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ABSTRACT In this survey, we look at the overall idea of Remotely Piloted Aircraft Systems (RPAS) and
autonomous control, as well as RPAS infrastructure, levels of autonomy, and current benefits and difficulties
in the field when utilizing Artificial Intelligence. While current remotely piloted aircraft systems have a
manual pilot operator to provide double-layer security and safety, studies show that having RPASwith a fully
autonomous vehicle at its centre could significantly improve decision-making and overall mission precision,
accuracy, safety, and efficiency.

INDEX TERMS RPAS, UAV, AI, drones, control.

I. INTRODUCTION
Remotely Piloted Aircraft Systems (RPAS) capabilities have
dramatically expanded in the last decade [1]. The continued
development of autonomous systems and their integration
into RPAS has been particularly groundbreaking. RPAS have
practical applications across a multitude of industries, includ-
ing military [2]–[7], commercial [8], and agriculture [9].
AI-driven RPAS offer the promise of efficient mission
capabilities, system adaptability, accurate analysis, and com-
prehensive decision-making [10], and have captured the
imagination of military and civilian communities alike
[11]–[13], with an estimated 8% of polled US citizens owning
an RPA [14].

Although the terms ‘‘autonomous’’ and ‘‘automatic’’ are
often used interchangeably in common parlance, they are
technologically distinct from one another, with autonomous
capabilities still being developed and representing a futuristic
end goal for the RPA industry. An autonomous system is
an enhanced version of an automatic system, wherein the
degree of human intervention in system management is sig-
nificantly reduced. While an automated system merely exe-
cutes pre-programmed solution algorithms, an autonomous
system uses algorithms to process and learn from new data;
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in other words, autonomous systems possess a level of
intelligence that allows them to craft dynamic solutions
independently.

Autonomous unmanned systems incorporate various tech-
nologies, including communication, control, and security.
They are increasingly integrated into the components of
Remotely Piloted Aircraft Systems (RPAS), which include
the Remotely Piloted Aircraft (RPA), referred to in some
literature as drones or Unmanned Aerial Vehicles (UAV);
a Ground Control Station (GCS); and a communication data
link [12].

Recent advancements in AI and RPAS technologies have
led to a higher level of onboard intelligence [15]. However,
a fully autonomous and independent RPAS has yet to emerge:
partly due to safety concerns, the vehicles continue to be pri-
marily managed by humans through remote control systems,
though both government and commercial use of RPAS would
benefit from eliminating the need for an actively involved
human pilot. A number of heuristics are used to assess RPAS
autonomy, including a six-, and three-level classification.
In this survey, we discuss both of them. Besides provid-
ing a roadmap for understanding the industry’s progress
towards complete autonomy, these categorizations also allow
researchers to understand the trade-offs of automation for
different purposes as they consider how best to utilize AI in
an RPA control system.
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This paper also explores how rapidly advancing AI tech-
nology is increasingly applied to RPA control systems. The
goal is to understand the potential efficiency of a fully
autonomous system and its use in real-world situations. Intro-
ducing AI into RPAS poses several interesting and complex
problems tethered to the level of autonomy. As RPAS become
more ubiquitous and are put to practical use by industry
and individuals alike, the airspace will likely become more
crowded; the increased aircraft in the sky may present safety,
ethics, and regulatory challenges related to air traffic [16],
among other concerns.

The remainder of this paper is divided as follows:
Section II motivates our survey. We then discuss various
autonomous control levels of RPAS in Section III. The broad
concept of RPAS and autonomous control, including RPAS
infrastructure and levels of autonomy, is explored. Next,
in Section IV, we discuss current benefits and challenges in
the field; Section V discusses the desirable AutonomousCon-
trol Levels, while Section VI explores examples of current
advances in AI applied to RPAS, including supervised, unsu-
pervised, and reinforcement learning; Section VII presents
future challenges and trends, followed by conclusions.

II. MOTIVATION FOR CONCEPT OF
AUTONOMOUS CONTROL
One study of civil drone safety found that 70-80% of RPA
accidents are due to human factors [17]. Particularly in
unpremeditated descent scenarios, loss of control, and con-
trolled flight into terrain [18], artificial intelligence is a poten-
tial avenue to reducing human error.

RPAS contain several sub-systems that comprise three key
components: an RPA, a GCS, and the communication sys-
tem [12], [19], as seen in Figure 1. Autonomous Control is
achieved when an RPA is equipped with onboard comput-
ers [20] that allow RPAS to control navigation and decision-
making processes under significant uncertainty with minimal
or no human interference [21].

