
Received November 16, 2021, accepted December 7, 2021, date of publication December 16, 2021,
date of current version December 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3136193

Computational Failure Analysis of In-Memory
RRAM Architecture for Pattern
Classification CNN Circuits
NAGARAJ LAKSHMANA PRABHU AND NAGARAJAN RAGHAVAN , (Member, IEEE)
Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, Singapore 487372

Corresponding author: Nagarajan Raghavan (nagarajan@sutd.edu.sg)

This work was supported by the Agency for Science, Technology and Research (A∗STAR) Brain Efficient Nanomechanical Artificial
Intelligence Computing (BRENAIC) Programmatic Research under Grant A18A5b0056.

ABSTRACT Power-efficient data processing subsystems performing millions of complex concurrent
arithmetic operations per second form part of today’s essential solution required to meet the growing demand
of edge computing applications, given the volume of data collected by real-time Internet-Of-Things (IoT)
sensors. Adding to it, the in-memory computation designed as memory and processing elements on a single
wafer has enabled promising performance improvement in terms of computational power savings by avoiding
the memory wall created while accessing the memory array. The Resistive RAM (RRAM), with its simple
metal-insulator-metal (MIM) structure, proves to be a very appealing candidate for in-memory computation
given its ultralow switching power and its Complementary Metal Oxide Semiconductor (CMOS) process
fabrication compatibility. However, despite all advantages, the resistive switching (RS) phenomenon in
RRAM has an inherent stochastic variability. On the algorithmic side, convolution neural networks (CNN)
have gained popularity in image classification applications, and the network’s architecture is memory-intense
in nature for memorizing the trained weights. Hence, an RRAM-based CNN system will pave way for a
power-efficient image classification system on the edge. Accounting however for the inherent variability in
RRAM (inter-device and intra-device), the accuracy of CNN’s prediction is surely expected to drop. This
motivates us to quantify the impact of RRAM variability on the CNN trained weights and classification
accuracy (prediction loss). In this study, we have constructed a Look-Up-Table (LUT) based model for
encoding wide current compliance (2µA to 250µA) 65nm CMOS 1T1R OxRAM’s (TiN/HfO2/Hf/TiN)
resistive variability into CNN’s trained weight in a digital regime. The RRAM resistance encoded trained
weights are in turn used here to simulate the two extreme CNN architectures, namely, Fully Serial
System (FSS) and Fully Parallel System (FPS). The architectures’ prediction variability trends are quantified
given its current compliance, RRAM resistive variability, CNN’s convolution matrix sizes (5×5, 3×3, 1×1,
and 1× 1 max pool), the total number of layers in the CNN as well as the input image pixel size.

INDEX TERMS Resistive RAM, convolution neural network, look-up-table, in-memory computation, image
classification, Internet of Things, complementary metal oxide semiconductor.

I. INTRODUCTION
Video data analytics has transformed today’s industries by
providing more significant and precise insights into the pro-
cess automation side to improve productivity, personal safety
and building strong customer relations in various services

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

and solutions being provided today [1]. Cloud-based video
analytics has proven to be colossally powerful in entrenching
features for greater scalability on computational power, data
redundancy, quick deployment, and regulatory compliance.
However, it fails to perform for applications with low
internet bandwidth and mission-critical on-the-fly decision
making [2]. Edge computing is a new approach to network
architecture, and they are quite powerful, capable of gathering

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 168093

https://orcid.org/0000-0001-7173-910X
https://orcid.org/0000-0001-6735-3108
https://orcid.org/0000-0002-3360-9440


N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

and processing more data than ever before by which
the data processing function is relocated closer to where
the data is collected and analyzed in real-time. Every
snapshot of data does not get transmitted over to a central
server for processing, by which the network latency is
drastically reduced with enhanced performance for real-
time applications such as convolution neural network (CNN)
based image classification applications. Placing the memory
and computational logic on a single chip reduces the
computational power by avoiding the von-Neumann memory
wall created during a memory read and write operation
[3]. This performance improvement fosters the development
of in-memory computation architecture and revitalizes data
center’s increasing unacceptable levels of power utilization
(which require intense expensive cooling solutions right
now).

It is essential to have an insight into today’s in-memory
computation approach to reduce computation power using
various emerging memory devices. On a large commercial
server, almost ∼50% of the total operation power is
consumed by the off-chip Dynamic Random-AccessMemory
(DRAM). A bulk memory transfer using the existing
DRAM operation principle is proposed by Onur et al. to
improve power usage [4]. Furthermore, a 10T bit-cell-based
Static Random-Access Memory (SRAM) holding 1-bit filter
weights exhibiting dot-product mathematical operation with
>98% accuracy for classifying MNIST hand-written text
with better energy efficiency by reducing data transfer has
been demonstrated by Biswas et al. in Ref. [5]. Other than
the commercial memories DRAM and SRAM, a variety
of emerging memory devices have also been fabricated
and studied for in-memory operation, some of which are
discussed here.

A 2D-array of processing elements using Spin Transfer
Torque RAM (STT-MRAM) based in-memory architecture
was proposed by Agarwal et al. [6] and tested with significant
energy savings of 1.75X over the commercial memory
for an image classification application. A Boolean NAND
operation demonstrated with the other emerging memories,
such as Ferroelectric RAM (FeRAM) and Phase Change
RAM (PCRAM), by assigning binary codes to different
physical device states, has also paved the way for in-memory
computation applications [7]. Adding to the current in-
memory study, quantum-dot cellular automata (QCA) have
emerged as a new breed of nanoelectronics with significant
performance improvement over the conventional Von
Neumann architecture [8]. Recent studies presented a fully
scalable in-memory Resistive RAM (RRAM) architecture
of an edge-aware-anisotropic filtering algorithm aimed
at computer vision applications, demonstrating reduced
memory operation by 64% to 92% resulting in power saving
of up to 75% [9]. As CMOS technology approaches its
physical limits, NVM-based neuro-inspired computing chips
offer a promising route, for which increasing research effort
seen among device engineering and an extensive review
shown in [10].

A. OVERVIEW OF RRAM SYNAPSE-BASED CNN SYSTEM
As a basic preamble to researchers who may not be working
in the semiconductor device domain, the RRAM device is a
simple metal-insulator-metal (MIM) structure that switches
back and forth between conducting and insulating states
when subjected to a moderate voltage/electric field at two
different polarities and exhibits non-volatile property. Hence
this phenomenon where a dielectric instantaneously changes
its (two-terminal) resistance between two distinguishable
states under the application of a moderate to strong electric
field is termed as resistive switching (RS) [11]. The features
enabling RRAM’s popularity amongst the emerging memory
technology candidates are its (i) simple device structure that
can be integrated into today’s CMOS fabrication environment
and compatibility with back-end-of-the-line (BEOL) process
thermal budgets, (ii) 3-D cross-point architecture with a
memory cell area of 4F2, (iii) Low-cost non-volatile memory
with an operation speed as low as tens of nanoseconds per
bit, (iv) Per device multi-bit memory storage feature and
(v) significantly high endurance cycle of 106 with ultra-low
switching energy in the range of a few pJ [12].

