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ABSTRACT The nitrate concentration in seawater is an important parameter for marine environment
monitoring, which is of great significance for the analysis of seawater ecosystems. In this paper, a novel
nitrate measurement system based on a narrowband tunable ultraviolet light source and support vector
regression (SVR)-based algorithm is proposed and demonstrated. The system is composed of a tunable
light source module, an optical fiber splitter, a temperature control module, a spectrometer and a data
processing module. By controlling the motorized rotation stage and motorized filter wheel, a continuous and
automatic narrowband tunable deep ultraviolet (DUV) light source module is developed. Different seawater
samples from Aoshan Bay (Qingdao, China), the Western Pacific, Sanggou Bay (Weihai, China) and the
South China Sea with nitrate concentrations of 0-102 µmol/L are measured by this system based on a
narrowband tunable DUV light source and the results are compared with those of a broadband DUV light
source system. The calculation model is established based on the SVR algorithm with/without temperature
and salinity correction (TSC), and the prediction results are compared with those of the in situ ultraviolet
spectrophotometry (ISUS) algorithm. The results show that the method based on a narrowband tunable light
source system and the TSC-SVR algorithm has the best performance in predicting the nitrate concentration,
where the root mean squared error (RMSE) decreased by 29.16% (from 1.20 to 0.85 µmol/L) compared
with the results of the broadband light source system, and the error range is from -3.01 to 2.99 µmol/L.
The proposed method in this paper has the potential to provide more accurate measurements in marine
environment monitoring.

INDEX TERMS Nitrate sensor, narrowband tunable light source, ultraviolet spectrophotometry, SVR
algorithm, spectral correction.

I. INTRODUCTION
Real-time and accurate measurement of nitrate concentra-
tions is of great significance for marine ecosystem research
and marine water quality assessment [1]. Currently, in situ
nitrate monitoring has become a trend in marine environ-
mental research. Therefore, it is necessary to develop a rapid
and in situ technology to monitor the nitrate concentration in
seawater with high accuracy.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Zuo .

The methods for in situ nitrate measurements include
the wet chemical method and ultraviolet spectrophotometry
method. In the research process of wet chemical methods,
flow injection analysis (FIA) was first proposed by Ruzicka
and Henson, which greatly promoted the development of
automatic onlinemonitoring instruments [2], [3]. Afterwards,
analytical in situ nitrate instruments were developed [4].
In recent years, microfluidic chip technology has been
developed in the field of water quality detection due to
its advantages of low power consumption, high sensitivity
and rapid analysis, this technology can detect trace nitrate
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TABLE 1. Comparison of the proposed system with existing state-of-the-art methods.

concentrations [5], [6]. The ion selective electrode (ISE)
method has also been commercialized for nitrate detection.
For example, YSI Inc. (USA) is committed to in-situ detec-
tion of nutrients in seawater based on the ISE method [7],
and its latest product, EXO2, can determine NO3-N with a
detection range of 0.1-1000 mg/L, an accuracy of ±2 mg/L
and a resolution of 0.01 mg/L. Hach Company (USA) also
proposed theNO3D sc nitrate sensor based on the ISEmethod
with a range of 0.1-1000 mg/L NO3-N and a minimum detec-
tion limit of 0.5 mg/L NO3-N. However, this sensor is only
suitable for clean water with relatively simple compositions.
Moreover, with electrode consumption, the internal electro-
motive forcewill be decreased, which can causemeasurement
error. Therefore, the lifetime of an in situ sensor based on the
wet chemical method depends on the consumption rate and
effective working time of the chemical reagent, which limits
its long-term application in underwater measurements.

The method based on ultraviolet spectrophotometry can
directly measure nitrate without using chemical reagents.
In 1998, Finch and his research group designed an in-situ
sensor based on three wavelengths with a resolution of
0.21 µmol/L NO3- in seawater [8]. Since the temperature
and salinity affect the measurement, a correction algorithm
was developed for an in situ ultraviolet spectrophotometry
(ISUS) system. The results showed that the standard error was
two times lower than that without correction (from 1.4 down
to 0.65 µM) when the sensor was tested in the Southern
Ocean and Pacific Ocean [9], [10]. Afterwards, Pidcock and
his colleagues developed a low-power sensor (SUV-6) using
an improved algorithm and obtained a sensitivity as high
as ±0.2 µmol/L [11]. A few generations of in situ nitrate
sensors were developed by Sea-bird Scientific, which could
be used for various natural environments [12]–[14]. In addi-
tion, by integrating with other sensors and using salinity
or pH sensors to correct the measurement data [15], [16],

multiparameter sensors such as WTW UV705IQ NOx
and TriOS-NICO could achieve a measurement range of
0-100 mg/L and an accuracy of±(5%+ 0.1). However, many
experimental results obtained from different water environ-
ments have revealed that the measurement errors of some
commercial nitrate sensors are actually larger than the values
in their product technical manuals [17], [18]. Therefore, the
measurement accuracy for nitrate sensors remains a challenge
today.