FIGURE 1. The main components of RPAS.

AnRPA is a stand-alone remote-controlled or autonomous,
fixed or rotary-wing aircraft that can complete missions [19].
RPAs differ from one another in size, structure, autonomy,
and the goal they serve, and thus, for high-level discus-
sions, are often classified based on a variety of factors,
most commonly maximum take-off weight (MTOW), opera-
tional altitude, level of autonomy, launch method, ownership,

and airspace class [22]. Other studies have classified RPAs
based onMTOW, endurance, altitude, operational area radios,
and usage [22], [23]. The fuel system (disposable or multi-
aircraft) and wing system (fixed-wing, rotary-wing, blimps,
and flapping-wing) are other standard classifications. In this
survey, we present the classification of RPAs provided by the
US army, as seen in Table 1.

TABLE 1. RPAs classification according to [24].

The aerial platform of an RPA includes the airframe, the
navigation system, the power system, and the payload. The
airframe is the RPA’s main physical structure. The navigation
system ensures that RPAs can communicate with the control
station to exchange real-time data. The power system is used
to provide energy to the system and is chosen based on the
RPA’s airframe, with the most common options beingWankel
rotary engines, fuel cells, electric and lithium polymer batter-
ies. The payload consists of instruments or other equipment
used to acquire specific data (e.g. RGB/multispectral camera,
video camera, thermal or other sensors).

Ground Control Stations (GCS) are ground-based software
applications that communicate with the RPA and govern the
sensors, surveillance cameras, and other payloads installed
on the aircraft. A GCS can display real-time data on RPA
performance, action, and position [25], [26]. When human
assistance is needed, human pilots use GCS to monitor and
control the RPA sensors and decision-making patterns and
send the RPA commands. Although RPAs are capable of
autonomous flight through the use of a pre-defined flight
plan, the current state of autonomous technology mandates
that a pilot remain available, whether physically or remotely,
in case of emergency, malfunction, or reaction to uncertain-
ties [19]. Using real-time information about the RPA position,
performance, and decision patterns provided by the GC, the
pilot can take appropriate action, including overriding the
flight path and pre-programmed procedures to take control
manually. A remote pilot’s presence will continue to be cru-
cial to RPA performance and safety until such a time as fully
autonomous systems can handle the enormous amount of
real-time data generated during flight with high precision and
accuracy.

The centrepiece of the RPA communication system is
a radio connection between the airborne vehicle and the
ground [19]. A continuous communication linkmust bemain-
tained if an emergency requires the pilot to control the vehicle
remotely.

While a manual pilot operator provides double-layer secu-
rity and safety in current remotely piloted aircraft systems,
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FIGURE 2. 6-level automation of RPAS.

having RPAS with a fully autonomous vehicle at the system’s
center could significantly improve decision-making and over-
all mission precision, accuracy, and efficiency. Artificial
Intelligence, and more specifically, Machine Learning (ML)
and Deep Learning (DL) techniques, play a significant role in
the development of fully autonomous vehicles, with the pri-
mary objective of allowing intelligent decision-making and
adaptation to environmental changes without human inter-
vention by finding correlations within a set of data or past
action sequences. Deep Learning enables network elements
to monitor, learn from, and predict various communication-
related parameters such as traffic patterns, collision patterns,
user, and device location. Machine Learning and Deep Learn-
ing especially offer benefits in RPAS applications that act
as a human proxy in completing high-risk, high uncertainty,
or dangerous missions. Ultimately, the level of autonomy is
determined by the extent to which RPAS canmimic or surpass
human senses and decision-making capabilities to respond to
uncertainties and avoid false action patterns effectively.

III. AUTONOMOUS CONTROL LEVELS (ACL) OF RPAS
All commercially and recreationally available drones map
to the Sheridan Autonomy Scale [27], the standard scale
for measuring autonomy in complex autonomous manufac-
tured systems, or to the three predominant RPA-related scales
for measuring autonomy: a ten-level system proposed by
researchers in the Air Force Research Laboratory’s Air Vehi-
cles Directorate at the beginning of the civilian drone era [28],
a modern six-level system [29], [30], and a three-level sys-
tem that classifies autonomy across all mission planning
stages [10]. This paper will explore the examples of current
solutions classified as six- and three-level scales.

