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ABSTRACT Recently, Semi-supervised Domain Adaptation (SSDA) has become more practical because a
small number of labeled target samples can significantly boost the empirical target performance when using
SSDA. Several current methods focus on prototype-based alignment to achieve cross-domain invariance in
which the labeled samples from the source and target domains are concatenated to estimate the prototypes.
The model is then trained to assign the unlabeled target data to the prototype within the same class. However,
such methods fail to exploit the advantage of using few labeled target data because the labeled source
data dominate the prototypes in the supervision process. Moreover, a recent method (Yang et al., 2021)
showed that concatenating source and target samples for training can damage the semantic information of
representations, which degrades the trainedmodel’s ability to generate discriminative features. To solve these
problems, in this paper, we divide labeled source and target samples into two subgroups for training. One
group includes a large number of labeled source samples, and the other obtains a few labeled target samples.
Then, we propose a novel SSDA framework that consists of two models. A model trained on the group that
has the labeled source samples to provide an ‘‘inter-view’’ on the unlabeled target data is called the inter-view
model. A model trained on a few labeled target samples that provides an ‘‘intra-view’’ of the unlabeled target
data is called the intra-view model. Finally, both of these models collaborate to fully exploit information on
the unlabeled target data. To the best of our knowledge, our proposed method achieves the state-of-the-
art classification performance of SSDA in extensive experiments conducted on several visual benchmark
domain adaptation datasets that utilize the advantages of multiple views and collaborative training.

INDEX TERMS Semi-supervised domain adaptation, classification, multiple views, collaborative learning.

I. INTRODUCTION
With large-scale labeled data samples and the growth of
computing power, supervised learning methods have shown
empirical results in various computer vision applications such
as image classification [2]–[4], image semantic segmenta-
tion [5]–[7], and object detection [8]–[10]. These methods
assumed that the training and the test sets come from the same
distribution; however, the training data (a source domain) and
test data (a target domain) in most real-world applications
are related but follow different distributions. Therefore, if a
model trained on the source domain directly performs on
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the target domain, it poorly generalizes on the domain due
to domain shift, which degrades the accuracy of the target
application (most representatively, in image classification)
for the target domain. To solve this problem, DANN [11]
introduced an adversarial learning strategy to minimize the
difference between the source and target distributions to
achieve domain-invariant knowledge across domains. In the
DA setting, a model is often trained on plentiful labeled
data from the source domain to successfully perform the
target task on the target domain, with little-to-no labeled data
with a different distribution. Depending on the availability of
labeled target samples during training, DA can be categorized
as unsupervised domain adaptation (UDA) [11]–[16] or semi-
supervised domain adaptation (SSDA) [17]–[25].
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FIGURE 1. Inter-view and intra-view models to consider the correlation
between labeled source data and labeled target data with unlabeled
target data.

UDA [11]–[16] attempts to achieve domain-invariant
representation for image classification tasks by minimizing
the distribution between source and target domains; however,
these works still have room for performance improvement
because they focus on domain-invariant features without
considering specific representations in each class. Thus,
recently, SSDA [17]–[25] for image classification has
received significant attention, in which the model is trained to
give large amounts of labeled source data and has access to a
few labeled target data. Similar to MME [17], UODA [20]
is the SSDA method developed based on prototypes that
are estimated from given labeled source and target samples.
Then, the model of these methods is trained to encourage the
unlabeled features clustered around the estimated prototypes.
However, these methods cannot alleviate the domain gap
because the large amount of source data, much larger than
the target data, dominates when creating the class prototypes.
In addition, [1] argued that, in many real-world applications,
samples of different classes are often similarly expressed
in the feature space. Therefore, when a model is trained
on integrated source and target samples, the discriminative
feature representation ability can be reduced because the
semantic information of representations can be damaged.
Therefore, in this paper, instead of integrating all labeled
source and target domains for training, as in MME [17],
UODA [20], and STar [24], we divided the labeled samples
into two subsets to train two different models. The model
trained on the labeled source samples is called an ‘‘inter-
model,’’ and the model trained on the labeled target domain
is called an ‘‘intra-model.’’ These models provide different
views to predict unlabeled target data.

Although the inter-view model is trained on large amounts
of labeled data from the source domain, it may not provide
satisfactory image classification accuracy on unlabeled target
data due to the domain shift problem. The intra-view model
has an overfitting problem for classification of the target
data because this model is trained on a few labeled target
samples, which cannot generalize the unlabeled target data.
Therefore, to solve the above problems, we proposed a novel
framework called Multiple-view Collaborative Learning
(MVCL). As shown in Figure 1, the training in our approach

progresses in three stages. First, the inter- and intra-view
models are trained on the labeled source and labeled target
samples, respectively, and work as an inter-view and intra-
view to extract information from the unlabeled target samples
in the second stage. In this stage, the inter- and intra-
view models will alternate, offering their pseudo labels
selected from the highest prediction scores to teach the
other model. This process, called collaborative learning (Co-
learning), allows both models to exchange their mutually
complementary information to make consistent predictions
on unlabeled target data. Finally, we used adversarial learning
via the minimax entropy strategy [17] to encourage the
unlabeled target features clustered around the prototypes in
the third stage.