The RS mechanisms can be broadly classified into
electrochemical metallization memory (ECM), in which the
conductive switching path is formed by the metal cations in
an electrochemical process. The second category is valence
change memory (VCM) (also known as oxygen vacancy
RAM (OxRAM)), with conductive switching achieved by
the oxygen vacancies generated with an active electric field.
Typically, ECM devices are fabricated with one active metal
electrode (Cu, Ag, Ni) and VCM with one inert metal
electrode (Pt, Ru, Au or Ir), when sandwiched in an MIM
structure [13]. We limit our study here to VCM since it
exhibits several orders lower switching characteristics when
compared to ECM (metal migration through the dielectric
media is always more power intensive than simple bond
breaking induced oxygen vacancy generation). The real-
world metal-oxide RRAM applications are notably restrained
due to the cycle-to-cycle and device-to-device variability
inherent in the device switching mechanism. The stochastic
nature of the oxygen vacancy generation, migration, and
recombination result in the formation of non-uniform
conductive filament (CF) with varying size, shape and/or
pattern; hence the filamentary formation and rupturing
process results in leftover oxygen vacancies inside the
tunneling gap region leading to stochastic atomic/ionic
motion, making variability a property intrinsic and inherent
to the metal-oxide RRAM [14]–[16]. Even in a controlled
device manufacturing process, a single RRAM device
exhibits intra device cycle-to-cycle variability while
subjected to multiple switching cycles for data storage
read and write due to the stochasticity in the filamentation
process [17].

The Convolution Neural Network (CNN) pervades as a
successful edge computation algorithm for on-the-fly image
classification applications [18]. The CNN was designed
as a first-order computation function to achieve image

168094 VOLUME 9, 2021



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

TABLE 1. Listing of other RRAM based neuromorphic simulation reports focusing on the variability induced performance degradation.

VOLUME 9, 2021 168095



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

TABLE 1. (Continued.) Listing of other RRAM based neuromorphic simulation reports focusing on the variability induced performance degradation.

classification on complex patterns swiftly with edge
filter-based matrix convolution technique followed by a
fully connected neural network with an activation function
to identify the pre-trained image patterns. The CNN is a
biologically inspired model with a memory-centric algorithm
for memorizing pre-trained patterns or images like that of
a human brain. This memory intense CNN’s deep structure
perpetuates in-memory computation technique; hence it
paves the way for using Resistive RRAM as synapses or
memory units creating integrated devices with ultra-low
power application capability [32]. As mentioned earlier, the
RRAM is subject to stochastic variability, which induces
performance degradation on the end application; hence,
conducting a study to quantify this performance degradation
is critical.

B. VARIABILITY STUDY IN NEUROMORPHIC CIRCUITS
Applying RRAM as a synaptic memory in a CNN has trig-
gered interest among various research groups to investigate
the prediction accuracy loss given the device variability
and a consolidated review of such studies is provided in
Table 1. The table discusses the different RRAM devices,
machine learning (ML) simulation methodology used along
with their merits and remarks. Filamentary non-ideal RRAM
model programmed into an ML simulation architecture in a
shallow analog crossbar array to study Neural Network (NN)
prediction accuracy variability with MNIST handwritten text
is demonstrated in the work of Refs. [19]–[21]. However,
today’s CNN is packed deeply with many computational

intense hidden layers to improve prediction performance;
hence this brings interest to study the prediction variability
trend in a complex and more practical CNN. Significant
efforts are also seen in characterizing new device stacks
to improve the RRAM device RS effects. Such studies
extensively showcase the device-level time-dependent
fluctuation and temperature variations as a function of the
crossbar prediction accuracy [22]–[26]. These studies are
confined to a single current compliance. Hence, adding to
the random noise variability models, a further study with
varying and wide current compliance will give more insight
into the design considerations of a non-ideal RRAM for
low power IoT (Internet-Of-Thing) applications. Substantial
research works are also evident in modeling the oxide RRAM
conductance data into an MLP (Multi-Layer Perceptron)
as a mixed-signal crossbar to perform low power and
highly efficient MAC (Multiplier and Accumulator) circuit
[27]–[31]. There is a clear computational benefit in terms
of lower power consumption for the convolution operation,
but the additional peripheral circuits such as analog-to-digital
(ADC) and digital-to-analog (DAC) converters add up to the
complexity of the design for processing the mixed-signal
data. Hence, exploring digital RRAM synapses is useful to
design optimized and compact circuits.

With this inmind, we propose here a Look-Up-Tablemodel
to extrapolate the electrical resistance variability of a small
RRAM device array fabricated in the lab and encode it
into fully trained commercial CNN trained weights for
quantifying the impact of RRAM variability on the CNN

168096 VOLUME 9, 2021



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

FIGURE 1. (a) Fully Serial System (FSS) architecture with sequence of varying size convolution operations followed by a maxpool function. (b) Fully
Parallel System (FPS) architecture with the similar-sized convolution and maxpool operators as in FSS, but all connected in parallel.

prediction accuracy in a digital regime by encoding the logic
bits 1’s and 0’s as HRS and LRS states of the given
RRAM. Today’s popular CNN algorithms such as AlexNet,
GoogleNet, ResNet (etc..) are constructed with cascaded
structures of fully parallel and serial blocks of convolution
modules with different matrix sizes to enhance prediction
accuracy. Hence in this work, we have also considered the two
extreme possible architectures, namely the fully serial (FSS)
and fully parallel (FPS) systems, as shown in Fig. 1., which
are used in the hidden layer of today’s CNN architecture.
The novelty of this work aims to study the impact of RRAM
variability on CNN’s prediction accuracy for a wide range
of current compliances of RRAM ranging from 2 µA all
the way to 250 µA (corresponding to large variations in the
shape and size of the conducting filaments) by considering
the two extreme convolution architectures (FSS and FPS)
of a practical CNN network. It is essential to examine and
quantify the hardware (RRAM) variability and its impact
on the prediction accuracy for these extreme architectures,
which we have recorded in this work. The current work is
a marked improvement over recent past studies, which are
aimed at only assessing the mean value of the prediction
error brought about by RRAM device variability with a
very limited range of operating current compliance. Any
hardware device used to hold the software-trained weights
in a neuromorphic system will have its variability due to
the inherent variations in the complex multi-step fabrication
process. Hence, resistance variations in the high and low
resistance states (HRS and LRS) are an inherent property of
any RRAM device used as a synaptic weight. The variability
could originate within a device during multiple switching
cycles due to the stochastics of the filamentary switching
process and also from device-to-device across the wafer
due to process metrology issues. This variability must be
accounted for in order to quantify the compromise in accuracy
of any hardware-based edge application. In the context of

RRAM, the compliance used for switching the device will
heavily impact the distribution of the two states of the
resistance, especially their tails, which will overlap a lot
more at lower compliances with a lower memory window.
This overlap of the HRS and LRS tail distributions will in
turn result in increasing faulty encoding of 0s and 1s in the
synaptic weight representation, which will affect the entire
network’s classification accuracy.

