate but may diverge or have
a big steady error. On the contrary, when it is set at a small
value, the filter has a small steady error but takes the expense
of losing a high convergence rate. It can be concluded that the
selection of µ is rather contradictory. To ensure the stability
of the filter, a new variable named V (t) is introduced in (16)
and it represents the difference between tap weight and its
optimum expressed as ωopt (t). Then e(t) can be rewritten
as (17). The iteration formula of V (t) can be got just as shown
in (18). If V (t) attenuates in each cycle and finally converges
to zero, it can be said that the filter is stable. Consequently,
µ is constrained by (19). In addition, according to the LMS,
ω(t) always moves to a point that can minimize e(t). When
there is no local optimum solution, ω(t) will finally reach
ωopt (t). The direction indicated by the brown line shown
in Fig. 4 is commonly called the steepest descent direction,
which is the tangent direction of the corresponding point.ω(t)
will move in this direction by a distance decided by µ, which
requires that µshould be bigger than zero. The superscript in
Fig. 4 means two random ω(t).

V (t) = ωopt (t)− ω (t) (16)

e (t) = x (t)T V (t) (17)

V (t + 1) = ωopt (t + 1)− ω (t + 1) = (I − 2µλ)V (t)

λ = max
(
x (t) x (t)T

)
(18)

|I − 2µλ| < 1 λ = max
(
x (t) x (t)T

)
(19)

FIGURE 4. trajectory and move direction of ω(t).

B. CONTROLLER BASED ON LMS
We can get the exact harmonic voltage with (10) and then
output a voltage with the same amplitude but antiphase to
counteract this harmonic voltage, which finally eliminates
the harmonic current. However, the calculation is parameter-
dependent, which can hardly avoid bringing errors. Besides,
the harmonic voltage produced by the inverter is not included
in (10). Considering this, some changes are made to the
structure of the filer just as shown in Fig. 3. Firstly, the
reference signal is modified as the given current. the error
signal can be expressed as (20) where Imea(t) can be easily
calculated by the measured phase currents. It should be noted
that e(t) is no longer the difference between the reference and
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the output of the filter, which differs the iteration formula of
the controller from that of the filter.

e (t) = Iref (t)− Imea (t) (20)

d (e (t))2

dω (t)
= 2e (t)

de (t)
dImea (t)

dImea (t)
dω (t)

(21)

Imea (t) =
y (t)+ u3 (t)

pl + r
(22)

p =
1− z−1

Ts
(23)

Before deducing the iteration formula of the controller,
it is necessary to figure out the derivative of e2(t) to ω(t).
Though e(t) has no direct relation with ω(t), it is a function
of y(t) that creates the relation between e(t) and ω(t) just
as shown in (21). Imea(t) can be expressed as (22) where
p is the differential operator. For the convenience of the
implementation of the controller, the controller should be
discretized. Backward Euler discretization is adopted in this
paper and p can be replaced by (23) where Ts is the control
cycle. z−1 represents one control cycle delay. Then Imea(t)
can be rewritten as (24) where l3 means the inductance of
the third harmonic space and it is possible to figure out (21).
It should be noted that (24) is only used for derivation. When
calculating e(t), Imea(t) can be calculated by the phase current
detected by current sensors. It can be inferred from (10)
that u3(t) is only concerned with the motor parameter and
motor operation status, which makes the derivative of u3(t) to
ω(t) lose its meaning. Besides, Imea(t-1) is a variable at time
(t-1). Therefore, the derivative of y(t-1) to ω(t) has no sense.
Then (21) can be figured out and expressed as (25). The
iteration formula of the controller is shown in (26) and Fig. 5
shows this process.

Imea (t) = k1 (y (t)+ u3 (t))+ k2Imea (t − 1)

k1 =
Ts

l3 + rTs
k2 =

l3
l3 + rTs

(24)

∇ (t) =
d (e (t))2

dω (t)
=
−2e (t) x (t)Ts

l + rTs
(25)

ω (t + 1) = ω (t)− µ∇ (t) = ω (t)+ 2k1µe (t) x (t) (26)

FIGURE 5. adaptive algorithm diagram of the controller.

