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ABSTRACT The controller area network (CAN), which is still today the most used in-vehicle network,
does not provide any security or authentication mechanism by design. Since current vehicles, which have
numerous connectivity technologies, such as Bluetooth, Wi-Fi, and cellular radio, can be easily accessed
from the exterior world, they can be easy targets of cyber-attacks. It is therefore urgently necessary to enhance
vehicle security by detecting and stopping cyber-attacks. In this paper, we propose a novel unsupervised
intrusion prevention system (IPS) for automotive CANSs that detects and hinders attacks without modifying
the architecture of the electronic control units (ECUs) or requiring information that is restricted to car
manufacturers. We compare two machine learning algorithms’ ability to detect fuzzing and spoofing attacks,
and evaluate which of them is most accurate with the fewest number of data bytes. The fewer data bytes
required, the sooner detection can start and the sooner attacking frames can be detected. Experiment results
show that our proposed detection mechanism achieves accuracy higher than 99%, F1-scores higher than 97%,
and detection times shorter than 80us for the types of attacks considered. Moreover, when compared to four
state-of-the-art intrusion detection systems, it is the only solution that is capable of discarding attacking
frames before damage occurs while being deployed on inexpensive Raspberry Pi. Such an inexpensive
deployment is particularly desirable, as cost is one of the automotive industry’s primary concerns.

INDEX TERMS Intrusion detection system (IDS), intrusion prevention system (IPS), machine learning,
controller area network (CAN).

I. INTRODUCTION

Today’s vehicles are equipped with different connectivity
technologies, such as Bluetooth, Wi-Fi, and cellular radio,
that make a plethora of automotive applications feasible.
However, such interfaces expand vehicles’ attack surface so
they are more exposed to security vulnerabilities that may
compromise their operation and put drivers and passengers
at risk [1], [2]. In-vehicle networks, which connect several
electronic control units (ECUs), have recently been the target
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of cyber-attacks [1], [3]. The controller area network (CAN),
the most commonly used in-vehicle network, carries signals
from critical vehicle systems, such as the braking and steering
systems. Thus, the need for timely detection of potential
cyber-security incidents in cars and rapid response to them
has been pushed by the industry and government [4]-[6].
Since the CAN does not have any authentication or security
mechanism by design, the automotive industry employs sev-
eral layers of security in vehicles. These include protection
of individual ECU software and integrity, protection of crit-
ical signals and messages, isolation of automotive domains
by a gateway, firewall and security solutions for external
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interfaces, and intrusion detection systems (IDSs) / intru-
sion prevention systems (IPSs) [2]. IDSs and IPSs detect
cyber-attacks that other security mechanisms were not able
to prevent. IPSs also hinder detected cyber-attacks. They are
both particularly valuable defense mechanisms for CANs due
to their low impact on system performance and the fact that
they do not require any modification to the CAN protocol [7].

Unsupervised anomaly-based IDSs learn a normal behav-
ior profile and detect cyber-attacks by measuring deviations
from this profile [8], [9]. In contrast to other approaches
that usually present fewer false alarms, such as signature-
based techniques, unsupervised anomaly-based IDSs do not
depend on a database of known attacks and are able to
detect unknown attacks. Since new attacks are constantly
being launched and obtaining labeled attack data can be
very time-consuming and is sometimes not even possible,
such IDSs are deemed best for securing networks and sys-
tems [9]-[11] and are increasingly being adopted by the
industry [12]-[14].

However, existing IDS and IPS solutions present have lim-
itations, and there are still crucial challenges to be addressed.
Some rely on information that is restricted to car manufac-
turers or require modifications to ECUs. Most are ineffec-
tive against attacks that use legitimate frame identifiers, i.e.,
attacks that modify the content of a CAN message without
affecting its identifier or the frequency with which the iden-
tifier is found in the network [15]. Others propose the use
of machine learning techniques to overcome this limitation
but require considerable computing power and expensive
hardware to be deployed [16]. If less sophisticated hard-
ware is used, the detection time requirement for hindering
cyber-attacks is not met; intrusions are detected after their
transmission is completed, and damage cannot be avoided.
Therefore, even though CANs have been widely used for
decades, existing cyber-attack intrusion detection and preven-
tion systems cannot hinder attacking malicious frames using
inexpensive hardware, such as Raspberry Pi. Furthermore,
the current literature lacks a proper analysis of the time
requirement to hinder intrusions and an IDS that can meet
that requirement using inexpensive hardware.

A. CONTRIBUTIONS

In this paper, we propose a novel unsupervised IPS for
detecting and discarding known and unknown attacks in
CANs without relying on labeled attack data or on what
each CAN message means, i.e., no restricted information
from car manufacturers is required. In addition, our proposed
system does not require modifications to ECUs or to the
in-vehicle network architecture. Instead, it is deployed on
additional low-cost hardware, such as Raspberry Pi, that is
connected to the CAN bus. Although that additional device is
inexpensive, it does not impact the performance of ECUs or
in-vehicle networks and can detect cyber-attacks fast enough
to hinder them and prevent damage. In order to achieve low
detection times even when using less-sophisticated inexpen-
sive hardware, our proposed detection mechanism uses only
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the first N bytes of the CAN frames’ payload. If not all
eight data bytes in a payload are used, detection can start
sooner and be carried out before the transmission of the eval-
uated frames is completed, which makes it possible to hinder
attacks.

Since using fewer data bytes may degrade detection perfor-
mance, we evaluate two machine learning algorithms’ ability
to detect attacks when using different numbers of data bytes.
We consider the same three types of attacks (fuzzing, drive
gear spoofing, and RPM gauge spoofing) that are considered
by the state-of-the-art IDSs we use as a baseline to compare
our results. Our proposed IPS then uses the algorithm that is
shown to need the fewest data bytes to detect cyber-attacks,
so that detection finishes sooner and there is enough time
to stop attacks before damage is caused. The first algorithm
evaluated is the one-class support vector machine (OCSVM),
which is firmly based on mathematical and optimization
concepts. This algorithm finds a function that is positive for
regions with a high density of points and negative for those
with a low density of points. According to [17], the OCSVM
has very fast inference, which makes it attractive for latency
constrained problems like detecting cyber-attacks in CANSs.
The second algorithm considered is the isolation forest (iFor-
est) [18], which is an ensemble of isolation trees that provides
a measure of normality for observations [19]. It is a powerful
classification algorithm that isolates anomalies from the rest
of the observations by recursively and randomly partitioning
data. It is specially designed for detecting anomalies and has
low linear time complexity [18], such that it is also very
attractive for detecting attacks in CANs. The OCSVM and
iForest algorithms are usually used as benchmarks in anomaly
detection research and have been suggested for detecting
attacks in automotive CANs due to their performance and
short detection times [18], [20], [21]. Finally, our proposed
system is shown to be capable of detecting and discarding
attacking frames before damage occurs and outperforming
four state-of-the-art IDSs used as a baseline. In a nutshell,
the main contributions of our work are:

1) A performance evaluation of the OCSVM and iForest
algorithms’ ability to detect cyber-attacks using differ-
ent numbers of CAN frame data bytes.