The structure of this paper is as follows. Section II
presents the simulation methodology followed for encoding
the resistance value of RRAM into the CNN trained weights
and compute the prediction error loss between the software
and hardware (RRAM) trained weights. Section III discusses
the results obtained and the trends observed for a wide current
compliance RRAM encoded trained weights while being
applied in two extreme convolution architectures in today’s
CNN. We conclude our work in Section IV after a summary
and inference based on all the analysis carried out.

II. SIMULATION METHODOLOGY FOR NEUROMORPHIC
APPLICATION
A. ENHANCING PREDICTION ACCURACY WITH EDGE
DETECTION BASED INCEPTION FUNCTION
An insight into the generalized CNN architecture unveils the
underlying two fundamental mathematical matrix functions,
namely the inception and fully connected (FC) neural
network. Both have a parallel structure and perform pattern
classification by manipulating every image pixel concur-
rently in the given input image. Among the two functions,
the inception persists as intense computation and memory
operation, while the FC neural network layer consists of an
activation function to compare the similarity between the
manipulated image pixel and the trained data to signal to the
next neuron with the likelihood of the current image against
the trained data [33]. The inception function consumes
∼80% of the overall resources when compared to the FC

VOLUME 9, 2021 168097



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

FIGURE 2. The left-side (a) images are applied with an edge filter based on the Sobel algorithm,
resulting in an edge enhanced pattern. The images on the left are colorful with all possible RGB
pixels. In contrast, (b) the right-side images are reduced to bi-color code with a predominant
pattern and can be further used for pattern classification.

neural network in a commercial CNN [34]; hence, we limit
our simulations and variability examination to the memory
intense inception operation alone. The inception is a function
of matrix convolution and max-pooling operations; here,
both belong to a class of edge enhancement techniques for
effective pattern classification application.

Edge enhancement is a type of image processing used
to enhance a pattern’s edge in an image to improve its
apparent sharpness. The edge filter works by increasing
the contrast of the edge or boundary between the subject
and the background. This effect results in bright and dark
highlights on both sides of the edges in the image, making the
pattern more prominent from the background. The edges are
highlighted by mathematically manipulating every pixel with
pre-defined filter data, as illustrated in Fig. 2. A convolution
is an advanced edge enhancement technique, wherein a single
resultant vector is derived from sum of the products of
two given matrices, namely the input image pixel matrix
and filter data matrix. Hence, to convolute an image with
a pixel size of m × n, we chose a convolution window
size of n × n, which is smaller than the given image. The
convolution process is repeated on the given image by shifting
the convolution window by k pixels, known as the stride. The
generalized convolution formula for an m× nmatrix is given
by Eqn. (1),

Rkl =
∑m

i=1

∑n

j=1
I(i+s,j+s)Fij (1)

where:
R= Resultant matrix obtained by convoluting input image
matrix (I ) and trained weight filter matrix (F); Size of
R matrix is m× n.
I = Input image matrix, holding the image’s RGB pixel
values that are to be classified or identified; Size of
I matrix is m× n.
F = Filter matrix consists of trained weights obtained
by back propagation based stochastic gradient descent
algorithm and trained for a considerable amount of labeled
data set; Size of F is n × n, which is less than or equal to
the size of R matrix.
n× n= Defines the convolution operation window size in
the given 2D image, which is smaller than I ’s size.

FIGURE 3. An example of a 2 × 2 max pool operation is shown. A 4 × 4
matrix is divided into four 2 × 2 matrices and down sampled to half the
size by neglecting all the low-magnitude elements and retaining the
highest magnitude element among the 2 × 2 group.

s = Stride is the delta between the location of two
consecutive convolution windows.
ij = The row (i) and column (j) number of the given filter
matrix and image matrix elements.
kl = The row (k) and column (l) element of Rmatrix; Size
of R matrix represents the convolution operation size.
NOTE :Here, padding is the number of pixels (value equal
to zero) added to an image when the kernel or trained
weight of a CNN is convoluted to keep the convolution
window’s size as n × n when the stride value approaches
the end of the given matrix.

The Max pooling is a discrete quantization technique for
down sampling the input pixel matrix, and this dramatically
reduces the over-fitting at the FC neuron activation layer.
Today’s inception employs max pooling function in all
the layers to improve prediction accuracy and reduce
computation power on the following layers significantly by
down sampling the image [35]. The generalized Max pooling
function is shown in Eqn. (2) and a simple 4 × 4 max pool
example is shown in Fig. 3, wherein a 4×4 matrix gets down
sampled to 2×2, where themaximumvalue of each 2×2 array
is copied to the new max pooled matrix as shown.

V = Max [An×n] (2)

where:
V =Maximum value from the given input matrix.
A = Input matrix; Size of n× n
A sequence of edge-enhancing convolution functions with

varying size filter matrix layered in different groups called
as Inception, has become the building block of today’s

168098 VOLUME 9, 2021



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

FIGURE 4. (a) Cumulative distribution of cycle-to-cycle resistance variability trend of CMOS 1T1R OxRAM stack comprising TiN/HfO2/Hf/TiN,
extracted from the work of Fantini et al. [33] (b) Normal distribution plot shows the false logic-0 and false logic-1 at the intersection of LRS and
HRS distribution; this represents the RRAM variability encoded into the trained weight. (c) The trained weights are represented in a 32-bit
floating-point format, which consists of the mantissa (23-bits), the exponent (8-bits), and the sign bit (1-bit).

CNN with enhanced prediction accuracy rate. For the given
inception network, the smallest convolution function is
1 × 1 pixel size, and the largest is 5 × 5-pixel size.
Hence, we see that the convolution matrix resolution is
maintained low to keep the edge sampling rate as high as
possible for improved edge detection. Thus, with higher
computational resolution, the prediction performance is
increased along with the cost of higher computational power.
The matrix convolution of sizes 1 × 1, 3 × 3, 5 × 5,
and max pool 3 × 3 is the most used operation in today’s
CNN architectures. We considered these four common and
prominent computation functions for our simulation study by
connecting them in a fully serial and fully parallel sequence,
as shown in Fig. 1.

These two architectures are the two extreme operation
sequences seen in today’s CNN. We conduct our variability
simulation study on these extreme architectures by encoding
the RRAM’s electrical resistance as Look-Up-Table (LUT).
This will allow us to quantify the impact of RRAM’s
variability on these two extreme architectures and analyze the
error propagation trend from layer to layer of CNN for the
given OxRAM’s wide range of current compliance.