A. 6-LEVEL SCALE
First, we explore the 6-level scale of automation - the sum-
mary of it is presented in Figure 2.

1) LEVEL 0 (NO AUTOMATION)
RPAs are controlled manually and/or remotely using a human
pilot. The performance range of RPAS that falls into this level

is bound to receive commands and instructions from the GS
monitored by a human pilot [31]. Having a remote control
system or a steering wheel embedded with the RPA can
effectively act as a safety pilot and overwrite any command
that does not fit well with the risks of a mission ahead. A DJI
Tello is one example of such RPA [32].

2) LEVEL 1 (PILOT ASSISTANCE/FUNCTION SPECIFIC)
This level indicates the lowest autonomy domain where an
automated system is integrated into the RPA system and
can assist in at least one vital function over a finite time.
The pilot remains in control of the overall operation and
safety of the vehicle. A level 1 RPA can use navigation
sensors and algorithms to direct the vehicle. To accomplish
an accurate navigation process, the RPA can be equipped
with a Proportional Integral Derivative (PID) controller to be
tuned for navigation sensor readings [33]. A PID is a tool that
regulates temperature, pressure, speed, and other procedures
using a temperature sensor (e.g. thermocouple) as an input,
comparing the desired temperature to the actual temperature,
and providing an output to the control system to perform
attitude control.

A level 1 RPA uses a Global Navigation Satellite Sys-
tem (GNSS) receiver to perform basic commands (steering
mode) and stabilize flights, a mission plan to perform auto-
matic mission (autonomous mode), home location, and path
saver to complete smart return to the home mission. This
ranges from a simple recreational photo or video footage
to high-end asset inspections in the industry. At this level,
sense and avoid features are available to alert the pilot of the
drone’s proximity to obstacles – the avoid part is up to the
manual input of the pilot. An instance of this is DJI Mavic
Air, used to inspect oil pipelines by Microsoft and DJI. It can
automatically detect cracks while the pilot retains control of
its movement [34].

3) LEVEL 2 (PARTIAL AUTOMATION)
The vehicle can control both attitude and acceleration/
deceleration, while the pilot is still responsible for the safety
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of the operation and ready to take over the control of naviga-
tion, altitude, and speed in the time of malfunction of a reac-
tion to a condition. At this level, a pre-programmed flight path
is uploaded to RPAS, and the vehicle can execute commands
in time of need. Although the pilot is actively monitoring
flight conditions, all anti-collision (front, back, sides) sensors
are active at this level. The anti-collision modules embedded
in the sensors can analyze the situation, calculate the maneu-
vers, and propose navigation advice to the vehicle. RPAS then
either acknowledges or rejects the proposed maneuver and
takes action respectively [33]. Examples include DJI Mavic
Pro 2 or Autel Robotics EVO, which can perform mapping,
surveying, spraying, and measuring [35].

4) LEVEL 3 (CONDITIONAL AUTOMATION)
The transition from level 2 to level 3 is significant; at level 3,
vehicles have environmental detection capabilities, make
informed decisions in uncertainties, and manage safety-
critical functions [21]. However, the human pilot needs to
remain alert to take over control if the vehicle requests pilot
intervention or if the system cannot execute a command.
As an example, a drone flies along a pre-programmed flight
path when onboard sensors detect an obstacle. After the
detection (e.g. a building in the flight path), an RPA will
stop and send an alarm of an object close by to the pilot.
The pilot then manually corrects the heading/altitude before
the drone continues to fly along its pre-programmed path.
Examples include obstacle avoidance while maintaining the
pre-planned path by DJI Air2S [36].

5) LEVEL 4 (HIGH AUTOMATION)
A level 4 RPA can conduct the flight task and monitor the
environment in most circumstances because RPAS contain a
fixed set of rules that dictates the system’s behaviour. The
vehicle can intervene in case of an unexpected event or a
system failure. However, a human pilot has the option to
take over control if the condition falls out of the autonomous
authorization limit of the vehicle. The vehicles at this level
are expected to have a backup system so that if a system
fails, the vehicle can still execute commands and operate.
The system in level 4 is not equipped with an autonomous
learning system [37], preventing the vehicle from learning
new patterns. As an example, the drone senses obstacles in
the flight path while recording and tracking target objects
and, at the same time, actively avoids contact by changing
heading and/or altitude. Examples include DJI Inspire 2 in
cinematography [38].