2) A novel unsupervised IPS that can be deployed on
inexpensive hardware, such as Raspberry Pi, and still
satisfy the time requirement for discarding attacking
frames before damage is caused.

B. ORGANIZATION

The remainder of this paper is organized as follows. Section II
introduces related works. Section III introduces the threat
model considered in this work. Section IV presents our pro-
posed architecture by describing the system model, train-
ing procedure, and detection strategy. Section V explains
the experiments conducted. In Section VI, we present
and discuss the results. Finally, Section VII concludes
the paper.
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Il. RELATED WORKS

The work in [22] proposes an IPS for CANs based on the
assumption that it will work for systems that are able to detect
attacks before their transmission is completed. It considers
only two detection techniques that are based on the frame’s
identifiers and does not analyze the time requirement for
hindering attacks. Moreover, it requires changes to the ECUs.
The authors of [23] propose an IPS that assumes each mes-
sage identifier can be sent by only one node. Then, each node
monitors the bus and sends error frames to overwrite unautho-
rized transmissions. The work in [24] proposes a lightweight
CAN authentication approach that overwrites malicious mes-
sages by sending error frames. However, the works in [23]
and [24] also require that all ECUs be modified, and hence
impose a significant burden on existing systems. The work
in [25] detects when nodes have been disconnected from the
bus by exploiting the CAN’s fault confinement mechanism.
However, it prevents only attacks that disconnect CAN nodes.
The authors of [15] propose a defense method for CANs that
coordinates all CAN nodes to shift a legitimate identifier once
it has been used in an attack. However, it cannot stop ongoing
attacks, only prevent future ones. Moreover, it requires that all
ECUs be modified to comply with its mechanism. In contrast,
the technique we propose does not require modifying ECUs
and discards malicious frames during transmission, thereby
stopping ongoing attacks.

Most of the other works on protecting CANs focus on
detecting intrusions and also present several limitations. The
work in [26] introduces a specification-based IDS that is
based on the timing model of CAN messages. The work
in [27] detects injected CAN messages using the cumula-
tive sum change-point algorithm to monitor changes in the
frequency of messages. The authors of [28] propose an IDS
that detects behavior changes in CAN transmissions using the
wavelet transform. The authors of [7] propose a lightweight
IDS that analyzes the time intervals between CAN frames
that have the same identifier. In [29], an IDS method that
analyzes the sequence of CAN frame identifiers is presented.
Similarly, the work in [30] proposes an IDS that uses genera-
tive pretrained transformer models to detect attacks based on
the sequence of CAN frame identifiers. The works in [31]
and [32] fingerprint ECUs by exploiting the intervals of
periodic messages and the ECUs’ clock offset, respectively.
However, the works in [7] and [26]—[32] all assume that the
adversary injects messages but does not modify regular mes-
sages. They are then ineffective against attacks that modify
the frame’s payload and preserve the messages’ identifier and
frequency.

The work in [33] presents the throughput method, which
is based on the computation of statistical metrics and tests.
In [34], fuzzy algorithms are proposed to detect injection
attacks on the CAN protocol. However, these two works
incur significant error rates. The work in [35] proposes a
graph-based IDS that models the sequence of exchanged
CAN messages. However, it cannot detect attacks by exam-
ining isolated frames and also has significant error rates for
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fuzzing attacks. In [16], a deep neural network is used to
identify normal and attacking frames in a CAN bus with the
frames’ data bytes as features. The work in [36] presents
a hybrid anomaly detection system based on the replica-
tor neural network algorithm. In [20], a hybrid anomaly
detection system for ECUs is introduced by combining an
efficient specification-based system with machine learning
techniques. However, none of these works propose mech-
anisms to hinder intrusions. Moreover, [16] and [36] are
computationally costly and require expensive hardware to be
deployed, while [20] relies on confidential specifications that
are restricted to car manufacturers.

The authors of [37] propose a deep learning-based IDS
to detect cyber-attacks in CANSs. It relies on long short-
term memory (LSTM) autoencoders and achieves 99% accu-
racy at detecting attacks. However, LSTM networks usually
have long detection times, since they do not permit the par-
allelization of computations. The authors of [38] propose
GIDS, an unsupervised IDS that uses generative adversarial
networks (GANs). It models the system and detects attacks
by measuring deviations from a learned normal behavior.
Although it achieves accuracy higher than 96% at detect-
ing cyber-attacks in CANs, its long detection time may
thwart the hindering of attacks. The work in [39] proposes
an IDS that is based on a deep convolutional neural net-
work (DCNN) that learns the network traffic pattern. The
DCNN achieves accuracy higher than 99% and outperforms
several other machine learning techniques, such as LSTM
networks, when it comes to detecting attacks in CANs. How-
ever, both DCNN and LSTM networks have long detection
times even when using sophisticated GPU hardware, as it is
shown in [39]. Their computational complexity per layer is
O(knd?) and O(nd?), respectively, where n is the sequence
length, d is the representation dimension, and k is the kernel
size of convolutions. Finally, the work in [40] proposes a
multi-tiered hybrid IDS (MTH-IDS) that combines signa-
ture and anomaly-based detection and also achieves accuracy
higher than 99%. We compare the results of our work to those
of GIDS [38], DCNN [39], an LSTM-based IDS [39], and
MTH-IDS [40]. Table 1 summarizes our related works.

IlIl. CAN VULNERABILITIES AND THREAT MODEL

In this section, we present the vulnerabilities of CANs and
the threat model considered in this paper. Then, we discuss
how to discard malicious frames and the time requirement
for stopping cyber-attacks before damage occurs.

A. CONTROLLER AREA NETWORKS

Although the CAN protocol is considered a legacy tech-
nology and there are other network protocols that offer
higher throughput, such as media oriented systems trans-
port (MOST) and automotive Ethernet, it is still the most
used protocol in today’s cars [26], [37], [39]. Its robustness
and low complexity allow car manufacturers to still rely on
it for many modern applications, so CANs are expected to
continue being widely used in vehicles. Besides, the CAN is
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TABLE 1. Related works.