B. ENCODING SCHEME OF RRAM RESISTANCE
VARIABILITY ON SYNAPTIC DATA
We have extracted the resistance distribution data from one
of the most comprehensive RRAM variability data sets

published to date, by Fantini et al. from IMEC [36]. In that
study, the authors report OxRAM resistance data distributions
for a wide range of compliances→ {2, 5, 10, 25, 50, 100 and
250} µA. A 65nm CMOS 1T1R OxRAM stack comprising
of TiN/HfO2/Hf/TiN of size 20× 20 nm2 cell was fabricated
in their work. The device was subject to several switching
operations from Low Resistive State (LRS) to High Resistive
State (HRS). The cycle-to-cycle resistance variability trend
was measured and plotted as a lognormal distribution, which
we have replotted in Fig. 4a.

The resistive variability trend of LRS and HRS for the
wide switching current compliance data set was extracted to
construct the CNN trained weight based LUT model so as to
further analyze the CNN prediction performance degradation
trend. The work in Ref. [36] records the device switching
for 200 read/write cycles of different current compliance as
a cumulative resistance distribution, as shown in Fig. 4a.
Here, we further use the linear extrapolation technique to
synthesize a significantly large data set at the very low and
very high percentiles (tail ends) from themeasured 200 cycles
of switching data. The X-axis represents the LRS and HRS
resistance distribution of different current compliance, and
the Y-axis is the device cumulative probability. The LRS
data represents logic-0 and HRS represents logic-1; hence,
we extrapolate the LRS curve and HRS curve towards the
negative X-axis until both the curves of the specific Icomp
intersect. Thus, we extrapolate a more realistic large data set

VOLUME 9, 2021 168099



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

using the actual 200 read/write cycle data set, which shows
a significant overlap between corresponding LRS and HRS.
This overlap results in a prediction accuracy error, which
is encoded into the LUT CNN, trained weight model. The
technique used to encode RRAM resistance into CNN trained
weight is explained in the following sections. The formula for
the linear extrapolation is shown in Eqn. (3). By using any
two specific endpoints on the given resistance distribution
curve, namely (X1,Y1) and (X2,Y2), the new data points
are extrapolated by running the formula in a loop. Here the
endpoint (X1,Y1) is the initial point on the curve, and it is
fixed, while the (X2,Y2) is the last computed value from
every iteration. In general, the approximated overlap between
the specific LRS and HRS distributions after extrapolation is
relatively low for high Icomp and vice versa for low Icomp. This
is due to the lower number of oxygen vacancy defects and
higher relative change in defect count for smaller conducting
filaments during the SET and RESET transitions.

Xn = X1 +
Yn − Y1
Y2 − Y1

(X2 − X1) (3)

where:
X − axis = Resistance distribution for the given current
compliance.
Y−axis = Cumulative probability value of the resistance
for any specific current compliance
Xn,Yn = Resistance data points to be extrapolated
X2,Y2 = Represents last computed resistance data
X1,Y1 = Initial Resistance data points

C. GENERATING LUT MODEL FOR VARIABILITY TREND
ANALYSIS
The GoogleNet CNN’s synaptic weights are trained for
1000 image categories with 1.2 million images and was
constructed with an Inception architecture to enhance the
prediction accuracy by localized object detection with
comparatively fewer hyperparameters of 25million compared
against 60million of its predecessor AlexNet [37]. The
Inception architecture is formed by stacking smaller CNN’s
on top of each other to create a deeper network. The basic
blocks of such Inception framework are 1 × 1, 3 × 3, 5 × 5
Convolutions, and 3×3max pooling. TheGoogleNet consists
of 9 symmetric inception layers, namely 3a, 3b,4a–4e, 5a,
and 5b. Here, we extract GoogleNet’s weights from the 3a
inception layer for our further simulation, and the underlying
convolution sizes of this layer are 1 × 1, 3 × 3, 5 × 5, and
3× 3 max pool.

Each and every trained weight in the CNN is represented
in a 32-bit floating-point format, which consists of mantissa
(23-bit), exponent (8-bits), and signed bit (1-bit), as
illustrated in Fig. 4(c). As proposed in our past work, the
normal resistance distribution of RRAM is encoded into
the mantissa part of CNN trained weights as logic-0 with
LRS data and logic-1 with HRS data (based on a threshold
resistance value, RTH , i.e. if R < RTH , it is logic ‘‘0’’ and if
R > RTH , it is logic ‘‘1’’) and both HRS and LRS resistance

data are extracted from the extrapolated data set. Our previous
work explains the lookup table approach in greater detail
in Ref. [38]. For every trained weight of the 3a inception
layer of GoogleNet, we ‘‘encode’’ 1000 points of logic-0 or
logic-1 from the given RRAM resistance distribution plot
for any given current compliance. This results in a LUT
with 1000 varying mantissa inheriting the RRAM variability
for a given single trained weight. Fig. 4(b) shows a false
logic-0 and false logic-1 at the intersection of LRS and HRS
distribution. This represents the RRAM variability, and these
incorrectly encoded ‘‘0’’ and ‘‘1’’ are embedded into the
software trained weight mantissa as error data resulting in
prediction accuracy drop. Hence, with the proposed LUT
technique, the RRAM electrical variability is encoded into
the given CNN software trained weight and further used to
simulate and quantify the impact of RRAM variability on the
prediction accuracy rate if the software trained CNN were to
be implemented on the ‘‘edge’’.

The FPS and FSS inception schemes are developed using
the Keras framework. Keras is a deep learning software
written in Python programming language, running on Tensor-
Flow’smachine learning platform. The proposedKeras-based
FSS and FPS inception architectures are implemented as two
parallel computational pipelines as shown in Fig. 5. The first
pipeline works with an original GoogleNet trained weight
called software trained weights, and the second pipeline
takes the RRAM resistance encoded data, referred to as the
hardware trained weights. The difference between the above
two inception pipeline’s outputs gives the actual prediction
error drop. This is due to RRAM resistance variability
(and false ‘0’ and ‘1’ as shown in Fig. 4(b)) encoded
into the actual trained weight. For the given input image
from the ImageNet–ILSVRC (ImageNet Large Scale Visual
Recognition Challenge) data set, we simulated 5000 cycles
for a single image, and this procedure was repeated for all the
Icomp data set of the OxRAM. The obtained prediction and
power variability trend is discussed in the following sections.

III. RESULTS AND DISCUSSION
The prediction error trends obtained from the computational
difference between the two pipelines using software and
hardware trained (RRAM) weights are shown in Figs. 6 – 8.
The computational difference is a relative error difference
between the software and hardware pipeline outputs.

A. IMPACT OF CONVOLUTION SIZE ON PREDICTION
ERROR FOR VARYING COMPLIANCE
The mean prediction error for three different convolution
operations (1× 1, 3× 3, and 5× 5) based on our simulation
framework is shown in Fig. 6. Note that we did not simulate
the max pool block of the hidden layers because there
is no arithmetic manipulation involved in the max pool
function. With a comparative operation module, the max
pool operation takes the maximum value in the pixel group
and drops the other low-value pixels. Hence, we compare
the various convolution operations for the given wide range

168100 VOLUME 9, 2021



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

FIGURE 5. Illustration of the simulation framework designed for an input image size of 224 × 224 × 3. The FSS and FPS inception
computations are performed in parallel in the software (actual trained weights) and hardware (RRAM variability based binary encoded
weights) pipelines. The respective outputs are then passed through an error comparator to compute and plot the relative error trend in
prediction accuracy, as shown.