6) LEVEL 5 (FULL AUTONOMY)
Level 5 vehicles meet or exceed all lower autonomy levels
and can control and monitor the environment in all circum-
stances with no expectation of human intervention. However,
a human pilot is optional, and remote controlling systems are
embedded in most level 5 vehicles only for safety reasons.
All levels are equipped with full-time automation sensors.
Intelligence is enabled given the use of AI and deep learning

embedded with the central system of the vehicle so that
it can learn patterns and algorithms to generate new risk
management and be ready for any potential uncertainties with
minimumpilot assistance. Currently, fully autonomous RPAS
are undergoing testing and are not available in the production
stage [39].

B. 3-LEVEL SCALE
Overall, these six levels of autonomy can also be described in
amore concise three-level classification system that discusses
low-level autonomy, medium-level autonomy, and high-level
autonomy, as seen in Figure 3. This three-level scale is dis-
tinct as it considers mission planning in its classification of
autonomy [10].

FIGURE 3. Proposed autonomous control levels (ACLs) in the context of a
single mission stage [10].

Regardless of the classification system, the ideal level of
autonomy is dictated by mission context and goals.

IV. BENEFITS AND CHALLENGES OF CURRENT ACL
Even at the current low or medium levels of autonomy,
RPAS have been adopted or proposed as a solution across
a number of industries, often with the result of making jobs
less costly for humans, allowing humans to focus their spe-
cialized skills and energy elsewhere, or otherwise improving
mission efficiency and outcomes. Among recent applications
are rice seed sowing [40], parasite and pest management [41],
monitoring soil moisture [42], and general crop surveil-
lance [43] in agriculture; crime analysis [44] and highway
surveillance [45] in policing; disaster relief and hunting hurri-
canes [46], radiological mapping and threat assessment [47],
fire detection [48] and firefighting [49], [50], reforesta-
tion [51], and mountain search and rescue missions [52] in
environmental risk and preservation; and assorted other tasks
like 3D mapping [53], [54], product delivery, and transporta-
tion [55], surveillance [56], navigating and mapping indoor
environments [57], cleaning buildings [50], aerial imaging,
large-scale area surveying [58], [59].

While leaps forward in RPAS adoption and AI-driven
autonomy havemade these applications feasible and provided
incalculable benefits, RPAS use also introduces several chal-
lenges across four major areas of concern: licensing, safety,
ethics, and cost.

Regulating RPAs is an ongoing challenge that is likely
to become more complex as RPAs become more intelligent.
The Federal Aviation Administration (FAA) and Transport
Canada (TC) have established specific rules for a small RPA
that apply to commercial and recreational use. However, their
ambiguities continue to be unexplored [60].
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Safety concerns remain relevant to both piloted and
autonomous aircraft, with the challenge of how best to ensure
safety in all events of a collision or cyberattack [61] remain-
ing a topic of debate. In extreme circumstances, an RPA with
the currently available levels of automation does not pos-
sess sufficiently sophisticated pre-programmed commands
to furnish it with the ability to decide an appropriate next
course of action. A manual radio link may be used to regain
human control of the aircraft temporarily; however, if data
and radio links are not available, it may not be possible to
re-establish human control. In the event of a loss of control
and communication (i.e. C2 lost link), most RPA and ground
control stations have one or more of the following fail-safe
actions available. The most basic option is to hover in place
for a pre-defined time and wait to re-establish the C2 link.
Once the time runs out, the next option is to either return to
home (RTH) or land. The return to home option can be along
a direct path back to the take-off location or a smart RTH
during which the RPA retraces its route back along with any
pre-programmed waypoints it navigated through prior to loss
of C2. An additional option is the inclusion of rally points
which serve as alternate landing sites should, for example,
the original home location be too far for the RPA to reach
based on current battery levels.

RPAs pose a severe risk for planes in the sky
[17], [23], [62]. This is the main reason why under the
current regulatory framework, there is a strict requirement
to maintain an unaided visual line of sight (VLOS) with
the RPA at all times. This requirement can be waived under
certain circumstances requiring a special flight operations
certificate (SFOC) or temporary waiver. Upon loss of VLOS,
the pilot must be able to manually maneuver the aircraft
back into a position, enabling them to re-establish VLOS
quickly and more safely. Some of the automated fail-safe
systems described above (e.g. smart RTH) can help in this
regard, but what if the pilot does not realize that they have
lost sight of the aircraft? Perhaps future AI and ML systems
can be taught to recognize situations that may lead to loss of
VLOS and automatically warn the pilot and/or take corrective
actions to ensure line of sight is maintained as per the current
regulations.