Reference Method Detection Attributes PreventlonS AEtgbuu’ZS
Requires . atls. es Time
Detects Requires . Requirement to
Labeled . . Modifies . .
Modified Restricted Discard Malicious
Attack . ECUs R
Payloads | Information Frames using
Data .
Inexpensive Hardware
Transmits error frames and reboots ECUs
(22] when an associated IDS detects attacks N.A. N.A. N-A. Yes N.A.
(23] Assumes that message 1fientlﬁers are sent only by a No No No Yes Yes
single node and overwrites unauthorized messages
[24] Introduces message authentication codes No Yes No Yes Yes
Detects nodes disconnected from the bus by Only after it detects
(23] exploiting the CAN’s fault confinement mechanism No No No No disconnected ECUs
Changes CAN message identifiers after they
(151 have been detected in attacks by an associated IDS N.A N-A. N.A. Yes No
26] Models the timing of CAN No No No No NA.
messages to detect deviations
[27] Momtors change:§ in the frequency Qf messages No No No No No
using the cumulative sum change-point algorithm
28] DeFe({ts behaylor changes in CAN No No No No No
transmissions using the wavelet transform
Analyzes the time intervals between
7] CAN frames with the same identifier No No No No No
[29] Analyzes the sequence of frame identifiers No No No No N.A
[30] ]).etech attack_s based on Fhe sequence of CAN frame No No No No NA
identifiers using generative pretrained transformers
[31] Fmgerprmts ECUS b}f exploiting No No No No NA.
the intervals of periodic messages
Fingerprints ECUs by
(32] exploiting their clock offset No No No No No
(33] Cgmputgs statistical metrics on message No No No No NA
timing intervals over a sliding window
[34] Detects attacks using fuzzy algorithms Yes Yes No No N.A
Models the sequence of exchanged
1351 CAN messages using graph theory No No No No No
[16] Detects attacks using deep neural networks Yes Yes No No No
[36] Detects attacks using replicator neural networks Yes Yes Yes No No
20] Complnes a sPec1ﬁcat}on—based' No Yes Yes No NA
system with machine learning techniques
[37] Detects attacks using LSTM autoencoders No Yes No No No
[38] Detects attacks using GANs No Yes No No No
[39] Detects attacks using deep neural networks Yes Yes No No No
Combines signature and
(401 anomaly-based detection mechanisms Yes Yes No No No
Proposes an unsupervised anomaly-based
Our Proposed IPS IDS using the isolation forest algorithm No Yes No No Yes

a well-known inexpensive technology that has a high enough
data rate to transmit most vehicle signals [39]. It is compliant
and perfectly interoperable with the CAN flexible data rate
(CAN-FD), which enhances CANs and allows larger pay-
loads to be transmitted with higher data rates [41]. Finally,
the adoption of other in-vehicle networks for infotainment
applications and autonomous driving, for example, does not
mean CANs will be completely replaced. In fact, differ-
ent in-vehicle networks already coexist and are connected
through gateways [42].

The CAN protocol is a message-oriented broadcast proto-
col in which frames can transmit up to eight data bytes in their
payload with bit rates of up to 1 Mbps [43]. Frames are trans-
mitted and received depending on their message identifiers,
which are used by a vehicle’s ECUs to recognize whether they
should process or ignore a message. These identifiers are also
used in the CAN arbitration mechanism to determine which
message should be prioritized when multiple ECUs want to
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transmit at the same time. Essentially, the lower a message’s
identifier, the higher its priority. Thus, when multiple ECUs
try to transmit at the same time, the message with the lowest
identifier is transmitted and the others are discarded.

The CAN was designed when vehicles were isolated envi-
ronments without any external connectivity, such that there
was no concern for security. It therefore does not have any
authentication or encryption mechanism by design. Once
access to the CAN bus is acquired, attackers can monitor
all transmitted messages as well as corrupt frames and inject
malicious ones. For instance, attackers can exploit the net-
work’s arbitration mechanism to continuously send messages
with low identifiers, such that they always have priority
and gain access to the bus. As a result, legitimate messages
are not transmitted, as in a denial-of-service (DoS) attack.
Fortunately, since this type of attack significantly affects the
frequency and periodicity of CAN messages, it can be easily
detected by exiting IDSs [7], [29], [33]. On the other hand,
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other types of attacks, such as fuzzing and spoofing attacks,
are much more challenging to detect.

B. THREAT MODEL

Due to their lack of security in vehicles and their widespread
and ever-increasing connectivity capabilities, automotive
CANSs can be accessed through different types of commu-
nication interfaces [3], [37]. Attackers can physically access
CANSs by connecting to a vehicle’s On-Board Diagnostics 2
(OBD-II) port, which allows dealerships and repair shops to
extract information from a vehicle. They can also remotely
access CANs by exploiting vulnerabilities of wireless inter-
faces, e.g., Bluetooth and cellular networks, which are used
for telematics applications and over-the-air (OTA) ECU
updates. For instance, in [44], control over a 2014 Jeep Chero-
kee CAN was gained by remotely exploiting its U-connect
communication system. Similarly, in [45] and [46], Wi-Fi was
exploited to reprogram a Tesla’s ECUs.

In our work, we assume that attackers can gain access to
vehicles” CANs through physical or remote attack surfaces.
Moreover, once such access is obtained, we consider that
they can sniff messages, learn the legitimate frame identifiers
and transmission patterns, and acquire full knowledge about
how CAN messages control ECUs’ functionalities. Further-
more, we assume that attackers can inject and modify CAN
messages. Injecting a message corresponds to transmitting a
CAN frame. Since a CAN does not authenticate by design,
an injected frame is treated as legitimate by the receiving
nodes. On the other hand, modifying a message corresponds
to corrupting it, i.e., overwriting bits of a legitimate CAN
frame being transmitted. Since the CAN does not ensure
integrity by design, bits of a legitimate frame may be over-
written as long as the frame’s cyclic redundancy check field
is modified accordingly.

Attackers can launch different types of cyber-attacks by
injecting and manipulating CAN frames. We consider in our
work fuzzing and spoofing attacks, since they have been
shown to cause a lot of damage by taking control of and dis-
abling ECUs [31], [38], [39], [47]. For instance, the authors
of [47] were able to use fuzzing packets to unlock the doors,
adjust interior and exterior lighting levels, and disable the key
lock relay to lock the key in the ignition, among other things.
Similarly, the authors of [31] manipulated and impaired vehi-
cle functions by injecting arbitrary messages with a spoofed
ID into the in-vehicle network. Fuzzing attacks inject CAN
frames with random values for the data bytes and frame
identifier to trigger hidden functionalities or generate errors
in the devices connected to the CAN bus. Spoofing attacks,
on the other hand, involve attackers injecting or corrupting
frames with a known functionality to trick devices to act in
a certain way, e.g., messages with the CAN identifier related
to the drive gear are injected or modified in order to control
it. Our proposed IPS aims to mitigate fuzzing and spoofing
attacks by detecting and discarding malicious CAN frames
that were injected or modified in automotive CANSs.
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IV. PROPOSED ARCHITECTURE

The most direct approach for discarding CAN frames is to
interrupt their transmission by forcing an error condition that
violates the CAN protocol. For instance, the CAN protocol
has a bit stuffing mechanism to synchronize all nodes in the
bus [43]. This mechanism inserts a bit O after the transmission
of five consecutive bits 1 and inserts a bit 1 after five consec-
utive bits 0. Thus, if six consecutive bits are transmitted with
the same logic level, the CAN protocol has been violated.
When this occurs, all nodes in the bus discard the frame being
transmitted and transmit an error frame, after which a new
frame can be transmitted.