When the controller works, ω(t) will preserve its value
unless the motor status changes. At this time, a current error
will appear, which indicates that the voltage output by the
controller cannot counteract the harmonic voltage. Then ω(t)
is updated according to (26) and the voltage output by the
controller also changes. ω(t) will continue to adjust itself
until it reaches its optimum. It should be noted that when
the motor reaches another steady state, ωopt (t) is uniquely

decided according to (10) and local optimal solution does not
exist, which ensures that ω(t) can finally converge to ωopt (t).
Meanwhile, the voltage output by the controller will coun-
teract the harmonic voltage, thus eliminating the harmonic
current.

Comparing (15) and (26), we can find that the whole
iteration process of the filter and controller is near all the
same. The introduction of the third harmonic space model
seems to only bring a proportional factor which is decided by
the motor parameter in the iteration formula. However, it also
affects the value range of the µ. In order to make it clear the
selection principle and the value range of µ. It is necessary
to figure out the iteration formula of V (t) for the controller.
It should be noted that when the motor reaches a steady state,
u3(t) is uniquely decided and the same goes for ωopt (t).

V (t + 1) = ωopt (t + 1)− ω (t + 1)

= b1V (t)− b2e (t − 1) x (t)

b1 = I − 2µk21λ b2 = 2µk1k2 (27)

In the samemanner as described in the former section. V (t)
can be got and expressed as (27). Comparing (27) and (18),
we can find that V (t+1) of the controller contains two por-
tions. The first portion, namely b1V (t) represents the self-
attenuate of V (t). The second portion, i.e., b2e(t-1)x(t) can
be seen as the disturbance, which does not exist in (18).
This means that if we choose the same µ for the controller
and adaptive filter, the disturbance in V (t) of the controller
is bigger than that in the adaptive filer, which may cause
instability of the controller. Then a smaller µ is appreciated
to minimize the effect the disturbance has on the controller.
In other words, though the iteration formula of ω(t) for the
controller and adaptive filter is much alike, the change to the
structure of adaptive filter influences the value range of µa
lot. Besides, it is nearly impossible to figure out the analytical
solution to V (t+1) from (27) and the exact formula to decide
the value range ofµ. However, it does not matter the selection
principle of µ, which are concluded in the following:

a) µ is bigger than zero to ensure the normal function of
the controller.

b) In order to reduce the effect the disturbance has on the
controller, b2 should be as small as possible, which
leads to a small µ.

c) The absolute value of b1 should be smaller than 1 to
ensure the stability of the controller. Besides, when b1
is set at a small value, the controller has a high conver-
gence rate and this can only be realized by choosing a
relatively big µ.

Though there is no exact formula to definite the value
range of µ given in this paper, the three principles give
instructions about the selection of µ to ensure the stability
of the controller. The first principle is decided by the theory
of LMS, which ensures that ω(t) converges to ωopt (t) step by
step. Ifµ is negative, thenω(t) will move against the direction
of the brown line pictured in Fig. 4, which causes that ω(t)
will never converge to ωopt (t) or even seriously leads to the
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divergence of the controller. In terms of the 2nd principle, it is
not really necessary for adaptive filter due to that the iteration
formula of V (t) in the filter does not contain the disturbance
expressed in (27) at all. However, it does make help when
it comes to the proposed controller because a smaller µ can
help reduce the disturbance to the controller, which improves
the stability of the controller. As to the last one, it can be
inferred from (27) that it is vital for the controller to meet
this principle. Otherwise, V (t) will diverge to infinite, thus
leading to the breakdown of the controller. In a word, the
first and the last principle are two necessary principles that
must be met. The 2nd principle is helpful to the stability of the
controller. Except for these three principles, it is also available
and necessary to decide the control parameter via simulations
and experiments, which can further ensure the stability of the
controller.

It can be concluded that the selection of µ is rather con-
tradictory. If we want to get a high dynamic response speed,
a relatively big µ is appreciated. However, this may cause
the instability of the controller. If a small µ is chosen, the
dynamic performance of the controller is poor.