Should the RPA pilot lose control of the vehicle and enter
another aircraft’s buffer zone, the RPA could collide with
other aircraft and cause damage upon impact. This risk,
among others, makes proactive traffic management a focal
point of autonomous RPA development and AI as applied to
RPAS. While regulatory agencies like the FAA and Canada’s
TC consider how best to regulate, writ large, possibly rev-
olutionary changes in airway traffic, researchers turn to the
question of how to deploy AI to provide onboard safety fea-
tures in individual aircraft. One feature still being developed
and optimized is collision avoidance.

Collision avoidance in RPAs [63], allows a moving
autonomous body to navigate a space while avoiding static
or dynamic objects in its path by interpreting data gleaned
from a camera [64], ultrasonic or laser sensors, GPS data [65]

and, recently, by monitoring air disturbance to predict object
placement relative to the automaton [66]. Recent research into
optimizing RPAs collision avoidance has considered many
unique facets of the problem, ranging from the immediate
low-quality high-speed image detection needs of drone racing
enthusiasts [67], [68] to the maintenance of velocity for the
sake of fuel or battery economy [69] to deploying RPAs
indoors [70]; and has taken its cues from diverse approaches,
including by building an RPA that intentionally crashes [71],
learning from the complex ballistics of starlings [72] and
considering advanced drone swarm dynamics [73], [74].

As RPAS are deployed as human proxies, particularly in
monitoring and surveillance tasks, the ethics of using RPAs
in policing or military missions has come into question.
Although the public opinion of military RPA-strikes on for-
eign targets at the current level of autonomy is favourable,
with 58% of polled Americans approving, and US mil-
itary officials are beginning to consider deploying fully
autonomous RPAS in combat situations rhetorically, ethicists
and policymakers alike debate the use of an RPA in warfare
both in terms of the targets and the pilots responsible for
operating the RPAS [75]–[80].

Cost is an additional challenge. Deploying RPAS can be
expensive in terms of the equipment required to integrate
RPAS into a mission, the time cost of human training, and
the potential technical issues that might occur. Designing a
specialized RPAS for a specific mission or service can add
costs since some RPAS features may need to be improved or
enhanced to equip the vehicle for a given mission properly.

V. DESIRABLE ACL
The answer to these questions is not simple. It may seem
obvious that a fully autonomous RPAS is the ultimate goal;
however, we will need all levels of autonomous control to
manage, monitor effectively, and coordinate the RPA maneu-
vers and the commands it receives. Earlier, some of the most
critical current issues have been introduced. It is essential to
note that reaching level 5 of ACL (fully autonomous) will not
address these issues appropriately in some cases. It is most
likely that the current challenges will escalate, as having a
fully autonomous RPAS comes with uncertainties in terms of
the level of intelligence, quality of pattern recognition, and
accuracy of deep learning algorithms. Additionally, develop-
ing a fully autonomous RPAS is not feasible with sensitive
sensors. To achieve level 5 of ACL, several challenges need
to be addressed, such as ensuring that the software in RPAs is
certified in terms of security and safety in decision-making
and maneuver patterns, especially in adverse weather and
collision avoidance strategies.

There is no consensus on the desired level of auton-
omy [81]; however, the ACL of an RPA should be defined
by the context of its use [82]. Ideally, an RPA will have
an ACL that allows it to complete its mission successfully.
For example, Table 2 presents a roadmap for RPAs in the
USA. 2020 has come and gone, yet class A has not yet been
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TABLE 2. Autonomy (safety) class of drone and future roadmap (class A - E).

achieved, and even RPAs that can be considered class B are
not guaranteed to be crash-safe.

There are technological challenges that come with imple-
menting just the right level of automation, but there are also
moral and ethical issues that follow suit—using the example
above with a vehicle with SAE level 5 autonomy. A car with
no steering wheel or gas and brake pedals seems innovative;
however, how viable is it in a real-world system? There are
guaranteed to be some people who are opposed to the idea.
No system that is ever designed is fault-proof. What happens
when the system glitches and there are problems that happen
on the road? Who is held accountable? These are the kind of
questions that are raised when a new system is brought into
play. This goes without saying that when there are negatives,
there are also positives. An automatic system that drives cars
around also eliminates the possibility of human error on the
road. It negates the problem that people could run red lights
or drive too fast and cause crashes. The points brought up
here all help design a system that is just perfect for the
situation. A level 5 ACL is not always the correct choice when
designing a system at this wide scale.