Rather than being a security mechanism, error frames exist
in the CAN protocol to prevent errors. Several works have,
however, used them to discard malicious frames, demonstrat-
ing it to be an effective approach [22]-[24]. Thus, malicious
CAN frames can be discarded by forcing an error condi-
tion, such that all nodes in the bus transmit an error frame.
Those error frames overlap and contain from 14 to 20 bits.
Thus, at most 20 extra bits are transmitted upon discarding a
malicious frame. It could be even less, since the malicious
frame’s transmission is interrupted before its last bits are
sent. In our work, we discard malicious frames by forcing
a logic level 0 during the transmission of six consecutive
bits, which violates the bit stuffing mechanism. In contrast
to [22]-[24], we evaluate whether an error frame can be sent
soon enough to discard an attacking malicious frame and not
require modifications to ECUs.

Due to the broadcast nature of the CAN, our proposed
system is deployed on a single additional device that is con-
nected to the CAN bus under surveillance. It probes the CAN
High and CAN Low signals, to which all CAN nodes are
connected, decodes the frames being transmitted, and detects
cyber-attacks using the frames’ data bytes. When an attack is
detected, our system transmits six consecutive bits O to the
bus to force a logic level O in the CAN High and CAN Low
signals so that all ECUs discard that malicious frame. Since
our system essentially monitors the bus and only transmits
bits to discard malicious frames, it does not modify ECUs or
impact communication between them.

Our architecture consists of a CAN transceiver, a CAN
controller, and a detection agent. The CAN transceiver con-
verts voltage to logic levels to receive and transmit bits
to the bus through the CAN High and CAN Low signals.
It is connected to the CAN controller through the CAN RX
and CAN TX signals, which receive and forward bits. Most
CAN transceivers disable themselves following many con-
secutive attempts to transmit dominant bits to prevent data
corruption. However, most of them, such as the Microchip
MCP2551 [48], allow up to 20 consecutive dominant bits
to be transmitted. Therefore, since our IPS needs to send
only 6 consecutive dominant bits, it can use a standard CAN
transceiver. The CAN controller decodes frames with the bits
it receives from the transceiver, such that the data bytes are
acquired. Finally, the detection agent deploys the machine
learning algorithm used to detect cyber-attacks. It receives
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CAN High
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Proposed
System CAN RX Data Bytes
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Transceiver| CAN TX_| Controller | patection Agent

T Detection Result

FIGURE 1. Proposed IPS architecture.

a Start Detection signal from the CAN controller that trig-
gers the start of detection once all bytes used have been
received. When an attack is detected, the detection agent
instructs the CAN controller to transmit six consecutive bits
0 through the CAN transceiver so that the malicious frame
is discarded. Figure 1 shows the architecture of our proposed
IPS. Algorithm 1 shows the algorithm of our proposed IPS.

Algorithm 1: Proposed IPS

1: Train the detection agent’s machine learning model
2: while The CAN transceiver reads the bus voltages
and transmits bits to the CAN controller do

3:  The CAN controller decodes the CAN frames
The CAN controller sends the incoming frames’
data bytes to the detection agent

5:  The detection agent applies its machine learning
model
to the data bytes used as features and decides
whether the frame being transmitted is malicious

6:  if The frame is considered malicious then

7: The detection agent commands the CAN
controller and CAN transceiver to transmit six
consecutive bits 0

8: endif

9: end while

A. TIME REQUIREMENT FOR PREVENTING ATTACKS
In order to stop cyber-attacks, malicious frames must be
detected and discarded before their transmission is com-
pleted. Since malicious frames are discarded by transmitting
six consecutive bits 0, they must be detected before their last
six bits are transmitted, i.e., by the first bit of the end-of-frame
(EOF) field, as depicted in Figure 2. Otherwise, the error
condition would occur after the malicious frame transmission
is completed and the ECUs would process attacking frames
and follow their instructions that compromise the vehicle’s
operation.

We define the time available to detect and discard a mali-
cious frame as

T Available = (L — K) Ty, (1

where Thj; is the transmission time of one bit, L is the number
of bits in the frame, and K is the number of bits already
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FIGURE 2. Fields and number of bits per field of standard CAN frames.

transmitted before detection starts. Ty;; is defined by the CAN
controller through the configuration of bit timing parameters
that specify the CAN baud rate. Most car manufacturers
operate with 500 Kbps CANs, which means that bits are
transmitted every 2us, i.e., Tvix = 2us. Tpi is a standard
configuration that works with any CAN controller and does
not depend on the hardware used to detect attacks.

On the other hand, we define the processing time of our
IPS as

Tips = Tpetection + TReaction + TDelaya 2

where TDetection 1S the time it takes to detect a malicious frame,
TReaction 1S the time it takes to transmit six consecutive bits 0,
i.e., TReaction = 67Tbit, and Tpelay includes the time it takes
to instruct the transceiver and the delay introduced by the
hardware. Our IPS processing time must be shorter than the
time available to detect and stop an attack, hence

Tips < Tavailable
Tpetection + TReaction + TDelay < (L — K) Tt
Tbetection + 6Tbit + TDelay < (L — K)Thit
Tpetection < (L—K — 6)Thit — TDelay-
3)

Therefore, the time requirement for preventing attacks, i.e.,
detecting and stopping attacks before they can cause damage,
is that the time it takes to detect malicious frames must be
shorter than

TDeteCtionMaX = (L_K - 6)Tbit - TDelay7 (4)

so that Tips < T Available 1S Satisfied.

Furthermore, since the detection of attacks can start only
after all bytes used by the detection algorithm are received,
the fewer bytes used, the sooner detection can start. In ref-
erence to Figure 2, if all eight data bytes in a CAN frame’s
data field are used, the detection algorithm can start only after
the eighth data byte has been transmitted, after which there
are only 25 bits left to be transmitted in the frame. Thus,
(L — K) = 25 and Tperectionyree = 19Tpitr — Tpeiay- Similarly,
if only the first seven data bytes in the data field are used,
detection can start after the transmission of the seventh data
byte, after which there are 33 bits left to be transmitted. Thus,
(L — K) = 33 and Tperectionpsye = 27Thit — Tpelay- The same
formula applies when fewer of the data field’s data bytes are
used. To generalize, if the first N data bytes of a CAN frame’s
data field are used in detection, the maximum time to detect
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attacks is given by
TDetectiom\/kIX = 19Tbit + 8(8 - N)Tbit - TDe]ay' (5)

Since using fewer data bytes tends to degrade detection
rates, our proposed system needs to use a detection algo-
rithm that minimizes the impact of that reduction and still
performs well with a minimum number of data field data
bytes. On the other hand, although using fewer data bytes
grants more time for detecting attacks, that time is still very
short and challenging to meet. For instance, for 500 Kbps
networks (Tviy = 2us), even when using only the first six
data bytes in the data field, our proposed IPS has only 70us
to detect a cyber-attack in the best-case scenario (Tpejqy = 0).
For this reason, it is essential to use a detection algorithm
that not only performs well with minimal data, but is also
fast. This constraint significantly inhibits most sophisticated
anomaly detection algorithms that are based on deep learning
techniques, such as GANs [38], [49], as they usually have
longer detection times. In this paper, we evaluate whether
the OCSVM and iForest algorithms, which have been largely
advocated in the literature for anomaly detection tasks [18],
[20], [21], can satisfy the requirements discussed.