FIGURE 6. Trend of mean error for the three-convolution operations
(1 × 1, 3 × 3, and 5 × 5), with prediction error rate on (Y-axis) and the
current compliance on (X-axis).

of current compliances. The predictive error trend for the
1 × 1 convolution starts from ∼63% prediction error for
2µA Icomp, and a steep decline in the error rate is observed
as Icomp increases to 5µA, 10µA and 25µA, respectively.
Subsequently, the slope becomes insensitive to the higher
current compliances, as shown in Fig. 6. While we compare
themean trend among the three-convolution operations (1×1,
3 × 3, and 5 × 5), the magnitude of the error value for
the 3 × 3 and 5 × 5 convolution are 1.5 times and 2 times
higher than the 1 × 1 convolution operation. The size of the
3 × 3 and 5 × 5 matrices is obviously higher than that of
the 1 × 1 convolution matrix, and so is the probability of
false bits getting encoded in the computation. This explains
the higher prediction error for increasing size of convolution

FIGURE 7. Prediction error trend for the Fully Parallel System (FPS)
inception architecture for Icomp ranging from 2µA to 250µA.

operation asmore RRAMdevices need to be used to construct
the synapses of the hidden layer.

The rise in prediction error for lower Icomp can again
be explained based on Figure 4(a). The memory window
between HRS and LRS drastically reduces for lower Icomp,
which results in higher overlap between the resistance state
distributions. Moreover, at low Icomp, the conducting filament
is very narrow with very few defects in it and hence, for
repeated switching, the relative change in defect count within
the filament results in a wide variation of the resistance
state. In other words, the probability of false-0 and false-1
rise steeply as we move from 50-100 µA (which falls into
the ‘‘hard breakdown’’ regime for dielectrics) to 2-5 µA
(traditionally referred to as ‘‘soft breakdown’’). Furthermore,
subjecting the device to consecutive SET and RESET for

VOLUME 9, 2021 168101



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

FIGURE 8. Prediction error variance and mean for the Fully Serial System
(FSS) inception architecture The mean error trend for Fully Parallel
Sequence (FPS) is plotted here as a purple dotted line for comparative
analysis.

many thousands of cycles, the defect count and defect
density spread are also affected by the gradual reduction
in the mobility of the oxygen vacancy defects, resulting
in further memory window overlap, more so again at low
Icomp. These effects get absorbed into the encoded trained
weights and further amplified in the convolution layer’s
matrix multiplication and summation function resulting in the
trends as shown in Figures 6-8.

B. COMPARING ERRORS IN FULLY SERIES AND FULLY
PARALLEL ARCHITECTURES FOR VARYING COMPLIANCE
The prediction error trend for the two extreme inception
architectures (FPS and FSS) originating from RRAM
variability encoded trained weights is shown in Figs. 7 and 8.

Here, the standard deviation (σerr%) of the relative error trend
between the hardware and software pipelines is obtained by
simulating a single image over 5000 repetitive stimulation
cycles are plotted. Every simulation cycle uses a random entry
from the LUT with RRAM variability encoded weights to
classify the given image. From the simulation results of the
FPS architecture, it is clear that both the variance and the
mean of the error decreases for higher Icomp. (Fig.7). It is also
important to note that the error flattens out to a finite non-
zero value ∼ 5% for Icomp > 100µA, which suggests that
it is unnecessary to operate the device at even higher powers
as further reduction in relative error is too low to justify the
use of a higher power consuming architecture for the edge
application. We can achieve at least ∼60% power reduction
by choosing 100µA instead of 250µA.

From Fig. 8, it is worth noting that the prediction error
mean is much higher, and variance is also comparatively
higher for the FSS architecture. The FSS system is
constructed with a serial chain of convolution operations
where the error trend significantly gets convoluted due to
matrix multiplication in every block of the serial chain. This
explains why the mean error for the serial architecture is
much higher than for the parallel one (shown by dotted
purple lines). Surprisingly, the variance for 2µA and 5µA
is comparatively smaller than for the higher Icomp, contrary
to our logical thought flow. It should be noted that this is
purely an artifact because of the definition of the error, which
cannot be more than 100%. The upper percentile error bars
have already hit their ceiling of 100% for Icomp ∼ {2, 5} µA.

C. TRADE-OFF BETWEEN PREDICTION ERROR AND
POWER CONSUMPTION
The error variance and the power consumption per memory
bit for the two extreme convolution operations, namely
5 × 5 and 1 × 1, is studied and plotted in Fig. 9.

FIGURE 9. Prediction Error (PE) obtained for 5000 simulation cycles for 5 × 5 Conv (a) and 1 × 1 Conv (b) operations plotted on the Y1-axis. The
simulations were repeated for a wide range of Icomp values, as shown in the X-axis. The Y2-axis represents the Power per Bit (PB) trend for the two
extreme convolution architectures.

168102 VOLUME 9, 2021



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

FIGURE 10. Illustration showing a 1 × 1 Convolution applied to a dog and ant’s images. The convolution operation is repeated using encoded
trained weights for different Icomp of RRAM operation ranging from 2µA to 250µA. it is worth nothing that the edge enhancement is much clearer
towards the right for higher current compliance, while for very low Icomp ∼ 2uA, the edges are hardly discernible.

FIGURE 11. Illustration of the two extreme deep CNN architectures explored for prediction error variability quantification – (a) multiple FPS
and (b) multiple FSS.

Here, Y1-axis on the left shows the error distribution for
5000 cycles of all the given Icomp, and Y2-axis on the right
shows the corresponding power per bit trend for the synaptic
weight with an operating voltage of 1.5V. As we know, for
higher Icomp, the memory window is wider and with less
overlap between LRS and HRS; hence the prediction error
spread is less, but with a high computation power budget.
For discussion, let us consider the error spread for 5× 5 and
1 × 1 at 2µA and 250µA; the variables of the function
responsible for the error spread are the memory window
overlap and the convolution matrix’s size. While analyzing
the intra curve of the 5 × 5 convolution function for the
large Icomp of 250µA from Fig. 9(a), the prediction error
spread is approximately 4X smaller than for Icomp = 2µA.