VI. ARTIFICIAL INTELLIGENCE APPLICATION FOR
AUTONOMOUS RPAs
To automate the use of RPAS while increasing the control
system security and thus decreasing the need for a remote
pilot intervention, specific advanced AI strategies can be
integrated. There are four main categories of automation
tasks currently, shown in Figure 4. The first one is path
planning. The primary purpose is to find a safe flight path
with minimum energy consumption on the premise of com-
pleting RPAS mission. The second task is collision avoid-
ance. It allows to autonomously sense obstacles and avoid
collisions during drone missions using sensors and AI-based
software. The third one is take-off and landing. As the name
suggests - these tasks are related to all procedures involving
the start and end of the flight. Finally, we have Simultaneous
Localization and Mapping (SLAM). It allows RPAS to build
a map of its surroundings and then plan a path or trajectory
to where it is going.

Moreover, machine learning algorithms can be classi-
fied into three categories of supervised, unsupervised, and

reinforcement learning [83], and the application of each
method towards the above-mentioned aspects to achieve
autonomous RPAS is discussed in subsections below and
summarized in Table 3.

FIGURE 4. Autonomous RPAS based on four main tasks - path planning,
SLAM, collision avoidance and autonomous take off/landing. The
literature examples related to these features are indicated in the bubbles.

A. SUPERVISED LEARNING
Supervised learning algorithms train the machine using
labelled training data to predict the outcomes for unforeseen
data. In other words, the objective of a supervised learning
model is to predict the correct label for newly presented
input data [84]. There are two types of supervised learning
algorithms - regression and classification. Supervised learn-
ing algorithms are now used in many domains; however,
they are not without their limitations. Specific datasets are
required for training classifiers, and decision boundaries can
be overtrained without suitable examples.

Let us discuss some examples of supervised learning
towards autonomous RPAS. Boussemart et al. [85] used a
classic supervised learning method for autonomous path
planning. For each hidden state in the learning paradigm,
an emission probability function was analyzed to determine
the set of most likely observables. The supervised learning
model then used the pre-defined state labels to learn the most

VOLUME 9, 2021 167585



M. Aibin et al.: Survey of RPAS Autonomous Control Systems Using Artificial Intelligence

TABLE 3. Summary of AI techniques applied to various tasks.

likely path to be used by the RPA. Majka [86] aimed to
determine an optimal trajectory of avoidance maneuver of an
RPA andminimize the time of performance when avoiding an
aircraft flying at a much higher speed. The RPAwas supposed
to be capable of detecting a potential mid-air collision and
performing avoidance maneuvres. The authors of [87] used
RPAs to collect images of different natural hazards such as
landslides, floods and earthquakes. Then they proposed a
methodological framework for immediate assessment of the
events based on supervised learning to allow autonomous
decision-making for an RPA. Niu et al. [88] used an RPA res-
olution and waveband aware design with supervised learning
to collect remote sensing aerial images with drones optimally.
On the other hand, [89] compared the performance of the
genetic algorithm to a supervised neural network with the
goal of obstacle avoidance while flying in a 3D digital map
simulator. Finally, [90] discussed the opportunities related to
supervised learning and multi-RPAs coverage path planning.

B. UNSUPERVISED LEARNING
Unsupervised learning is a machine learning technique that
draws an inference from the datasets without human inter-
vention and does not require previous knowledge of data.
It is helpful in scenarios where we do not have access to
labelled or purely standard data and let the machine work
independently to learn. The first step to the method is the
selection of a model that will determine the number of hidden
states it should maintain [85]. The model is made to find its
structure from the input data and discover groups with similar
examples within the data. This algorithm plays a significant
role when patterns for a situation are unknown and performs
complex processing tasks. It helps to collect data in real-time,
and thus all the input data is analyzed and labelled in the
presence of the learners. Unsupervised learning is also used in
fault detection, which was introduced to identify safe states
and classify any patterns that were considered abnormal as
fault states [91].

Ahn et al. [92] described anomaly detection in an RPA
using K-means clustering, which is an unsupervised learning
algorithmwherein observed data is divided into clusters using
information about the distance between the data points. The
flight data was collected for testing in advance and/or in real-
time to find anomalies using a set of training data. When the
model is trained, it is then tested, verified, and finally used as
an anomaly detection scheme for either post-flight analysis
or online anomaly monitoring.