B. ONE-CLASS SUPPORT VECTOR MACHINE
The OCSVM algorithm constructs an optimal hyperplane for
separating data patterns that are similar to training data from
abnormalities, i.e., data patterns that do not conform with
the training data [50], [51]. It is widely adopted in anomaly
detection problems. Consider a training set D with N samples
having dimension d, i.e., D = {X,‘}ﬁ\'=1 Ix; € R?, and a feature
mapping ® : x — &(x) that maps training samples from
the input space into a higher dimensional feature space. The
OCSVM tries to find a decision boundary function f that
delimits the smallest region in the high-dimensional feature
space such that f returns +1 if a data sample lies within
the defined region and —1 otherwise. In the context of our
proposed detection mechanism, we train the OCSVM with
only normal CAN frames and find a decision function f such
that f(x) = 41 when x is a normal frame and f(x) =
—1 when x is a malicious frame.

The OCSVM solves the following quadratic optimization
problem to find the decision boundary:

N
S D
min | |w]| +V—N;a—p, (©6)

such that wd(x;) > p — & and & > 0, where p is a margin
parameter, &; is a slack variable that allows a data point to be
outside the decision boundary, and v € (0, 1] is a trade-off
parameter that represents an upper bound on the fraction of
outliers and a lower bound on the fraction of support vectors.

Considering that the inner product of two training samples,
ie., &) ®(x;), can be replaced by a kernel function K such
that K (x;, x;) = @(xi)TCD(xj), the dual optimization problem
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of (6) is obtained as follows:

N N
1
min = Z Z oK (X, X)), (N
i=1 j=1
such that
N
i=1
0<a < ! Vi=1 N
o Y2 1=1,..., IV,
— = VN

where «; is the Lagrange multiplier. Solving that dual opti-
mization problem yields the following decision function f:

N
f@) =) aiK(xi, %) = p. ®)
i=1

C. ISOLATION FOREST

The iForest algorithm consists of an ensemble of isolation
trees, which are tree structures constructed to isolate every
single instance of a set from the others. Each tree recursively
partitions and isolates data instances by randomly selecting a
data attribute and a split value that is between the maximum
and minimum values of the selected attribute [18], [52]. Since
anomalies are considered to make up a small percentage of
the normal data and have very different attributes than normal
data, they tend to be isolated with fewer partitions than normal
data. Therefore, the iForest algorithm detects anomalies by
computing the path length A(x), which is the average number
of partitions required by isolation trees to separate a data
pattern x.

The iForest training stage builds isolation trees using
sub-samples of a training set. To obtain a normalized anomaly
score, it estimates the average number of partitions of a
data pattern given a sub-sample size m. That estimate, c(m),
corresponds to an unsuccessful search in a binary tree and is
given by:

2H(m — 1) — 22D form > 2
cim)=141, form =2
0, form=1,
where H is the harmonic number, which can be estimated

by H(i) = In(i) + 0.5772156649 (Euler’s constant). Then,
it computes the anomaly score s of the data pattern x as

(— e
s(x,m)=2" <m
where E(h(x)) is the average path length of x for a collection
of isolation trees, and c(m) is the average of h(x) given m.
Finally, since isolation trees have a limited number of
nodes, the time required to build them is also limited, such
that, in the worst-case scenario, it is a O(mz) function. Simi-
larly, in the worst-case scenario, the time complexity to detect
anomalies during data pattern evaluation is O(ntm), where n
is the testing data size and ¢ is the number of isolation trees.
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TABLE 2. Number of messages in the three datasets.

Dataset # of M # of Normal M # of Attacking M

Fuzzing 3,838,860 3,347,013 491,847
Drive Gear Spoofing 4,443,142 3,845,890 597,252
RPM Gauge Spoofing 4,621,702 3,966,805 654,897

V. METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we briefly present the datasets used in our
experiments, which contain both normal and attacking CAN
frames. Then, we explain the experiments conducted to com-
pare the OCSVM and iForest algorithms, the workflow of
our methodology, and the experimental setup for discarding
malicious frames.

A. DATASET PRESENTATION

We evaluate our proposed IPS using three datasets from the
Hacking and Countermeasure Research Lab [53] that are pub-
licly available for academic purposes. Each of them contains
from 30 to 40 minutes of regular traffic data logged from a
CAN via the OBD-II port of a real vehicle. In addition, each
dataset contains attacking CAN messages from a fuzzing,
a drive gear spoofing, or an RPM gauge spoofing attack,
which were conducted during data acquisition. In the fuzzing
attacks, CAN messages have random identifiers and data
bytes; in the drive gear spoofing attacks, CAN messages use
the identifier related to gear information; and in the RPM
gauge spoofing attacks, CAN messages use the identifier
related to RPM information. Table 2 shows the number of
normal and attacking CAN messages in each of the three
datasets considered.

We constructed training, validation, and testing sets for
each dataset. The training and validation sets were used to
train the proposed detection algorithms and find their optimal
hyper-parameters, respectively. The testing sets were used to
evaluate the performance of each model, and hence that of our
proposed IPS. To avoid overfitting, we followed the 10-fold
cross-validation technique and constructed the training and
validation sets by randomly selecting 250,000 normal frames
and splitting them into 10 folds of 25,000 frames, of which
nine were used for training, and the remaining one was used
for validation along with 25,000 randomly selected malicious
frames. Thus, the training sets contained only normal frames,
and the validation sets contained both normal and malicious
frames. All remaining normal and attacking frames formed
the testing set. The reason behind using folds of 25,000
frames is that initial experiments we conducted showed that
using less than 225,000 normal frames for training resulted
in lower detection rates. On the other hand, using more than
225,000 normal frames increased the training time without
improving the detection results. Tables 3, 4, and 5 show the
number of normal and attacking messages in the training,
validation, and testing sets of the three datasets considered.

B. METHODOLOGY AND EXPERIMENTAL SETUP

To compare the OCSVM and iForest algorithms’ perfor-
mance when using different numbers of data field data bytes,
we defined eight models for each algorithm, which are
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TABLE 3. Fuzzing training, validation, and testing sets.

Fuzzing Dataset  # of Normal M # of Attacking M

Training 225,000 0
Validation 25,000 25,000
Testing 3,097,013 466,847

TABLE 4. Drive gear spoofing training, validation, and testing sets.

Drive Gear Spoofing Dataset  # of Normal M # of Attacking M
Training 225,000 0
Validation 25,000 25,000
Testing 3,595,890 572,252

TABLE 5. RPM gauge spoofing training, validation, and testing sets.

RPM Gauge Spoofing Dataset  # of Normal M # of Attacking M
Training 225,000 0
Validation 25,000 25,000
Testing 3,716,805 629,897

TABLE 6. Detection models.