Our main contributions are summarized as follows:
• To solve the bias in learning problem in the supervision
phase of previous SSDA works, we divided the labeled
samples into two subsets which are labeled source
samples and labeled target samples instead of integrating
them into one set, as in [17], [20], and [24]. We use
two models to simultaneously extract unique features
on these two subsets. The first model trained on labeled
source samples is called the inter-view model because
it provides an inter-view on the unlabeled target data.
Similarly, the second model trained on labeled target
samples is called the intra-view model because it
corresponds to an intra-view on the unlabeled target
data.

• Then, we successfully unified collaborative learning and
domain adaptation into a framework for SSDA. Specifi-
cally, each individualmodel obtained partial information
of the target data. The inter- and intra-view models then
exchange their knowledge to comprehensively represent
the target data via collaborative learning. Furthermore,
MVCL can extract intrinsic information from each
view and adaptively balance it complementarily to
achieve consistency among different views. Therefore,
it can alleviate the problem of feature degeneration
and enhance the reasonability of using a consensus
representation for multiple views.

• We conducted extensive MVCL experiments on several
domain adaptation datasets, including Office-31, Office-
Home, VisDA2017, and DomainNet, to show that our
method achieved SOTA classification performance in
SSDA.

II. RELATED WORK
In this section, we review the related works in SSDA and
multiple views.

A. SEMI-SUPERVISED DOMAIN ADAPTATION
Recently, the SSDA approach has received a lot of atten-
tion [17]–[25], where a few labeled target samples work as
leverage to improve the domain adaptation performance for
image classification. SSDAviaminimax entropy (MME) [17]
is the first method that aligns the representations of source
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FIGURE 2. Illustration of the proposed method’s architecture. The inter-view model MS (E,CS ) as indicated by the dotted red box is trained on a lot of
labeled source data and provides an inter-view on the target domain. However, due to the discrepancy between two domains, if this model is directly
applied to the target domain, it cannot achieve satisfactory classification performance on the target domain. The intra-view model MT (E,CT ) as
indicated by the dotted blue box is trained on a few labeled target samples and provides an intra-view on the target domain. Since this model is trained
on limited labeled samples, it cannot generalize on the target domain. Therefore, we proposed a co-learning algorithm that allows the two models to
exchange their knowledge to achieve the generalization view on the target domain and mitigate the negative transfer due to domain shift.

and target domains using adversarial learning called minimax
entropy. Specifically, in this approach, they train their
framework with concatenated labeled source and target
samples to create prototypes represented by the weight
vectors of a classifier. Then, in the first adversarial training
step, they re-weight these vectors by maximizing the entropy
of unlabeled target samples to estimate domain-invariant
prototypes. In the second step of adversarial training, they
use the minimizing entropy strategy on the unlabeled target
samples to update the feature extractor and encourage
the target features clustered around the prototypes. The
classification accuracy in the target domain significantly
increases when applying the MME method. However, recent
studies [18] and [19] show that this method still has room for
improvement in terms of classification accuracy in the target
domain. APE [18] argued that only unlabeled target instances
that have features that close the relationship with those of
the labeled target samples move to the estimated prototypes.
Other unlabeled targets are misaligned, which leads to an
intra-domain discrepancy issue in the target domain. APE
proposed a method that includes attention, perturbation, and
exploration schemes to solve this problem; however, their
method does not provide a solution for when the feature
representations of the trained model are dominated by a large

number of labeled source samples in the supervision process.
Another method [19] successfully significantly improved the
classification accuracy in the target domain by developing
a novel mapping function (MAP-F) that could solve the
bias in the learning of MME. To alleviate the bias problem
caused by the unbalanced number of available source and
target samples, MAP-F divides the labeled samples into two
subgroups: labeled source and labeled target samples. Then,
first, they train a model with labeled source samples to obtain
a well-organized source distribution. Next, they introduce a
novel mapping function to minimize the distance of target
class centroids from the source samples within a class to
reproduce the well-clustered features of the source domain
in the target domain. Although MAP-F showed outstanding
classification accuracy in the target domain, it uses two
feature extractors simultaneously that require a lot of training
time.

B. MULTI-VIEW DOMAIN ADAPTATION
Multi-view representation learning emerges as a promising
direction in machine learning for classification. The key
that plays an essential role in this approach is to extract
multiple elements of knowledge from the input data by
taking multiple views and then integrating them to find a
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TABLE 1. Important notations.

good representation of the input data. Thus, a few domain
adaptation methods [26]–[29] have successfully improved
the learning performance by integrating multiple views for
training. Multi-View Transfer Learning with a Large Margin
Approach (MVTL-LM) [26] introduces multiple views for a
DA framework. This approach uses two views to exploit the
source and target information; one view extracts the labeled
source information and is then used to construct another view
for the target samples by minimizing the consistency loss
between the two views. Multi-view Discriminant Transfer
(MDT) [27] is a multiple views-based approach for DA.
The main concept of this method is to determine the
optimal discriminative weight vectors for each view by
maximizing the correlation between the two views while
simultaneously minimizing the domain discrepancy loss.
The Maximum Classifier Discrepancy (MCD) method [28]
consists of two classifiers trained on labeled source samples
where both views classify the unlabeled target data. In this
method, they introduce a discrepancy loss to maximize
the disagreement between predictions of these classifiers
to classify the target samples far from the support of the
source domain. In contrast, the feature extractor learns to
extract target representations that are near the support of the
source samples to minimize their discrepancy. [29] provides
a short survey that discusses and analyzes the framework
for the unification of multiple-view learning and domain
adaptation.