Yue and Zhang [93] used amodel decomposition technique
to plan the number of target points in the cruising area.
This is based on RPAs and uses the K-means algorithm to
find the number of target points planned in the cruise area.
A simulated annealing algorithm is then used to track the
path of each RPA cruise area. Ferrandez et al. [94] investi-
gated the effectiveness of using RPAs in delivery networks.
An optimization algorithm is designed to determine an opti-
mal number of launch sites. The algorithm also computes
the minimal delivery time, and K-means clustering is used
to find launch locations for the RPAs. Chang and Lee [95]
proposed a new approach for drone delivery system since,
in the previous approaches, routing of the drone was a signif-
icant concern. An effective delivery route was discovered by
shifting weights that, in turn, moved the center of the clusters
in the K-means algorithm. Callow, May and Leopold [96]
found a solution for poorly represented conventional records
of a tropical cyclone, tsunamis and other events. Images of
the overwash fans (costal deposits) are collected using RPAs
and Structure-from-Motion (SfM) with the K-means tech-
nique to remove the vegetation. This will help create a high
resolution and accurate digital terrain model (DTM) of the
overwash.

C. REINFORCEMENT LEARNING
Reinforcement Learning (RL) is a subcategory of machine
learning that allows machines to learn from their actions,
similar to the way humans learn from past experiences. This
method is a practical approach because it allows an RPAS
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or RPAS team to learn and navigate [97] through a chang-
ing environment without a model for the environment [98].
Although RL has been around for some time, it is now
prevalent to combine it with deep learning techniques. The
word ‘‘deep’’ refers to multiple layers of an artificial neu-
ral network model that replicates the structure of a human
brain by processing a large amount of training data and
significant computing power. Deep reinforcement learning
uses a trial and error approach, which generates rewards
and penalties as a drone moves forward on its mission [99].
Rodriguez-Ramos [100] used a DRL framework wherein a
learning agent can receive experience vectors and rewards
from the environment. These are used to find the optimum
action to take in each step.

Pham et al. [98] used a DRL algorithm implemented in an
RPA to accomplish tasks in an unknown environment. This
model is an agent-environment interaction wherein an agent
builds up knowledge of its surrounding environment by accu-
mulating experience through interacting with the environ-
ment. Maza et al. [101] used the Cooperative and Geometric
Learning Algorithm (CGLA) as their principal DRL method.
This approach is used to help multi-agent RPAS navigate
through uncertain environments. The path-planning algo-
rithm generates a cost metric for each state in the map, which
the RPA then uses to navigate through the lowest-cost path
towards its target. Wang et al. [102] used a two-stage rein-
forcement approach for collision avoidance in a multi-RPAs
framework. The first step is a pre-training stage wherein the
RPA interacts with a noisy environment and gets all the obser-
vations and rewards at a given time interval. These data are
then fed into a shared policy to compute all control commands
of different robots. The results are then used in the second
stage, which is the unsupervised training stage using a deep
deterministic policy gradient algorithm. Lee and Cha [103]
implemented a reinforcement algorithm to optimize the flight
path of autonomous surveillance drones. The authors used
a simulation with a single surveillance drone, which used a
reinforcement learning algorithm in an unknown grid area
to find the optimized path autonomously. Finally, authors
of [104] used GPU-based reinforcement learning to allow
RPAS for autonomous take-off and landing in a variety of
scenarios.

VII. FUTURE CHALLENGES AND TRENDS
Undoubtedly there will be more commercial applications of
Remotely Piloted Aircraft Systems in the future. In Septem-
ber 2020, Amazon publicly announced its flying Ring cam-
era, its first commercial smart drone that can launch itself
if someone invades a home. Along with Wing Aviation
and Flight Forward, developed by Google and UPS respec-
tively, Prime Air, a drone delivery service also developed by
Amazon, is expected to deliver the items to their customers
within 30 minutes after they check out the orders online.
This will enhance the supply chain in the economy without
exacerbating the vehicle traffic system or pollution issues.
This will also create an avenue for developing a public or

private transportation system for autonomous aircraft in the
future. This advancement will be supported by the expansion
of AI/ML cloud platforms. For instance, Google, Azure IoT
or AWS, will also play a critical role in drone development.
AirMap, supported byMicrosoft [105], is already an example
of a traffic management platform for drones in the public and
private sectors. Another interesting advancement of RPAS
is its integration with other autonomous systems, such as
underwater drones whose propellers can be used to fly in the
sky or to push the system forward underwater. By the same
token, RPAS can havewheels or chassis so that it can travel on
the ground. These designs could make RPAS more adaptive
to operate under various conditions in the future.