Model Description

OCSVM_IF OCSVM algorithm is used with the first CAN data byte
OCSVM_2F  OCSVM algorithm is used with the first 2 CAN data bytes
OCSVM_3F  OCSVM algorithm is used with the first 3 CAN data bytes
OCSVM_4F  OCSVM algorithm is used with the first 4 CAN data bytes
OCSVM_5F  OCSVM algorithm is used with the first 5 CAN data bytes
OCSVM_6F  OCSVM algorithm is used with the first 6 CAN data bytes
OCSVM_7F  OCSVM algorithm is used with the first 7 CAN data bytes
OCSVM_8F  OCSVM algorithm is used with the first 8 CAN data bytes
iForest_IF iForest algorithm is used with the first CAN data byte
iForest_2F iForest algorithm is used with the first 2 CAN data bytes
iForest_3F iForest algorithm is used with the first 3 CAN data bytes
iForest_4F iForest algorithm is used with the first 4 CAN data bytes
iForest_5F iForest algorithm is used with the first 5 CAN data bytes
iForest_6F iForest algorithm is used with the first 6 CAN data bytes
iForest_7F iForest algorithm is used with the first 7 CAN data bytes
iForest_SF iForest algorithm is used with the first 8 CAN data bytes

described in Table 6. The hyper-parameters of each model
were optimized using a cross-validated grid search over a
parameter grid. For instance, in the case of the OCSVM
models, different kernel functions were considered for tun-
ing, and the radial basis function (RBF) was chosen as it
produced the best results on the validation set. Then, the
detection performance of each model was evaluated on the
testing sets. Finally, since our goal is to deploy our system
on an inexpensive hardware platform, all experiments were
conducted on Raspberry Pi 4 Model B with 4GB of RAM.
Figure 3 shows a flow diagram of our proposed approach.
Figure 4 shows our experimental setup for verifying that
our IPS can discard malicious frames before their transmis-
sion is completed. Our setup includes two neoVI FIRE 2 [54]
from Intrepid Control Systems that are configured to work
as nodes exchanging CAN messages. As shown in Fig-
ure 1, our IPS has a detection agent, a CAN controller,
and a CAN transceiver. The detection agent implements on
Raspberry Pi 4 Model B the model that has the highest detec-
tion rates from those in Table 6. The Raspberry Pi is con-
nected to the CAN controller MCP2515 from Microchip [55]
through the serial peripheral interface (SPI). The chip select
(CS), interrupt (INT), master in slave out (MISO), master out
slave in (MOS]), and clock (CLK) signals are standard signals
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Construct training, validation, and testing sets

Train an OCSVM and an iForest model using the first j
data bytes of CAN frame data fields, optimizing their
hyper-parameters according to a cross-validated grid search

Compare the OCSVM and iForest models trained
using different numbers of CAN data bytes

l

Deploy the model that achieves the highest detection
rates while satisfying the time requirement to discard
malicious frames on our IPS’s detection agent

FIGURE 3. Flow diagram of our proposed approach.
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FIGURE 4. Experimental setup.

used in the SPI. The CAN controller MCP2515 is connected
to the CAN transceiver MCP2551 from Microchip [48],
which allows up to 20 consecutive dominant bits to be trans-
mitted through the CAN TX and CAN RX signals. Finally,
the transceiver MCP2551 connects to the CAN bus by means
of the CAN High and CAN Low signals. Note that the CAN
controller and transceiver used are standard and inexpensive.
Equivalent hardware can also be used.

VI. RESULTS AND DISCUSSION

In this section, we present and discuss the results of our exper-
iments. First, we present the performance and comparison
results of the models defined in Table 6. Then, we present the
detection times of the models that achieve the best detection
results, and evaluate whether they can be used in our proposed
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TABLE 7. Fuzzing attack detection performance.

Model Accuracy (%) Precision (%) Recall (%)
OCSVM_8F  97.0633 + 1.8694 83.0497 + 9.2978 99.9177 4+ 0.002
OCSVM_7F  96.5949 + 2.2679  81.1490 4+ 10.5017  99.7820 4+ 0.0040
OCSVM_6F  95.6728 + 3.3571  79.0108 4+ 13.9457  97.6339 + 0.1175
OCSVM_5F  86.7426 +4.9369  52.3206 + 11.0698  91.6551 4+ 0.2771
iForest_8F 99.7215 4+ 0.0404 97.9964 + 0.2959 99.9711 4+ 0.0084
iForest_7F 99.5916 + 0.0558 97.0744 £+ 0.3946 99.9738 £ 0.0075
iForest_6F  99.3140 £0.0933  95.1984 £ 0.6400  99.9375 £ 0.0159
iForest 5F  99.3128 +£0.0517  95.2214 +0.3403  99.8977 4 0.0215
iForest 4F  99.1429 +0.1384  94.2371 +0.9410  99.7269 £ 0.0635
iForest_3F  98.5657 £0.2796  90.6627 £1.7729  99.6195 £+ 0.0951
iForest 2F  95.7681 +£1.5233  77.0781 £ 6.0160  98.6587 &+ 0.2897

architecture to detect and discard malicious frames before
their transmission is completed. Afterwards, we show the
results obtained from our experimental setup for discarding
malicious frames. Finally, we compare our proposed solu-
tion to four state-of-the-art IDSs that also aim to secure
automotive CANs: GIDS [38], DCNN [39], an LSTM-based
IDS [39], and MTH-IDS [40].

A. PERFORMANCE EVALUATION

After training and tuning the defined models, we applied
them to the testing sets to classify frames as normal or mali-
cious. The classification results were then used to compute
three metrics: accuracy, precision, and recall. Accuracy gives
the percentage of correct predictions, i.e., the percentage of
frames correctly classified as either normal or malicious. Pre-
cision measures the percentage of correctly predicted mali-
cious frames out of all frames classified as malicious. Recall
measures the percentage of correctly predicted malicious
frames out of all malicious frames.

Table 7 shows the accuracy, precision, and recall results of
the fuzzing attack dataset for the models that achieved more
than 85% accuracy. The remaining models were disregarded.
The results in Table 7 clearly show that the models that
used the iForest algorithm outperform the models that used
the OCSVM algorithm, since they achieved better accuracy,
precision and recall results even when using fewer data field
data bytes for detection. Moreover, the great disparity in the
precision results indicates that the iForest models achieve
much lower false positive rates than the OCSVM models.
The false positive and false negative percentages for eight
of the defined models are shown in the confusion matrices
in Figure 5. Similar results were obtained for the drive gear
spoofing and RPM gauge spoofing attacks.

B. MODEL COMPARISON

We also conducted D’Agostino and Pearson’s hypothesis
test to verify that the detection rates obtained for all the
models can be approximated by a normal distribution. This
verification allowed us to conduct the one-way ANOVA
hypothesis test to verify whether there was a significant
difference between at least two of the models defined for
each attack type. For the three attack types considered, the
ANOVA test confirmed that at least one of the models differed
from the others such that there was a statistically significant
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FIGURE 5. Models’ confusion matrices for the fuzzing attack.

difference among the models. Since ANOVA is not able to
determine which model differed, Tukey’s honestly significant
difference (HSD) post hoc test was also conducted. In con-
trast to the ANOVA test, it evaluates the models two-by-two
to identify which model differed from the others.