III. PROPOSED METHOD
In this section, we introduce the definition of the problem
in our method and notations of SSDA. Then, we present the
training processes with the loss functions for the proposed
method.

A. DEFINITION OF THE PROBLEM AND NOTATIONS
In the SSDA setting, we have the set of the source domain
denoted as DS = {(xSi , y

S
i )}

NS
i=1 where NS is the number of

labeled source (S) samples, ySi ∈ RK is the label of the
samples xSi and K is the number of classes. In addition, the
set of labeled target samples (Tl) is denoted as DTl = {(x

Tl
i ,

yTli )}
NTl
i=1, where NTl is the number of labeled target samples,

yTli ∈ RK is the label of sample xTli . The set of unlabeled target
samples (Tu) is denoted as DTu = {(x

Tu
i )}

NTu
i=1 , where NTu

is the number of unlabeled target samples and NTu � NTl .
Table 1 lists all important symbols.
The goal of SSDA is to design a framework that not only

formally reduces the domain shift between both domains but
also tries to achieve class-wise matching by leveraging a few
labeled samples in each class of the target domain.
As shown in Figure 2, the proposed method indicates the

inter-view model MS (E,CS ) using a dotted red box and
the intra-view model MT (E,CT ) using a dotted blue box.
These two models have classifiers CS and CT and share
feature extractor E . The training process in the proposed
method has three stages: the first uses supervised learning,
the second uses collaborative learning (Co-learning) on the
unlabeled target domain, and the third uses the minimax
entropy strategy, as shown in Figure 1. Each stage is explained
in detail in the following subsections.

B. SUPERVISED TRAINING
In the first stage, the twomodelsMS (E,CS ) andMT (E,CT )
are trained using the labeled data. Specifically, the labeled
source samples are fed into the inter-viewmodelMS (E,CS ),
which consists of a shared CNN-based feature extractor E
that obtains their corresponding representations. Then, these
features are categorized by the task-specific classifier CS by
minimizing the standard cross-entropy loss on the ground-
truth labels as follows:

LS = −
1
NS

NS∑
i=1

K∑
k=1

1[k=ySi ]
log

(
CS (E(xSi ))

)
, (1)

where 1[.] ∈ [0, 1] is the indication function that receives a
value of 1 or 0 when the input [] is true or false, respectively.
The i-th source image xSi has a label ySi = k ∈ K .
Similarly, the feature extractor E and target classifier CT

of the intra-view model MT (E,CT ) are trained using the
standard cross-entropy over the limited labeled target samples
as follows:

LTl = −
1
NTl

NTl∑
i=1

K∑
k=1

1
[k=y

Tl
i ]

log
(
CTl (E(x

Tl
i ))

)
. (2)

Consequently, the parameters of the shared feature extrac-
tor E are optimized by minimizing the following loss:

LEcls = LS + LTl . (3)

The parameters of the classifiers CS and CT are updated
by adopting Eqs. (1) and (2), respectively. The model MS
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trained on the labeled source data provides an inter-view
aspect while the model MT trained on a few labeled target
samples works as an intra-view when they are used to extract
information from the unlabeled target data.

C. DOMAIN ALIGNMENT
The domain shift [14] means that the inter-viewmodel trained
according to (1), which has only source label information,
cannot provide satisfactory classification accuracy on the
target domain. To solve this, we use the maximum mean
discrepancy (MMD) approach [30] to minimize the distance
between the source and target distributions. Noticeably, the
MMD is a useful metric that compares the distributions of
data in the source and target domains by mapping the data
to a high-dimensional embedding in Reproducing Kernel
Hilbert Space (RKHS). Regarding the source distribution (P)
and target distribution (Q) for domain adaptation, the MMD
between P and Q is equivalent to the distance between the
means of the samples in the source and target in RKHS,
using the mapping function φ. Through the MMD, the inter-
view model MS is trained to minimize the distance between
P and Q so that it can achieve domain-invariant feature
representations. The MMD loss of the source and target can
be estimated as follows:

LMMD =
∥∥∥∥ 1
NS

NS∑
i=1

φ(xSi )−
1
NTu

NTu∑
i=1

φ(xTui )

∥∥∥∥2
H
, (4)

where H is the RKHS and φ(.) ∈ H is the mapping function
of X to the RKHS. The MMD loss can be expressed in
terms of a kernel method. We exploit the Gaussian kernel
function that satisfies the condition of the MMD to project
samples of the source and target domains instead of the
mapping function. The impact of LMMD on the classification
performance in the target domain is reported in the ablation
study in Section IV. E.