C. THE IMPROVED CONTROLLER
For the convenience of selecting µ, a proportional factor
named kp is added to the adaptive algorithm just as shown in
Fig. 6. kpmakes it much easier to achieve the tradeoff between
the high convergence rate and the stability of the controller.
From the macroscopic point of view, we can choose a big kp
and a small µ. kp helps ω(t) converge to its optimum quickly,
thus improving the dynamic performance of the controller. µ
helps eliminate the steady error of the controller. However,
it is not really true that the bigger kp is, the better performance
of the controller has. In order to make it clear the selection
principle of kp and µ, a detailed analysis is conducted in the
following.{

ω (t + 1) = ωi (t + 1)+ kpe (t) x (t)
ωi (t + 1) = ωi (t)+ 2µk1e (t) x (t)

(28)

V (t + 1) = b1V (t)− b2e (t − 1) x (t)

+ e (t − 1)
[
kpx (t − 1)− k2kpx (t)

]
b1 = I −

(
2µk21 + k1kp

)
λ b2 = 2µk1k2 (29)

The iteration formula of the controller is shown in (28).
In the same manner as described in the previous section, the
iteration formula of V (t) can be got just as shown in (29).
Comparing (29) and (27), we can find that an extra compo-
nent appears, which can also be regarded as the disturbance.
When the motor operates at a low frequency, x(t) is nearly
equal to x(t-1). Then this disturbance is nearly zero on the
addition that k2 is approximate to 1. In fact, this condition
is commonly met. On the one hand, the phase resistor can
be ignored when compared with the phase reactance. On the
other hand, the control frequency is commonly several times
the motor operating frequency to ensure the normal function
of the digital control systems. Then it can be inferred that k2 is

nearly 1 according to (24). Though b2 remains the same as in
the previous section, a constant decided by k1 and kp is added
to the expression of b1. Namely, a small µ is still in need to
reduce the negative influence produced by the disturbance.
However, we can adjust kp to get better performance of
the controller. Then the selection principle of kp and µ can
be got.

FIGURE 6. adaptive algorithm diagram of the improved controller.

a) kp and µ are bigger than zero to ensure the normal
function of the controller.

b) same as described in the previous section.
c) Similar with that described in the previous section.

However, a relatively big kp and a small µ is
appreciated.

By comparing the principle in this section and section
B, we can find that they are near the same. however, the
parameter selection of the improved controller is much more
flexible. On the one hand, a small µ can be set to ensure the
stability of the controller. on the other hand, a big kp can be
chosen to get a high convergence rate. It should be noted that
the selection of kp and µ should be constrained by principles
(a) and (c). When kp equals zero, the improved controller is
the same as the controller (traditional controller) described in
section B.

IV. EXPERIMENT RESULT
In order to verify the effectiveness of the proposed cur-
rent controller, some experiments are conducted. The motor
parameters studied are shown in Table 1.

TABLE 1. Motor parameters.

Fig. 7 shows the whole control scheme, Where T62 indi-
cates the coordinate transformation and ejθ represents the
inverse coordinate transformation. Under healthy conditions,
Iz1 and Iz2 are nearly zero. Besides, the motor adopts one
isolated neutral point, which makes I0 always equal to zero.
Therefore, there is no need to control the zero-sequence
current.

The experiment set is shown in Fig. 8. Under the function
of the six-leg inverter, the DC source provides power to
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FIGURE 7. control frame of the whole system.

the studied 6Ph motor which drives the three-phase PMSM
named as load motor in Fig. 8. The stator of the load motor is
connected to one three-phase rectifier bridge which is finally
connected to the DC load. The voltage of the DC source is
set at 20V, the control period is 100 µs and the switching
frequency is 10kHz.

FIGURE 8. experiment set.