For fuzzing attacks, the post hoc test indicated that there
is no statistically significant difference between the iForest
models with four or more data bytes as input and the OCSVM
model with eight data bytes as input. Since the iForest_8F
model achieves the highest accuracy, precision and recall val-
ues, as presented in Table 7, and the iForest_4F model needs
the least data to detect malicious frames with statistically
equivalent performance metrics, the iForest_4F model can
then be considered the best one for fuzzing attacks. Simi-
larly, for drive gear spoofing attacks, there is no statistically
significant difference between the iForest models with five
or more data bytes as input and the OCSVM models with
six or more data bytes as input. Therefore, the iForest_S5F
model can be considered the most suitable for this type of
attack. Finally, for RPM gauge spoofing attacks, there is no
statistically significant difference between the iForest models
with three or more data bytes as input and the OCSVM
models with seven or eight data bytes as input. Thus, the
iForest_3F model is the best for this type of attack. In order to
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TABLE 8. Average detection times on Raspberry Pi 4 model B.

Attack Type Average Detection Time (115)
Fuzzing 79.4645
Drive Gear Spoofing 78.0415
RPM Gauge Spoofing 77.9576

have a general model to detect attacking frames of the three
types considered, we choose the iForest model with five CAN
frame data bytes as input. As shown in Table 7, this model
achieves accuracy higher than 99% with a standard deviation
of less than 0.06% for fuzzing attacks.

C. DETECTION TIME EVALUATION

Since the iForest model that uses five data bytes was shown
to be the best at detecting attacking frames, we use it as
the detection model of our proposed IPS. Therefore, we can
refer to (5) and determine that the time available to detect
a malicious frame and discard it before its transmission is
completed i Tpetectionyyy = 43Tbit — TDelay- Thus, for stan-
dard 500 Kbps CANs, for which Tyir = 2us, our proposed
IPS must detect cyber-attacks in less than 86us to prevent
damage.

To verify that our proposed IPS meets the Tpetectiony,, =
86us constraint, we measured the detection time when test-
ing and classifying frames as normal or malicious with the
Raspberry Pi 4 Model B on which we deployed our IPS.
The experiment was repeated 50 times for each attack type
analyzed to compute their average detection times, which are
depicted in Table 8. Since the average detection time com-
puted for each of the three attack types considered is below
the Tpetectiony,, = 86us threshold, our proposed system is
capable of detecting and discarding attacking frames before
their transmission is completed, which then prevents damage
and secures the network. Note that if more than five data field
data bytes are used, i.e., Tpetectionyy, = 39Tbit = 70us, the
time requirement for discarding malicious frames before their
transmission is completed would not be met. Therefore, using
fewer data bytes to detect cyber-attacks in CANS is not only
possible, but necessary.

D. DISCARDING MALICIOUS FRAMES

The experimental setup shown in Figure 4 was used to verify
that our proposed IPS can discard malicious frames before
their transmission is completed. Once the two neoVI FIRE 2
were configured to exchange the CAN messages in the test-
ing sets constructed, we used a PicoScope oscilloscope to
analyze the transmitted CAN frames. Figure 6 shows one
of the malicious CAN frames that were transmitted. Next,
we connected our proposed IPS to the bus to use the trained
detection mechanism as the Raspberry Pi’s detection agent.
When malicious frames were detected, the Raspberry Pi sent
acommand for the CAN controller to transmit six consecutive
bits 0 through the CAN transceiver, which forces an error
condition so that an error frame is transmitted by the nodes in
the bus. Figure 7 shows a malicious frame that was discarded
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TABLE 9. Detection results on the fuzzing dataset.

|
b
P

TABLE 10. Detection results on the drive gear spoofing dataset.

Detection Accuracy | Precision | Recall | F1-Score Detection Accuracy | Precision | Recall | F1-Score
Mechanism (%) (%) (%) (%) Mechanism (%) (%) (%) (%)
GIDS 98.00 97.30 99.50 98.39 GIDS 96.20 98.10 96.50 97.29
DCNN 99.82 99.95 99.65 99.80 DCNN 99.95 99.99 99.89 99.94
LSTM-based IDS 99.35 99.36 99.16 99.26 LSTM-based IDS 99.76 99.75 99.68 99.72
MTH-IDS 99.99 99.99 99.99 99.99 MTH-IDS 99.99 99.99 99.99 99.99
Proposed IPS 99.29 95.07 99.93 97.44 Proposed IPS 99.24 94.79 100.00 97.33

by our IPS. Note that detection starts just after the fifth data
byte and finishes after 80w.s, which corresponds to the frame’s
detection time plus Tpejay. The error frame interrupts the
malicious frame’s transmission and protects the nodes. After
transmission, the bus waits for the interframe space (IFS),
which corresponds to the time it takes to transmit three bits,
and then becomes idle so another transmission can start.

E. COMPARISON TO OTHER WORKS

We compare our proposed IPS, which uses the iForest_SF
model, to four state-of-the-art CAN IDSs: GIDS [38],
DCNN [39], an LSTM-based IDS [39], and MTH-IDS [40].
While GIDS leverages GANs to propose an unsupervised
IDS, DCNN follows a supervised approach and is limited
to detecting known types of attacks. The LSTM-based IDS,
which the authors of [39] use as their baseline, is also super-
vised. Finally, MTH-IDS combines supervised and unsuper-
vised techniques. Tables 9, 10, and 11 show the detection
results of our proposed IPS and those state-of-the-art IDSs
on the fuzzing, drive gear spoofing, and RPM gauge spoofing
datasets, respectively.

Our experiment results show that our proposed IPS
achieves better accuracy than GIDS on the three datasets stud-
ied and has a higher F1-score than GIDS on the two spoofing
datasets, which balances the precision and recall metrics.
On the other hand, DCNN and the LSTM-based IDS achieve
better accuracy and have higher F1-scores than our proposed
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TABLE 11. Detection results on the RPM gauge spoofing dataset.

Detection Accuracy | Precision | Recall | F1-Score
Mechanism (%) (%) (%) (%)
GIDS 98.00 98.30 99.00 98.65
DCNN 99.97 99.99 99.94 99.96
LSTM-based IDS 99.87 100.00 99.71 99.85
MTH-IDS 99.99 99.99 99.99 99.99
Proposed IPS 99.85 98.97 100.00 99.48

system and GIDS on the three datasets studied. However,
contrary to our IPS and GIDS, DCNN and the LSTM-based
IDS follow a supervised approach and rely on labeled training
data and therefore cannot detect unknown attacks. Finally,
MTH-IDS achieves the best accuracy and has the highest
F1-scores as it combines both unsupervised and supervised
techniques. Since our datasets are imbalanced, we rely on
the F1-score to evaluate and compare our results. Moreover,
although the fuzzing, drive gear spoofing, and RPM gauge
spoofing datasets used include between 10% and 15% mali-
cious samples, malicious messages usually account for less
than 1% in real world cyber-security applications. However,
this does not affect our solution and results as our technique
is trained with only normal data and its performance does not
depend on the number of malicious samples.