D. CONSISTENCY CLASS ALIGNMENT WITH MULTI-VIEW
CO-LEARNING
For the inter-view, after finishing stage 1, the model MS
holds rich information from the source domain to transfer
to the target domain. However, this model lacks information
from the target domain. For the intra-view, the model
MT poorly generalizes on the target domain because it
has only been trained on limited labeled target samples.
Therefore, we solve this problem in the second stage using
multiple views with co-learning. Specifically, the multiple
views-based strategy lets us fully exploit the information
of the unlabeled target data; co-learning encourages these
two models to exchange knowledge to alleviate each of
their shortcomings. For example, the inter-view model MS
generates two predictions for two augmented versions of
an unlabeled image: a weakly augmented version xTui +
σ and a strongly augmented version xTui + δ. The weak
augmentation used a simple transformation method, such
as random cropping or flipping. The strong augmentation

used RandAugment [31], which randomly selects from a
list of 14 various augmentation schemes, such as rotations,
translations, and color/brightness enhancements. The two
predictions by MS over the weakly and strongly augmented
images are computed as follows:

pwS
(
xTui
)
= softmax

(
CS (E(x

Tu
i + σ ))

)
,

pstrS
(
xTui
)
= softmax

(
CS (E(x

Tu
i + δ))

)
,

(5)

where pwS (x
Tu
i ) and pstrS (xTui ) are the predictions of the weak

and strong augmentation versions of an unlabeled target
image xTui generated by MS . Similarly, MT also provides
its two predictions pwT (x

Tu
i ) and pstrT (xTui ) on the same input

image.
Then, the co-learning process aims to enforce the con-

sistency regularization that is conducted by minimizing the
cross-entropy of the selected pseudo label from the inter-
view prediction (PS = max

PS
pwS (x

Tu
i )) and each intra-view

prediction pstrT (xTui ) of the strongly augmented image. This
entire process is conducted as follows: in the inter-view, the
model MS offers its pseudo labels selected from the highest
confident prediction of the weakly augmented version of
an unlabeled target image, xTui + σ . This is then converted
into a one-hot encoded label for the calculation of cross-
entropy, with the prediction of the strongly augmented
version of the same unlabeled target image xTui + δ,
as predicted by the model MT . Simultaneously, the model
MT provides its pseudo labels are generated over a weak
augmentation image to match with the prediction of the
strongly augmented transformation predicted by the model
MS over the same unlabeled target image. Finally, the
generalization performance on the target domain is improved
by integrating both views’ complementary information.
The incorrect pseudo labels can negatively impact the

performance of the models in the target domain; therefore,
only the prediction of unlabeled target samples that have a
high probability over a given threshold value is selected as
a pseudo label, maxpwj (x

Tu
i ) > τ , where τ is the threshold

value and j is the index for the domain. The consistency losses
betweenMS andMT are calculated as follows:

Linter

=

NTu∑
i=1

1

[
max pwT

(
xTui
)
> τintra

]
ŷintrai log

(
pstrS (xTui )

)
,

(6)

Lintra

=

NTu∑
i=1

1

[
max pwS

(
xTui
)
> τinter

]
ŷinteri log

(
pstrT (xTui )

)
,

(7)

where 1[.] is an indication function and MT offers
ŷinteri = argmax

(
pwS (x

Tu
i )
)
while MT provides ŷintrai =

argmax
(
pwT (x

Tu
i )
)
, which are converted into a one-hot
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encoded label to use as a pseudo label for supervised learning.
τinter and τintra are the threshold values used to select pseudo
labels ofMS andMT . These are studied in the ablation study
in Section IV. E.

The loss for the multi-view co-learning process is used
to update the parameters of feature extractor E , which are
calculated as follows:

LECo = Linter + Lintra. (8)

The classifiers CS and CT are trained using (6) and (7),
respectively.

In the third stage, the parameters of the feature extractor
E , classifiers CS and CT are updated using the minmax
strategy following [17]. Deep convolution neural networks
(CNNs), such as Alexnet [32], VGG16 [33], or ResNet-
34 [34], are used as the backbone network of feature extractor
E . Each classifier consists of two fully connected layers
(FCs). The last linear layer is replaced by a K -way linear
classification (K represents the number of classes) that aims
to exploit the cosine similarity-based classifier architecture.
Therefore, they are also called ‘‘cosine classifiers.’’ Each
cosine classifier is presented by K class-specific weight
vectors W = [w1,w2, . . . ,wK ], where each weight vector
wi represents the i-th class prototype. The final probability of
each cosine classifier is denoted by p(x) = softmax

( 1
TW

T f
)

where 1
TW

T f is the output of this classifier, T is a fixed
temperature (0.05), and f is the input feature. The minimax
entropy strategy is conducted as follows: In an entropy
maximization process, each cosine classifier is trained such
that each wi is similar to the generated target features f to
achieve domain-invariant prototype generation. Then, in the
entropy minimization process, feature extractor E is trained
to achieve discriminative features on the unlabeled target data
by assigning the extracted features of the unlabeled target
samples to a certain prototype.