A. STEADY PERFORMANCE
For the convenience of description in the following, a new
variable named ki is defined and it is proportional to µ just as
shown in (30). The studied motor is driven at 540rpm and
Id equals −15A. Then waveforms of Ia and I3 under four
different conditions are recorded and shown in Fig. 9. The
first is under the condition where I3 is without control. It can
be observed that I3 has an amplitude of nearly 5A under this
condition. Then in the next two conditions, the I3 controller
based on LMS is enabled with ki equal 0.003 and 0.0045
respectively. When ki equals 0.003, I3 is nearly zero and the
waveform of I3 is more sinusoidal compared with the first
condition, which means that the controller based on LMS
can eliminate I3 under steady conditions. Besides, when ki is
smaller than 0.003, the controller can also eliminate the third
harmonic current. In order to explore the biggest ki available,
ki is made bigger slowly until the system is unstable. When
ki rises to 0.0045, the controller loses its function. Attributed

to the limitation of the output of the controller, I3 does not
diverge to infinite and it is shown in Fig. 9(c). Under this
condition, Ia distorts seriously and the amplitude of I3 is
nearly 10A. It should be noted that the selection of ki under
these two conditions meet the principle (a) and (c) proposed
in the previous section. However, when ki is set at 0.0045,
the second component, namely the disturbance in (27) is
also bigger than that when ki is 0.003 and this causes the
breakdown of the controller, which means that improving ki
is not beneficial to the stability of the controller. When ki is
between 0.003 and 0.0045, the output of the controller begins
to oscillate. Consequently, the maximum of ki, namely kimax
to ensure the normal function of the controller is 0.003 under
this condition.

ki = 2µk1 (30)

FIGURE 9. steady waveform of Ia and I3 under different conditions.
(a) without I3 suppression; (b) with I3 controller based on LMS and
ki =0.003; (c) with I3 controller based on LMS and ki =0.0045; (d) with
the improved I3 controller where kp =0.1 and ki =0.0045.

As to the last condition, the improved controller is enabled.
When kp equals 0.1 and ki equals 0.0045, waveforms of Ia and
I3 are shown in the fourth figure in Fig. 9. It can be observed
that the controller works normally and I3 is nearly zero, which
indicates that the introduction of kp broadens the steady range
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of ki. This can be explained by (29). kp helps speed up the
attenuation of V (t). the disturbance will decay quickly and
has less influence on the improved controller, which makes
it possible to select bigger ki. In the same manner, we can
find the kimax under this condition. When ki rises to 0.024,
waveforms of Ia and I3 begin to vibrate. Namely, kimax of
the improved controller is 0.024 under this condition, which
is 8 times of that in the traditional controller.

In order to make it clear the influence of kp on the value
range of ki, kimax under different motor speeds and different
kp are acquired via experiments. The results are shown in
Fig. 10 and Fig. 11. It can be observed from Fig. 10 that
kimax rises with kp whatever themotor speed is. Besides, when
kp is smaller than 0.06, kimax has a relatively big rise rate.
when kp exceeds 0.06, the rising rate of kimax slows down,
which indicates that with the rise of kp, the ability of kp to
broaden the steady range of ki is weak down. Fig. 11 shows
the relation between kimax and motor speed. Obviously, when
motor speed rises, kimax becomes smaller no matter what kp
is, which can be explained by (29). In the former analysis, the
last component of (29) which can also be seen as the distur-
bance is neglected on the condition that motor speed is small.
However, when motor speed rises, the difference of the input
signal between the two next sample times becomes bigger,
which makes it unreasonable to ignore the last component
of (29). Then this component will bring disturbance into the
iteration formula of V (t) and finally causes the steady range
of ki to become narrow. For the same reason, it can be inferred
that if the control cycle rises, kimax will also become smaller.

FIGURE 10. relation between ki and kp.

FIGURE 11. relation between ki and speed.