Furthermore, the power consumption at 250µA is about 15X
higher than that for 2µA (see yellow line in Fig. 9(a)).
In comparison, the prediction error magnitude for 250µA
1 × 1 convolution is approximately 8X lower than for
Icomp = 2µA, as shown in Fig. 9(b).
For a comparative analysis on power saving, let us consider

an edge device performing a 1× 1 convolution operation on
a video stream of 224 × 224 pixel and powered by a coin
battery of 130mAh. The 1 × 1 convolution matrix requires
23-bits of mantissa and uses 23 RRAM devices to hold the
trained weights (1 device per bit, assuming binary digital
RRAM). With this scenario, we can compute that the 1 × 1
edge device can be operated for a lifetime of 2826 hours
(∼118 days) at Icomp ∼ 2µA, whereas the operation would

VOLUME 9, 2021 168103



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

last only about 22 hours (less than a day) for Icomp ∼
250µA. Fig. 10 illustrates the convolution loss using RRAM
encoded GoogleNet trained weights for the given wide
current compliance resistance distribution scale applied to
the 1 × 1 convolution. For illustrative purposes, we have
considered two sets of images. The first image depicts a
dog’s picture and takes up to 80% of the pixels in the
given 224 × 224 image size. The second image is that
of ants, which occupies 30% of the pixels in the standard
image size of 224 × 224 pixels. Here, we can deduce
that the ant image is comparatively more convoluted and
results in more visible/pattern loss, making it appear more
blur than the dog image. Thus, the computational device
failure depends on the pattern size in the given standard
image pixel of 224 × 224 and RRAM false 0/1-bit position
encoding probability. The RRAM device stack performance
also depends on the fabrication conditions which usually
spans a wide range of parameters and process conditions.
Here, we omit the influence of the fabrication process
parameter variables on the device variability for simplicity
and stick to the given material stack’s resistance distribution
data. There is always a trade-off between the CNN network
topology, operating power, and end application accuracy.
Battery-powered IoT applications in the real-world demand
low operation power for a long lifetime; hence compromising
prediction accuracy by choosing smaller current compliance
will significantly extend battery life. Recent studies show
edge AI applications with fault tolerance are the next trend for
designing low-powered IoT edge devices in monitoring and
sensing in remote applications such as oil platforms, covered
drain, remote surveillance systems, etc. . . [39]. An overall
prediction error tolerance of 20 to 40% is acceptable in such
applications, where sampling and regression trend analysis
can determine the error deviation. We can still operate the
RRAM in high current compliance with a wide memory
window for mission-critical operations alone.

D. ERROR PROPAGATION ACROSS A DEEP CNN
ARCHITECTURE
While the previous analysis purely focuses on the error
induced by just one single FSS or FPS layer, we know
well that the CNN used for most applications easily consists
of 4-10 layers. A model to study the error propagation
through multiple hidden layers of FSS or FPS will be
helpful to understand the end application’s overall prediction
accuracy drop. Hence, we have considered two different
types of multiple hidden layers with 10 internal layers, and
each configured with the FPS or FSS extreme architectures,
as shown in Fig. 11. The multiple hidden layers with
FSS mode are denoted as multiple Fully Serial Sequence
(mFSS-CNN), and for the FPS mode, we coin it as multiple
Fully Parallel Sequence (mFPS-CNN). Here we use simple
statistical formulae to estimate the propagation of layer-to-
layer uncertainty. We may assume that the FSS and FPS error
variance is fixed for a given current compliance as recorded
in Figs. 7 and 8. Chaining the same structure (FSS or FPS)

FIGURE 12. Trend in the error propagation across the mFSS and mFPS
deep CNN networks, considering 1-10 hidden convolution layers. The
mean error (M) of mFPS/mFSS for each Icomp is shown in the legend. The
results for (a) 25µA, (b) 50µA and (c) 100µA compliance levels are shown
here.

as multiple hidden layers, the error propagation would follow
the model below.

σε =

√∑
(εi − µ)2

N
(4)

where:

σε = Standard deviation of error for single Icomp
simulation
N = Size of the simulation cycle = 5000
εi = Error value from each simulation

168104 VOLUME 9, 2021



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

µ = The population mean error

σ 2
CNN =

∑n

i=1
σ 2
ε−Layer−i (5)

The standard deviation in error for the respective FPS and
FSS architectures (σε) is computed for all the Icomp encoded
data set using the Eqn. (4). Here, the mean error obtained
from 5000 repetitive stimulation cycles is used in the above
equation. The propagation in error across the deep CNN
network (σCNN ) can then be estimated by Eqn. (5), where
n = 10 (total number of layers) is the depth (number
of hidden convolution layers) of the network and σCNN
represents the overall network error deviation.

We have used the error variance of Icomp = {25, 50,
100} µA to compute the layer-to-layer standard deviation
error percentage (σerr%) using Eqns. (4) and (5) and the
results shown in Figs. 12 (a) – (c), respectively. Considering
the output of the 10th layer, the difference between the σerr%
of 25µA and 100µA is ∼4 times higher, and a similar trend
follows for their respective hidden layers. Note that the mean
of the error in the CNN is likely to be the same as the mean of
any single layer of the network. The mean errors are indicated
in the legend of the plots in Fig. 12 and denoted by ‘‘M ’’.
Hence, our approach here for computing the layer-to-layer
error variability enhancement can be used as a preliminary
setup to quantify the error trend in a multiple hidden layer
CNN. For simplicity, we exclude other device fabrication
parameters from this discussion.

IV. CONCLUSION OF THE STUDY
In this study, we have highlighted the critical issues involved
in the power consumption bottleneck brought about by the
memory system in today’s cloud servers. The alternative is to
move towards in-memory computation for image processing
IoT applications. We have compared various modern
in-memory technologies and considered RRAM as the
candidate of analysis, given its low power footprint
advantage, silicon CMOS compatibility as well as ease of
fabrication and its robustness. For a wide range of compliance
levels ranging from soft (2-5µA) to hard breakdown
(100-250µA), we have quantified the trade-off in the power-
prediction accuracy for a CNN. The impact of the series-
parallel architecture on the prediction error has also been
considered and we have extended our analysis to present
the worst case (mFSS) and best case (mFPS) scenarios of
how error propagates through a deep CNN up to 10 hidden
convolution layers. The look-up table-based framework
proposed here is device technology agnostic and can be used
for error quantification for any edge compute application for
any device as long as its operating state variability can be
characterized comprehensively, as was done by Fantini et al.
in Ref. [33]. This is the first study that clearly quantifies the
impact of a hardware realization of an RRAM-based CNN
on a practical large scale open-source network, the popularly
used GoogleNet.

Note that our study assumes that the training of the weights
in the CNN still happens in the cloud and the edge computing

here is purely for the inference side using hardware to replace
the software trained weights to minimize or even eliminate
latency issues due to server-node communication traffic.
A truly edge application would require training (learning)
and inference to also happen on the nodes itself and the
training process itself will also be heavily affected by the
inherent device switching variability. We are in the process of
extending our framework to also account for variability and
error induced in the training phase of a fully RRAM based
network learning process using NAND-based computational
logic and 2T-1R architectures to replace theNANDoperation.
The impact of forward learning and backpropagation on the
training robustness of a fully RRAM based CNN will be the
subject of our next study, building on our work here.

ACKNOWLEDGMENT
The first author would like to thank the Ministry of
Education (MOE), Singapore for providing the research
student scholarship (RSS) at SUTD for 2018-2022. The
corresponding author would also like to acknowledge the
financial and logistical support from the A∗STAR Brain
Efficient Nanomechanical Artificial Intelligence Computing
(BRENAIC) Research Project No. A18A5b0056, which
enabled the work to be accomplished.