The minimax strategy is applied to both the inter- and
intra-view models. For the inter-view model, the conditional
entropy loss of the unlabeled target samples to the target-
clustering classifier is CS determined as follows:

Hinter

= −ExTui ∼DTu

K∑
k=1

pinter (y = k | xTui ) log pinter (y = k | xTui ),

(9)

where pinter (y = k | xTui ) represents the probability of xTui
belonging to class k predicted by the inter-view model.

Similarly, for the intra-viewmodel, the conditional entropy
loss of the unlabeled target samples to the target-clustering
classifier CT is determined as follows:

Hintra

= −ExTui ∼DTu

K∑
k=1

pintra(y = k | xTui ) log pintra(y = k | xTui ),

(10)

TABLE 2. Description of datasets.

where pintra(y = k | xTui ) is the probability that the intra-view
model predicts that xTui belongs to class k .
The total loss for feature extractor E over three stages is

computed as follows:

LE = LEcls + LMMD + LECo + λHinter + λHintra, (11)

where λ is a balancing parameter and was set as in [17].
The total losses for classifier CS and CT are calculated as

follows:

LCS = LS + Linter − λHinter ,
LCT = LTl + Lintra − λHintra. (12)

E. INFERENCE ON UNLABELED TARGET DATA
The prediction on the unlabeled target data is calculated by
taking an ensemble value of the softmax outputs for the two
models as follows:

ypred = argmax
(
CS
(
E(xTu )

)
+ CT

(
E(xTu )

))
. (13)

IV. EXPERIMENT
In this section, we show the experimental details of our
investigation of the proposed method’s efficiency for the
SSDA setting. We implemented the one-/three-shot settings
as in [17] on four commonly used domain adaptation bench-
mark datasets, namely Office-31 [35], Office-Home [36],
VisDA2017 [37], and DomainNet [38]. The transfer tasks are
denoted as: source domain→target domain.

A. DATASETS
• The Office-31 dataset has three different domains:
Amazon (A), Webcam (W), and DSLR (D), which have
approximately 2,800, 800, and 500 images, respectively,
and 31 classes. Following [17], we evaluated our method
in two cases, D→A andW→A.

• Office-Home is a new visual domain adaptation dataset
that contains images from four different domains:
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TABLE 3. Classification accuracy (%) on the VisDA2017 dataset with over 12 tasks for the 3-shot using ResNet34 as the backbone network. The highest
and second-highest accuracies are demonstrated by red and blue, respectively.

TABLE 4. Classification accuracy (%) on the DomainNet dataset for the 1-shot and 3-shot settings using Alexnet and ResNet34 as the backbone networks.
The highest and second-highest accuracies are illustrated in red and blue, respectively.

TABLE 5. Classification accuracy (%) on the DomainNet dataset for the 5-shot and 10-shot settings using ResNet34 as the backbone network.
We illustrate the highest and second-highest accuracies in red and blue, respectively.

Real (R), Product (P), Clipart (C), and Art (A), each
of which has 65 categories. We used 1-shot and 3-shot
splits and evaluated the adaptation performance on the
target domain for 12 pairs (source→target) as in [17].
We evaluated the proposed method on 12 transfer tasks.

• VisDA2017 is a challenging synthetic-to-real dataset
that consists of 152,397 Synthetic images as the source
domain and 5,388Real images as the target domain; they
share 12 categories. We randomly selected one and three

real images from each of the 12 classes corresponding to
the 1-shot and 3-shot SSDA settings, respectively.

• DomainNet is a large-scale domain adaptation dataset
that consists of six domains divided into 345 categories.
However, for fair comparison with previous studies,
we selected Real (R), Painting (P), Clipart (C), and
Sketch (S) as the four domains to evaluate via seven
domain adaptation tasks with 126 classes, as follows:
R→C (Real is selected as the source domain to adapt
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TABLE 6. Classification accuracy (%) on the Office-Home dataset for the 3-shot setting using Alexnet, VGG16 and ResNet34 as the backbone network. The
highest and second-highest accuracy are represented by red and blue in the table.

on the target domain Clipart), R→P, P→C, C→S,
S→P, R→S, and P→R. For each task, we evaluated
our method on the 1-, 3-, 5-, and 10-shot settings, where
one, three, five, and ten are the labeled samples that were
randomly selected from the target domain, respectively.

Table 2 summarizes the dataset description.

B. EXPERIMENT SETTINGS
Similar to previous SSDA approaches [17], [18], [24],
we used Alexnet, VGG16, and ResNet-34 as backbones for
the shared feature extractor; they were pre-trained on the
ImageNet dataset [39]. The two classifiers of MS and MT
have the same architecture as [17]. We used a Stochastic
Gradient Descent (SGD) optimizer with an initial learning
rate of η0 = 0.01, weight decay of 0.0005, and momentum of
0.9. The strategy to update the learning rate η was conducted
following [11]: η = (η0/((1 + 10p)0.75)), where p ∈ [0, 1].
The threshold values for selecting the pseudo labels of the
inter- and intra-view models were set to 0.96, as detailed
in Section IV. E. The batch size (b) was set to 128 in the
experiments. We conducted all experiments on the widely
used Pytorch [40] framework.