B. DYNAMIC PERFORMANCE
In order to invest the influence of kp and ki on the dynamic
response of the improved controller, four groups of experi-
ments are conducted. The motor operates at 540rpm and Id
equals -15A. Then the improved controller with different con-
trol parameters is enabled at time 0.06s and I3 are recorded
just as shown in Fig. 12. By comparing Fig. 12(a) and
Fig. 12(b), it can be found that I3 uses shorter time to decrease
to zero in the latter, which indicates that increasing ki can
help the controller get a high-speed dynamic response. In the
same manner, by making a comparison between Fig. 12(a)
and Fig. 12(c) or Fig. 12(b) and Fig. 12(d), it can be con-
cluded that a big kp is also helpful to improve the dynamic
performance of the controller. Besides, when kp is set at
0.1, I3 decreases to zero quickly no matter ki is 0.003 or
0.0005 and it is hard to compare the dynamic performance
of the controller under these two conditions. In fact, when kp
exceeds 0.02, the way to improve the dynamic performance
by increasing ki is not rather significant. Namely, amongmost
of the value range of kp, kp plays the role to provide a high-
speed dynamic response of the controller. ki does help to
eliminate the steady error, which coincides with the analysis
in the former. Therefore, kp and ki are finally set at 0.1 and
0.0005. This combination can ensure that the controller has
a high-speed dynamic performance, a relatively wide range
of motor operations and nearly zero steady error at the
same time.

The current loop and speed loop are the two main basic
control loops in the motor drive control system. Considering
this, it is necessary to ensure that the controller still has a sat-
isfactory performance in terms of I3 elimination when there is
a current step or speed step. Then two groups of experiments
are conducted and the results are shown in Fig. 13 and Fig. 14.
In both two groups of experiments, the traditional controller
and the improved controller are enabled respectively. When
the control system adopts the traditional controller, ki is set
at 0.003 to ensure that the controller has the best dynamic
performance. In the first group of experiments, the motor
operates at 540rpm. Then Id steps from −5A to −15A at
time t1. It can be observed from Fig. 13 that waveforms of
Id under the function of two kinds of controllers are almost
the same. Nonetheless, there is a relatively big ripple in the
waveform of I3 when using the traditional controller. When
Id steps from−5A to−15A, the balance between the voltage
output by the controller and the harmonic voltage generating
I3 is broken. I3 increases consequently. Then the controller
begins to work and finds the new balance to eliminate I3.
Before the controller finds this new balance, I3 will flow in
phase windings and behaves as ripples in the waveform of
itself. When the improved controller is enabled, I3 remains its
value before and after Id steps and there is nearly no ripple in
the waveform of I3, which means that the improved controller
finds the new balance immediately when Id steps.
In the second group of experiments, Id is set at −15A.

When motor speed steps from 300rpm to 600rpm just as
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FIGURE 12. dynamic waveform of I3 under different conditions.
(a) kp =0.01 and ki =0.0005; (b) kp =0.01 and ki =0.003; (c) kp =0.1 and
ki =0.0005; (d) kp =0.1 and ki =0.003.

FIGURE 13. transient waveforms of Id and I3 under the function of the
traditional controller and the improved controller.

shown in Fig. 14. Waveforms of the motor speed, Id and Iq
under the function of two kinds of controllers are nearly the
same. However, there is still a big ripple in the waveform
of I3 when the traditional controller is adopted. The reason
is similar with that when Id steps. When the improved con-
troller is enabled, I3 is quite small even when motor speed

steps, which attributes to the high convergence speed of the
improved controller.

FIGURE 14. transient waveforms of motor speed, Id, Iq and I3 under the
function of the traditional controller and the improved controller.

V. CONCLUSION
In this paper, the current controller based on LMS and its
improved version is proposed and compared. They both can
effectively eliminate the third harmonic current when motor
operates under a steady state. Besides, the selection principle
of control parameters for these two controllers is given and
analyzed. According to the analysis and experiment results,
some conclusions can be drawn:

1) In general, comparedwith the controller based on LMS,
the improved controller has a wider range of motor
operation and an advantage in terms of system stability;

2) The improved controller has a better dynamic perfor-
mance than the controller based on LMS;

3) In terms of the selection of control parameters, kp
mainly plays the role to offer better dynamic perfor-
mance and ki does good to eliminate steady error.
Besides, a big kp can help broaden the value range of ki.
With the rise of the motor speed or control cycle, kimax
becomes small. Consequently, it is always appreciated
to choose a relatively big kp and relatively small ki on
the condition that the system is stable.
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