REFERENCES
[1] A. R. Neto, T. P. Silva, T. Batista, F. C. Delicato, P. F. Pires, and

F. Lopes, ‘‘Leveraging edge intelligence for video analytics in smart city
applications,’’ Information, vol. 12, no. 1, p. 14, Dec. 2020.

[2] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra, ‘‘Edge
cloud offloading algorithms: Issues, methods, and perspectives,’’ ACM
Comput. Surv., vol. 52, no. 1, pp. 1–23, Feb. 2019.

[3] A. Agrawal, A. Kosta, S. Kodge, D. E. Kim, and K. Roy, ‘‘CASH-
RAM: Enabling in-memory computations for edge inference using charge
accumulation and sharing in standard 8T-SRAM arrays,’’ IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 10, no. 3, pp. 295–305, Sep. 2020.

[4] O.Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, ‘‘Processing
data where it makes sense: Enabling in-memory computation,’’Micropro-
cessors Microsyst., vol. 67, pp. 28–41, Jun. 2019.

[5] A. Biswas and A. P. Chandrakasan, ‘‘CONV-SRAM: An energy-
efficient SRAM with in-memory dot-product computation for low-power
convolutional neural networks,’’ IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 217–230, Jan. 2018.

[6] A. Agrawal, A. Ankit, and K. Roy, ‘‘SPARE: Spiking neural network
acceleration using ROM-embedded RAMs as in-memory-computation
primitives,’’ IEEE Trans. Comput., vol. 68, no. 8, pp. 1190–1200,
Aug. 2019.

[7] Q.-F. Ou, B.-S. Xiong, L. Yu, J. Wen, L. Wang, and Y. Tong, ‘‘In-memory
logic operations and neuromorphic computing in non-volatile random
access memory,’’Materials, vol. 13, no. 16, p. 3532, Aug. 2020.

[8] M. Goswami, J. Pal, M. R. Choudhury, P. P. Chougule, and B. Sen,
‘‘In memory computation using quantum-dot cellular automata,’’ IET
Comput. Digit. Techn., vol. 14, no. 6, pp. 336–343, Oct. 2020.

[9] F. Zayer, B. Mohammad, H. Saleh, and G. Gianini, ‘‘RRAM crossbar-
based in-memory computation of anisotropic filters for image preprocess-
ingloa,’’ IEEE Access, vol. 8, pp. 127569–127580, 2020.

[10] W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu, M.-F. Chang, H.-J. Yoo, H. Qian,
and H. Wu, ‘‘Neuro-inspired computing chips,’’ Nature Electron., vol. 3,
no. 7, pp. 371–382, Jul. 2020.

[11] S. Munjal and N. Khare, ‘‘Advances in resistive switching based
memory devices,’’ J. Phys. D, Appl. Phys., vol. 52, no. 43, Oct. 2019,
Art. no. 433002.

[12] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, ‘‘Metal-oxide RRAM,’’ Proc. IEEE, vol. 100,
no. 6, pp. 1951–1970, Jun. 2012.

VOLUME 9, 2021 168105



N. L. Prabhu, N. Raghavan: Computational Failure Analysis of In-Memory RRAM Architecture for Pattern Classification CNN Circuits

[13] X. Hong, D. J. Loy, P. A. Dananjaya, F. Tan, C. Ng, and W. Lew, ‘‘Oxide-
based RRAM materials for neuromorphic computing,’’ J. Mater. Sci.,
vol. 53, no. 12, pp. 8720–8746, 2018.

[14] P. Pouyan, E. Amat, S. Hamdioui, andA. Rubio, ‘‘RRAMvariability and its
mitigation schemes,’’ in Proc. 26th Int. Workshop Power Timing Modeling,
Optim. Simul. (PATMOS), Sep. 2016, pp. 141–146.

[15] E. Pérez, D. Maldonado, C. Acal, J. E. Ruiz-Castro, F. J. Alonso,
A. M. Aguilera, F. Jiménez-Molinos, C. Wenger, and J. B. Roldán,
‘‘Analysis of the statistics of device-to-device and cycle-to-cycle vari-
ability in TiN/Ti/Al: HfO2/TiN RRAMs,’’ Microelectron. Eng., vol. 214,
pp. 104–109, Jun. 2019.

[16] A. Napolean, N. M. Sivamangai, J. Samuel, and V. John, ‘‘Overview of
current compliance effect on reliability of nano scaled metal oxide resistive
random access memory device,’’ in Proc. 4th Int. Conf. Devices, Circuits
Syst. (ICDCS), Mar. 2018, pp. 290–296.

[17] S. Wiefels, M. Von Witzleben, M. Huttemann, U. Bottger, R. Waser, and
S.Menzel, ‘‘Impact of the ohmic electrode on the endurance of oxide-based
resistive switching memory,’’ IEEE Trans. Electron Devices, vol. 68, no. 3,
pp. 1024–1030, Mar. 2021.

[18] V. Borisov, J. Haug, and G. Kasneci, ‘‘Cancelout: A layer for feature
selection in deep neural networks,’’ in Proc. Int. Conf. Artif. Neural Netw.
Cham, Switzerland: Springer, Sep. 2019, pp. 72–83.

[19] Y. Liao, B. Gao, F. Xu, P. Yao, J. Chen, W. Zhang, J. Tang, H. Wu, and
H. Qian, ‘‘A compact model of analog RRAM with device and array
nonideal effects for neuromorphic systems,’’ IEEE Trans. Electron
Devices, vol. 67, no. 4, pp. 1593–1599, Apr. 2020.

[20] T. Tao, H. Ma, Q. Chen, Z.-M. Gu, H. Jin, M. Ahmed, S. Tan, A. Wang,
E.-X. Liu, and E.-P. Li, ‘‘Circuit modeling for RRAM-based neuromorphic
chip crossbar array with and without write-verify scheme,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 68, no. 5, pp. 1906–1916, May 2021.

[21] G. Boquet, E. Macias, A. Morell, J. Serrano, E. Miranda, and J. L. Vicario,
‘‘Offline training for memristor-based neural networks,’’ in Proc. 28th Eur.
Signal Process. Conf. (EUSIPCO), Jan. 2021, pp. 1547–1551.

[22] A. J. Ford and R. Jha, ‘‘Memristive device variability performance impact
on neuromorphic machine learning hardware,’’ in Proc. 11th Int. Green
Sustain. Comput. Workshops (IGSC), Oct. 2020, pp. 1–7.

[23] P. Pal, S. Thunder,M. J. Tsai, P. T. Huang, andY. H.Wang, ‘‘Benchmarking
the performance of heterogeneous stacked RRAM with CFETSRAM and
MRAM for deep neural network application amidst variation and noise,’’ in
Proc. Int. Symp. VLSI Technol., Syst. Appl. (VLSI-TSA)Apr. 2021, pp. 1–2.