Although our proposed IPS achieves slightly lower detec-
tion rates than DCNN, the LSTM-based IDS, and MTH-IDS,
it has the shortest detection time of all the solutions compared.
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TABLE 12. Comparative analysis of detection times.

Detection Mechanism | Average Detection Time (1.s)
GIDS 92.1187
DCNN 98.4375
LSTM-based IDS 160.9375
MTH-IDS 140.1094
Proposed IPS 78.4879

Moreover, it is the only one that meets the time requirement
for discarding attacking frames before their transmission
is completed, such that damage is prevented. Furthermore,
it does so while being deployed on inexpensive Raspberry
Pi, whereas GIDS, DCNN, and the LSTM-based IDS are
deployed on expensive and sophisticated GPUs. For instance,
GIDS is deployed on an NVIDIA GeForce GTX 1080 with
32GB of RAM, and DCNN and the LSTM-based IDS are
deployed on an NVIDIA Tesla K80 GPU with 12GB of RAM.
MTH-IDS is deployed on the same Raspberry Pi used by our
IPS. Therefore, our proposed system is considered the best
solution among the five as it is the only one that is capable
of discarding malicious frames and preventing damage using
inexpensive hardware, such as Raspberry Pi. Table 12 shows
the detection times of our proposed IPS, GIDS, DCNN, the
LSTM-based IDS, and MTH-IDS.

F. TRADE-OFFS, LIMITATIONS, AND FINAL
CONSIDERATIONS

Our system was shown to achieve accuracy higher than 99%
and Fl-scores higher than 97% when it comes to detect-
ing fuzzing, drive gear spoofing, and RPM gauge spoofing
attacks in the datasets used, which contain data collected
from an actual vehicle under attack. In addition, our IPS was
shown to be able to discard malicious frames before their
transmission is completed so that the bus nodes are protected.
On the other hand, it brings two trade-offs or limitations that
we discuss in this subsection along with considerations about
the feature interpretability.

1) OVERHEAD VERSUS HARDWARE COST

Since our detection mechanism uses only the first five data
bytes of a CAN frame’s data field, it cannot detect attacks
that affect only the last three data bytes. To avoid this issue,
we suggest two countermeasures. The first is to treat the last
three data bytes as overhead so that no data is sent on them.
Although this reduces the amount of information transmitted
per message, the automotive industry is used to having similar
and even larger overheads, as in the case of authentication
solutions [56]. The second suggestion is to use a more sophis-
ticated hardware platform so that our detection mechanism
can meet the time constraint for stopping ongoing attacks
while using all eight data bytes of the CAN frame’s data field.
Therefore, manufacturers may choose between reducing the
data transmission rate or spending more financial resources
on better hardware. Since cost is an essential concern of vehi-
cle manufacturers, such a decision depends on the market and
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car model, as different vehicles offer more or less technology
at higher or lower prices.

2) FALSE POSITIVES VERSUS DETECTION OF UNKNOWN
ATTACKS

False positives can potentially block messages and cause
problems. Although they can be minimized, they result from
unsupervised anomaly-based detection techniques, such as
the one used in our proposed IPS. However, detection mech-
anisms that are based on signatures or labeled attack data
instead cannot detect unknown attacks, whereas our solution
can. Thus, there is a trade-off between mistakenly blocking
some legitimate frames and being subject to new types of
attacks that are constantly being developed and cannot be
detected. If legitimate frames are mistakenly blocked (false
positives), the ECUs that should have received them will not
send acknowledgment bits. As a consequence, those blocked
frames are automatically resent. If that situation persists,
ECUs that cannot successfully send or receive messages raise
software warnings called diagnostic trouble codes (DTC).
Those warnings create a log of the system’s malfunctioning
and may even notify drivers through indicative lights or make
the car enter fail-safe mode, which modifies the car’s opera-
tion to prevent damage and safety risks [57]. On the other
hand, if IDSs/IPSs fail to detect malicious messages (false
negatives), vehicles must rely on other security layers, such as
authentication and data integrity mechanisms. Although vehi-
cles usually employ multiple security layers, not identifying
attacks in the early stages may result in increased network
overhead, the car being put into fail-safe mode, or even loss
of control of ECUs to attackers if the other security layers
also fail [58], [59]. As future work, we propose to study
an ensemble of different detection mechanisms so that it is
possible to detect unknown attacks while also keeping false
positive rates near zero.

Furthermore, our solution can be configured to use dif-
ferent thresholds depending on whether it is more harmful
to have more false positives or fewer true positives, which
balances the trade-off between false positives and true posi-
tives. Figures 8, 9, and 10 show the receiver operating char-
acteristic (ROC) curves and their area under the curve (AUC)
for the testing sets of the datasets used. Each point in the
curves represents the true positive and false positive rates
achieved for a threshold. The accuracy, precision, recall,
and F1-score values of Tables 9, 10, and 11 correspond to
the results obtained with the threshold that maximizes the
difference between the true positive and false positive rates
in the validation sets.

3) FEATURE INTERPRETABILITY

Vehicle manufacturers usually use proprietary message map-
pings, i.e., their own confidential way of encoding informa-
tion requests, sensor measurements, and commands in a CAN
frame. In such cases, interpreting what each CAN message
and data byte means is possible only if one has access to the
restricted information from manufacturers or through reverse
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FIGURE 10. ROC curve on the RPM gauge spoofing dataset.

engineering. On the other hand, vehicle manufacturers are
required to adopt standard encodings for specific purposes,
such as standard diagnostic and emission control protocols.
In these cases, it is possible to interpret the features used by
our IPS. Nevertheless, in contrast to other techniques that
depend on knowing message mappings, our proposed IPS
does not rely on any previous knowledge about what each

CAN message means.
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VIi. CONCLUSION

In this work, we propose a novel IPS that effectively and effi-
ciently detects cyber-attacks in CANs while being deployed
on inexpensive hardware, such as Raspberry Pi. We evalu-
ated the cyber-attack detection performance of the one-class
support vector machine and isolation forest algorithms using
different numbers of CAN data field data bytes to ensure the
time requirement was met for discarding attacking frames
before their transmission is completed and preventing dam-
age. We experimented on three datasets with three types
of cyber-attacks: fuzzing, drive gear spoofing, and RPM
gauge spoofing. For the three types of attacks considered,
the isolation forest algorithm with five data bytes is shown
to achieve the best trade-off between the detection rate and
the number of data bytes used. Our proposed IPS achieved
accuracy higher than 99% when using only the first five
data bytes to detect attacks in CANs. Moreover, it had a
shorter detection time than four state-of-the-art IDSs, and it
is the only one capable of discarding malicious frames before
damage occurs.
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