All results of the Office-31, Office-Home, and DomainNet
datasets for the benchmark methods were collected from
previous works [17], [22], [23] based on Alexnet, VGG16,
and ResNet34. For the results on the VisDa2017 dataset,
we implemented the benchmark methods ourselves using the
codes released by the authors.

For the experiments on the Office-31 and Office-Home
datasets, the model was trained for 10,000 training steps

TABLE 7. Classification accuracy (%) on the Office-31 dataset for the
1-shot and 3-shot settings using Alexnet and VGG16 as the backbone
networks. The highest and second-highest accuracies are illustrated in
red and blue.

to collect the best accuracy for target validation. For the
experiments on the VisDA2017 and DomainNet datasets,
we trained all models for 50,000 training steps to observe the
best classification accuracy on the target domain.

C. COMPARISON WITH STATE-OF-THE-ART APPROACHES
We compared the proposed method with previous SOTA
SSDA approaches, including the following:

1) Minimax entropy (MME) [17].
2) Attract, perturb, and explore (APE) [18].
3) Mapping function (MAP-F) [19].
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TABLE 8. Ablation study on DomainNet using ResNet34 for R→P, P→C, S→P with the 3-shot setting. The table reports the impact of each component of
the proposed method on the classification performance in the target domain.

TABLE 9. Experiments for all adaptation tasks on DomainNet using ResNet34 with the 3-shot setting.

4) Unifying the learning of opposite structures (UODA)
[20].

5) Effective label propagation (ELP) [21].
6) Cross-domain adaptive clustering (CDAC) [22].
7) Pretraining and consistency (PAC) [23].
8) Select target (STar) [24].
9) Bidirectional adversarial training (BiAT) [25].

Additionally, we made a comparison to S+T [41], which
is trained with the labeled source and target samples
without using the unlabeled target samples. DANN [11] and
ENT [42] are both methods widely used in UDA. DANN
is the domain adversarial learning method, which employs
a domain classifier for matching feature distributions of the
source and target domains. ENT is trained on labeled data
using the standard cross-entropy loss and unlabeled data
using entropy minimization. We modified these methods to
be suitable for the SSDA setting, as in [17].

D. ANALYSIS OF RESULTS
Results on the VisDa2017 dataset: Table 3 reports com-
parisons of the results of our method and SOTA SSDA
approaches on the VisDA2017 dataset in the 3-shot setting.
We could see that the proposed method showed remarkable
improvement in classification accuracy on the target domain
for almost all tasks. Our method achieved the best classifi-
cation accuracy in the target domain, 88.9%, and was 2.2%
better than the current SOTA method MAP-F [19]. This
means over 11.8% and 11.1% improvements in the average
classification results compared to MME [17] and APE [18],
respectively.
Results on the DomainNet dataset: The mean classification

accuracy of our method achieved the best performance on the
DomainNet dataset in both cases using Alexnet and ResNet34
as the backbone network. The details of the comparison
results are listed in Table 4. Specifically, compared to

the most popular SSDA method, MME [17], the average
classification results on the target domain of our method were
boosted by 9.2% and 8.5% of the 1-shot and 3-shot settings,
respectively, when using Alexnet as the backbone network.
Using ResNet34 as the backbone network, the proposed
method achieved the best accuracy of the target domain in
all tasks and surpassed the current best results obtained by
CDAC [22] by 2.6% and 2.1% in the 1-shot and 3-shot
settings, respectively.

We extended the experiments on the DomainNet dataset
to evaluate the proposed method in the 5-shot and 10-shot
settings. Compared to the existing SOTA SSDA counterparts,
our method showed outstanding results in almost all adapta-
tion scenarios.
Results on Office-Home and Office-31 datasets: The

average classification results of our method showed the best
performance for Alexnet, VGG16, and ResNet34 on the
target domain under the 3-shot setting for the Office-Home
dataset, as presented in Table 6. It performed 0.3%, 1.1%,
and 1.4%, respectively, better than the current SOTAmethod.
The classification accuracy on the target domain of various
methods for the Office-31 dataset is listed in Table 7; our
approach reported remarkable classification results in the
target domain when using Alexnet and VGG16 as backbone
networks on both the 1-shot and 3-shot settings.

E. ABLATION STUDIES
1) THE CONTRIBUTIONS OF EACH COMPONENT OF THE
PROPOSED METHOD
We investigated the contributions of each component of the
proposed method on the classification performance on the
target domain, including baseline (BL), domain alignment
(DA), self-learning (SL), and co-learning (CL). We used the
MME [17] as the baseline of models MS and MT . The
baseline results on the target data were computed by taking
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FIGURE 3. Sensitivity analysis of both inter-view threshold value (τinter )
and intra-view threshold value (τintra) for the classification accuracy of
the target domain.

an ensemble of softmax outputs from both models. We added
a domain loss for DA to match the feature distributions of the
source and target domains extracted by the inter-view model
MS . For the SL process, each model exploited the target
information by generating the pseudo labels on the unlabeled
target samples to train itself. In the CL process, both the
inter-view and intra-view models exchanged their knowledge
by alternatively providing their pseudo labels, selecting from
the highest confidence prediction to teach the other model.
Consequently, the shortage in each view is alleviated, leading
to improved classification performance in the target domain.