[24] M. Fritscher, J. Knödtel, D. Reiser, M. Mallah, S. Pechmann, D. Fey,
and M. Reichenbach, ‘‘Simulating large neural networks embedding MLC
RRAM as weight storage considering device variations,’’ in Proc. IEEE
12th Latin America Symp. Circuits Syst. (LASCAS), Feb. 2021, pp. 1–4.

[25] Y. Cai, Z. Wang, Z. Yu, Y. Ling, Q. Chen, Y. Yang, S. Bao, L. Wu, L. Bao,
R. Wang, and R. Huang, ‘‘Technology-array-algorithm co-optimization of
RRAM for storage and neuromorphic computing: Device non-idealities
and thermal cross-talk,’’ in IEDMTech. Dig., Dec. 2020, pp. 13.4.1–13.4.4.

[26] Y. Du, L. Jing, H. Fang, H. Chen, Y. Cai, R. Wang, J. Zhang, and Z. Ji,
‘‘Exploring the impact of random telegraph noise-induced accuracy loss on
resistive RAM-based deep neural network,’’ IEEE Trans. ElectronDevices,
vol. 67, no. 8, pp. 3335–3340, Aug. 2020.

[27] H.-H. Le, W.-C. Hong, J.-W. Du, T.-H. Lin, Y.-X. Hong, I.-H. Chen,
W.-J. Lee, N.-Y. Chen, and D. D. Lu, ‘‘Ultralow power neuromorphic
accelerator for deep learning using Ni/HfO2/TiN resistive random access
memory,’’ in Proc. 4th IEEE Electron Devices Technol. Manuf. Conf.
(EDTM), Apr. 2020, pp. 1–4.

[28] M. Kwak, W. Choi, S. Heo, C. Lee, R. Nikam, S. Kim, and H. Hwang,
‘‘Excellent pattern recognition accuracy of neural networks using hybrid
synapses and complementary training,’’ IEEE Electron Device Lett.,
vol. 42, no. 4, pp. 609–612, Apr. 2021.

[29] P. Freitas, Z. Chai,W. Zhang, J. F. Zhang, and J.Marsland, ‘‘Impact of RTN
and variability on RRAM-based neural network,’’ in Proc. IEEE 15th Int.
Conf. Solid-State Integr. Circuit Technol. (ICSICT) Nov. 2020, pp. 1–4.

[30] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, ‘‘DNN+NeuroSim: An
end-to-end benchmarking framework for compute-in-memory accelerators
with versatile device technologies,’’ in IEDM Tech. Dig., Dec. 2019,
pp. 32.5.1–32.5.4.

[31] J. Doevenspeck, R. Degraeve, A. Fantini, S. Cosemans, A. Mallik,
P. Debacker, D. Verkest, R. Lauwereins, and W. Dehaene, ‘‘OxRRAM-
based analog in-memory computing for deep neural network inference:
A conductance variability study,’’ IEEE Trans. Electron Devices, vol. 68,
no. 5, pp. 2301–2305, May 2021.

[32] M. Pedro, J. Martin-Martinez, R. Rodriguez, M. B. Gonzalez,
F. Campabadal, and M. Nafria, ‘‘A flexible characterization methodology
of RRAM: Application to the modeling of the conductivity changes as
synaptic weight updates,’’ Solid-State Electron., vol. 159, pp. 57–62,
Sep. 2019.

[33] C. C. Aggarwal,Neural Networks and Deep Learning. Cham, Switzerland:
Springer, 2018, pp. 3–978.

[34] A. Bhardwaj, W. Di, and J. Wei, Deep Learning Essentials: Your Hands-
on Guide to the Fundamentals of Deep Learning and Neural Network
Modeling. Birmingham, U.K.: Packt Publishing Ltd, 2018.

[35] B. Moons, D. Bankman, and M. Verhelst, Embedded Deep Learning.
Cham, Switzerland: Springer, 2019.

[36] A. Fantini, L. Goux, R. Degraeve, D. J. Wouters, N. Raghavan, G. Kar,
A. Belmonte, Y.-Y. Chen, B. Govoreanu, and M. Jurczak, ‘‘Intrinsic
switching variability in HfO2 RRAM,’’ in Proc. 5th IEEE Int. Memory
Workshop, May 2013, pp. 30–33.

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[38] N. Prabhu, D. L. Jia Jun, P. Dananjaya, W. Lew, E. Toh, and N. Raghavan,
‘‘Exploring the impact of variability in resistance distributions of RRAM
on the prediction accuracy of deep learning neural networks,’’ Electronics,
vol. 9, no. 3, p. 414, Feb. 2020.

[39] W. Lin, A. Adetomi, and T. Arslan, ‘‘Low-power ultra-small edge AI
accelerators for image recognition with convolution neural networks:
Analysis and future directions,’’ Electronics, vol. 10, no. 17, p. 2048,
Aug. 2021.

NAGARAJ LAKSHMANA PRABHU is currently
pursuing the Ph.D. degree. His Ph.D. examining
the impact of RRAM device level variability
as an in-memory computational element for
deep learning neural network (DNN) applications.
He also serves as one of the Directors of ALAI
Labs, focusing on design and development of
vision-based IoT products and solutions (on the
cloud and on the edge) for general use daily
applications. He has over 18 years of experience in

industrial product design and development, specializing in machine vision
and cloud computation. He has five scientific publications to his credit
relating to construction methodology for look-up table modeled RRAM-
based synaptic weight simulation framework and quantification of the DNN
prediction error rate for given RRAM device level variability.

NAGARAJAN RAGHAVAN (Member, IEEE)
received the Ph.D. degree inmicroelectronics from
the Division of Microelectronics, Nanyang Tech-
nological University (NTU), Singapore, in 2012.
He is currently an Assistant Professor at the
Engineering Product Development (EPD) Pillar,
Singapore University of Technology and Design
(SUTD). Prior to this, he was a Postdoctoral
Fellow at the Massachusetts Institute of Technol-
ogy (MIT), Cambridge, MA, USA, and IMEC,

Belgium, in joint association with the Katholieke Universiteit Leuven
(KUL). To date, he has authored/coauthored more than 220 international
peer-reviewed publications and five invited book chapters. His research
interests include prognostics and health management for electromechanical
failures, design for reliability, lifecycle management of nanoelectronic
devices, physics of failure, optimization of polymer nanocomposites, and
uncertainty quantification for additive manufacturing. He was an Invited
Member of the IEEE GOLD Committee, from 2012 to 2014. He was a
recipient of the IEEE EDS Early Career Award, in 2016, and the IEEE
Reliability Society Graduate Scholarship Award, in 2008. He was also a
recipient of the IEEE EDS Ph.D. Student Fellowship, in 2011. He served
as the General Chair for IEEE IPFA 2021 at Singapore. He has consistently
served on the review committee for various IEEE journals and conferences,
including IRPS, IIRW, IPFA, and ESREF. He is an Associate Editor of IEEE
ACCESS journal.

168106 VOLUME 9, 2021