With the emergence of modern Internet of Things (IoT)
sensors, such as RealSense technologies, lightweight yet
powerful scanners with built-in LIDAR and depth sensors
developed by EverDrone, a Swedish-based company, devel-
oping autonomous drone system to save people from cardiac
arrest [106], there is no shortage of new applications on
the horizon. RPAS are expected to transform the daily tasks
of collecting and analyzing data in real-time, followed by
improving many predictive models in research and business
operations.

In parallel with the rapid growth of RPAS applications,
new challenges will also come to light. One example of
this is the authorization of RPAS for flight through national
and international airspace [107]. The Specific Operations
Risk Assessment (SORA) is a risk-based tool developed by
the Joint Authorities on Rulemaking for Unmanned Sys-
tems (JARUS). This tool is used to determine the objectives
required to gain authorization to fly in a given environ-
ment. The JARUS SORA tool considers the stakeholders on
the ground (civilians) and in the air (aircraft) to evaluate
the mission profile against the existing airspace infrastruc-
ture. The authorization of flight through international and
national airspace also brings up the concern of airworthiness.
Airworthiness is defined as ‘‘the property of a particular
air system configuration to attain, sustain, and terminate
flight safely’’ [108]. As RPAS attain greater levels of auton-
omy, it becomes more complex to certify their airworthiness.
Although these vehicles have obtained the ability to conduct
and complete a mission without any operational commands
or a control link, their airworthiness will be challenging to
certify using traditional techniques. An alternative to the
traditional airworthiness certification process, concepts of
operations can be evaluated and used to assess risk.

Another challenge is the relatively short lifespan of current
battery systems, which remains one of the top issues followed
by public safety concerns. In the event that RPAS loses bat-
tery power during the flight, even a lightweight drone could
cause critical injuries to anyone that it impacts. A possible
mitigation for this is a small parachute that deploys automat-
ically when the aircraft departs its standard flight envelope
helping the drone land safely on the ground while reducing
kinetic energy. Providing that RPAS could land safely with
a dead battery, it is worth designing a built-in self-recharging
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system so that it could maintain a GPS signal or even fly back
home. For instance, a small solar panel [109], [110] on top
of RPAS can help it recharge itself, possibly to the extent of
preventing an accident.

Beyond the safety issues, there are privacy concerns associ-
ated with RPAS technologies used in surveillance activities.
In early 2019, Autel Robotics announced their new EVO II
equipped with an 8K video and 42MP camera, which could
capture high-quality images from even distant aerial posi-
tions. As a consequence, this technology could be used to
secretly violate personal privacy since the victim could be
recorded through a window of a sky-high building. Acknowl-
edging all of the potential benefits of RPAS also comes with
some undesirable consequences such as the privacy issue,
high-pitched noise, the risk of injury due to critical system
failure and cyber security attacks. All of these factors will
surely trickle down to an update in the regulations governing
the use of RPAS.

Last but not least, the military applications of RPAS are
not new, as autonomous aircraft systems have been deployed
to conduct military attacks or for reconnaissance [44].
The advanced algorithms in object detection, such as You
Only Look Once (YOLO) [111] or Single Shot Detector
(SSD) [112], allow RPAS to become more intelligent in
identifying the target of interest. On the one hand, this could
prevent friendly-fire incidents, while on the other hand, the
malicious uses of RPAS in terrorism and criminal activities
are not beyond our imagination [113], [114].

VIII. CONCLUSION
This paper summarizes recent advancements in AI and RPAS
technologies that have led to an increased level of onboard
intelligence. With up to 80% of RPA accidents attributed to
human error, implementing higher levels of artificial intel-
ligence into RPAS control systems is a potential avenue to
reducing accidents and increasing safety.

Currently, none of the commercially available RPAS offer
level 5 (full autonomy) on the six-level scale of ACL or High
on the three-level scale. Thus, RPAS that fly entirely on their
own and learn along the way are still a thing of the (near)
future.

The main challenges facing fully autonomous RPAS that
rely mainly (or solely) on AI/ML algorithms to complete
a task more safely and/or efficiently than human operators
include: regulations and a clear definition of airworthiness,
relatively short battery life, privacy concerns, C2 lost link
behaviour, automated/assisted loss of VLOS recovery, and
lack of a comprehensive sense and avoid system.

Thus, for now, at least, a remote pilot’s presence will con-
tinue to be crucial to RPAS performance and safety until such
a time as fully autonomous systems can handle the enormous
amount of real-time data generated during a typical flight
with the necessary precision and accuracy. In parallel to the
required technology advance, the regulatory framework on a
global scale also needs to be modernized to allow for fully
autonomous RPAS operations.
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