Table 8 recorded three adaptation tasks (R→P, P→C,
S→P) onDomainNetwith the 3-shot setting using ResNet34
as the backbone network. The average classification results
on the target domain of the inter-view and the intra-view
models were significantly different when only using BL,
with 8.3% gapping. The average accuracy of the inference
results on the target domain was improved when we added
DA (BL+DA) to reduce the domain discrepancy between
the source and target domains in the feature space, which is
expressed in Section III. C. Because model MS and model
MT share feature extractor E , in the classification accuracy
on the target domain of the intra-view model, MT , also
slightly increased. Compared to the baseline, in scenario
BL+DA+SL, the average classification results on the target
domain of both inter-and intra-view models surpassed 5.8%
and 6.8%, respectively, when they were complementary to
the target information from the unlabeled samples by using
SL. However, as shown in Table 8, the prediction results on
the target domain of the inter-view model over BL, BL+DA,
and BL+DA+SL methods were significantly higher than
the prediction results provided by the intra-view model.
This is because the inter-view model was trained on the
large amounts of labeled source samples, while the intra-
view model was trained on the small amounts of labeled
target samples. Therefore, the intra-view model was poorly

FIGURE 4. Investigation of an optimal threshold value pair (τinter , τintra).

generalized to the target domain compared to the inter-view
model.

We could observe that in the case BL+DA+CL, the bias
prediction of both models was removed when using CL,
which encourages both inter-view and intra-view models
to make similar predictions on an unlabeled target sample
by mutually exchanging their knowledge. To demonstrate
the efficiency of CL in the SSDA setting, we extended it
to all adaptation tasks on the DomainNet dataset, and the
results are listed in Table 9. Both models provided similar
prediction accuracies in all tasks. The average accuracy of
the ensemble result of the case BL+DA+CL was nearly
10.0% higher than that of the case BL+DA+SL. The intra-
viewmodelMT inherited abundant ground-truth information
from the inter-view model MS via CL. Simultaneously,
the inter-view model MS supplemented the labeled target
information during training. The experiments showed that
the classification accuracy of the target domain could be
significantly improved by using the proposed method for two
reasons. First, the target information was extracted efficiently
via multiple views. Second, CL successfully distilled useful
class information of eachmodel to transfer to the othermodel.
Therefore, it could maximize the within-class correlation and
simultaneously minimize the correlation between each class.
We provide empirical evidence from feature visualization
analysis in a later section.

2) SENSITIVITY OF THE PROPOSED METHOD WITH VARYING
THRESHOLD VALUES
In this section, we explain how to select an appropriate
threshold value. As mentioned in Section III. D, each model
generated pseudo labels by choosing the highest confidence
predictions on unlabeled target samples. Simultaneously, its
weights were updated from the other’s pseudo labels.

This is because the inter-view and intra-view models
were trained on the differently labeled datasets. Therefore,
the quality and quantity of their pseudo labels were quite
different. To investigate the sensitivity of the proposed
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FIGURE 5. Visualization of the embedding space of different methods using t-SNE [44]. We show the representations of ten classes on the source and
target domains of (a) S+T, (b) APE, and (c) our method for the P→R task considering the 3-shot setting on the DomainNet dataset. The left and middle
columns of this figure visualize the source and target representations, respectively. The right column displays the adaptation efficiencies of the
different methods.

method with pseudo labels generated from each model,
we implemented the following: a model provided its pseudo
labels with a fixed threshold value to observe the optimal
threshold value of the rest model. We conducted the P→R
task onDomainNet using ResNet34 as the backbone network
under the 3-shot setting. We observed the inference results

of the proposed method of all experiments during 30,000
training steps.

We could obtain a lot of pseudo labels by using a small
threshold value. However, these pseudo labels contained
noisy labels, leading to degradation in the classification
performance on the target data. On the contrary, we could
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FIGURE 6. Visualization of the confusion matrix of different models. These experiments were implemented on the VisDa2017 dataset based on the
ResNet-34 backbone network.

FIGURE 7. Grad-CAM results [45] of different models. We visualized the extracted features of the last convolutional layer in the ResNet34 backbone
for attention map visualization analysis of the task Synthetic→Real on the VisDA2017 dataset under the 3-shot setting.

get high-quality pseudo labels by setting a high threshold
value. Nevertheless, in this way, the useful information of the
target data could be discarded, which also led to a decrease
in accuracy. Therefore, we should study the selection of a
threshold value that can control the trade-off between the
quantity and quality of pseudo labels. [43] suggested that the
quality of pseudo labels should be considered more than the
quantity to obtain better performance. Thus, we set τinter =
0.92 and changed τintra = 0.4 ∼ 1.0 to evaluate the
impact of the intra-view threshold value on the classification
performance on the target domain. Similarly, we adjusted
τinter = 0.4 ∼ 1.0 and fixed τintra = 0.92 to investigate
the sensitivity of the classification results of the target
domain to the inter-view threshold value. Figure 3 shows the
classification accuracies on the target domain of the proposed
method, depending on the pair (τinter , τintra). In the case of
fixed τinter and changed τintra, the classification accuracy on
the target domain of the proposed method was over 83.0%
when τintra was 0.94, which is indicated by a green dashed
line. In the case of fixed τintra and changed τinter , the highest
classification accuracy on the target domain of our method
on the unlabeled target data could achieve nearly 84.0% with
τinter = 0.98, which is indicated by the red dashed line.
As shown in this figure, we could see that the classification

result on the target domain provided by the inter-view model
was higher than that of the intra-view model with the same
fixed threshold value, 0.92. That means the inter-view model
trained on the large amounts of labeled source samples
generated pseudo labels more accurately than the intra-view
model trained on small amounts of labeled target samples
when the threshold value changed from 0.4 to 0.9. These
results are concordant with the classification accuracy of the
target domain shown in Table 8.

As shown in Figure 3, we determined that the optimal
threshold value was in an interval from 0.94 to 0.98.
We observed the variation of the classification performance
of the target domain corresponding to three pairs, (τinter =
0.94, τintra = 0.98), (τinter = 0.96, τintra = 0.96), and
(τinter = 0.98, τintra = 0.94), to decide the optimal threshold
value for the proposed method. Figure 4 displays the test
accuracies of these three tasks. As shown in this figure, in case
(τinter = 0.96, τintra = 0.96), the prediction results for
the unlabeled target data still increased and achieved 84.0%
after 30,000 training iterations. On the contrary, after 20,000
training iterations, in cases (τinter = 0.94, τintra = 0.98) and
(τinter = 0.98, τintra = 0.94), the classification results of
the target domain showed almost no change. Both models of
the proposed framework obtained the best prediction results
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on the target domain with the same threshold value that was
easy to understand. With CL, the quality of both inter-view
and intra-view models was similar in terms of performance
on the unlabeled target data, which is also demonstrated by
the results listed in Table 9; the predictions of both models
were the same for all tasks.

F. FEATURE VISUALIZATION ANALYSIS
1) VISUALIZATION ANALYSIS OF CLASSIFICATION FEATURES
Figure 5 shows the t-SNE visualization [44] of the source
and target features categorized by the different methods
for the P→R task on DomainNet under the 3-shot setting
using the ResNet-34 backbone network. Different colors
indicate different classes. The figures on the left side and
in the middle columns show representations of the source
and target domains, respectively. A different color denotes
each class. The figure in the right-side column presents
the effects of distribution matching between the source and
target domains by showing the t-SNE visualization of domain
representations in the shared feature space. The red color
denotes the source domain, while the blue color indicates the
target domain. We could see that the distribution matching
of the S+T method was less efficient than APE and our
method, as shown in the figure in the right-side column. The
target features in each class were discriminated by ourmethod
more clearly compared to APE, as shown in the middle
columns.

2) CONFUSION MATRIX VISUALIZATION
The confusion matrixes of APE, UODA, and our method
are represented in Figures 6 (a)–(c), respectively. These
experiments were implemented on the VisDa2017 dataset
based on the ResNet-34 backbone network. As shown in
Figure 6, both the APE and UODA methods could not
discriminate the representations among Bus, Car, Train, and
Truck classes well because these classes share common
features. On the contrary, our approach could alleviate this
problem, as shown in Figure 6 (c).

3) ATTENTION MAP VISUALIZATION
Grad-CAM results [45] of APE, UODA, and our method
are displayed in Figure 7, which shows the results extracted
by the last convolutional layer in ResNet-34 using an input
randomly selected from the Bicycle and Truck classes of
the VisDa2017 dataset. The results of both classes showed
that the model of our method could be enforced to focus on
the main object while other models were quite sensitive to
the background or noise. As shown in Figure 7, the model
of our method performed better than the UODA model on
the Bicycle class and was more robust to noise than the
APE and UODA models on the Truck class. These results
are concordant with the confusion matrix visualization in
Figure 6 and the classification accuracy of the target domain
in Table 3.

V. CONCLUSION
In this paper, we successfully integrated the multiple views
strategy and collaborative training into a framework for
SSDA. Specifically, themultiple views strategy is responsible
for extracting unlabeled target data from the different aspects
of labeled target samples. Collaborative learning encourages
the different models to exchange their knowledge to alleviate
the shortage in each model. We conducted extensive experi-
ments on four visual benchmark domain adaptation datasets.
The experimental results have shown that MVCL is better
than other state-of-the-art SSDA approaches. The success
of our method indicates the importance of preserving the
discriminative information of each class for learning domain-
invariant representations in domain adaptation.
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