A comparison of the proposed system with existing state-
of-the-art methods is shown in Table 1. At present, nitrate sen-
sors based on ultraviolet spectroscopy mostly use broadband
light sources, which do not conform to the monochromatic
light incident requirement of Lambert-Beer’s law. Moreover,
the output of these sensors slightly deviates from those of
the high-precision autoanalyzer and must be further cali-
brated against the reference concentrations to obtain final
high accuracy values [11]. In recent years, the support vector
regression (SVR) algorithm has shown powerful performance
in the prediction of practical engineering problems due to
its flexibility and easy implementation. For example, Sun
et al presented a new hybrid approach of SVR and fruitfly
optimization algorithms to predict scour hole geometry below
ski-jump spillways. The results show that the developed
hybrid model is a robust approach and improves the precision
level by∼ 8% compared with the simple SVR algorithm [19].
Taghizadeh-Mehrjardi et al proposed an SVR algorithm with
wavelet transformation (W-SVR) to estimate the soil salinity
in arid regions. Using an uncertainty estimation based on
local errors and clustering methods, W-SVR showed a better
performance than SVR in predicting the soil salinity [20].
Shahaboddin et al used different machine learning-based
models, including improved SVR algorithms to predict soil
temperature at different depths and wave heights in coastal
waters, which indicates a certain prediction ability of the
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SVR algorithm in multivariate nonlinear regression analy-
sis [21], [22]. Therefore, to optimize the measurement tech-
nology based on the existing ultraviolet spectrophotometry
method (including making such measurements consistent
with Lambert-Beer’s law and directly obtaining more accu-
rate results), a nitrate measurement system based on a nar-
rowband tunable ultraviolet light source with a temperature
and salinity correction (TSC)-based SVR algorithm is first
proposed and demonstrated in this manuscript. The results are
compared and analyzed to verify the feasibility of the system
with a narrowband light source, which lays the foundation for
nitrate sensor optimization.

II. THEORY
A. WAVELENGTH-TUNABLE PRINCIPLE BASED ON A
MULTILAYER INTERFERENCE FILTER
For a multilayer thin film filter, the optical path difference
is fixed between each layer. According to equivalent theory,
the multilayer film can be simplified to a single-layer film
with a transfer matrix, as shown in figure 1. Assume that the
equivalent refractive index and thickness of the thin film filter
are N and h, respectively. When the light is incident on the
upper surface 1 of the filter from air (refractive index n0) with
incident angle θ , partial light is refracted into the filter with
refraction angle θ1. Then, the light continues propagating
with partial light reflected to upper surface 1 and partial light
emitted from bottom surface 2 [23].

FIGURE 1. Principle of multi-beam interference.

In this case, the optical path difference 1 and phase dif-
ference δ of two transmitted beams can be expressed as
follows [24]:

1 = 2Nhcosθ1 (1)

δ = 2π1/λ = 4πNhcosθ1/λ (2)

When the light is normally incident to surface 1 (θ = θ1 =
0), the central wavelength of the transmitted light is λ0.
The phase difference of the interference light can be
expressed as [25]:

δ = 4πNhcos0/λ0 = 4πNhcosθ1/λ (3)

Based on Snell’s law, we have [26]:

n0sinθ = Nsinθ1 (4)

Finally, the central wavelength λ of the transmitted light
can be calculated as [27]

λ = λ0

√
1− (n0sinθ/N )2 (5)

Equation (5) is the relationship between central wavelength
λ and incident angle θ when the incident light is oblique. For
a filter with known λ0, the central wavelength of the trans-
mitted light is only related to the incident angle. Therefore,
by changing the incident angle, the central wavelength of the
transmitted light can be tuned in a certain range to realize a
narrowband tunable light source.

B. ABSORBANCE PRINCIPLE
Lambert-Beer’s law is the basic law to establish the rela-
tionship between an absorption spectrum and the analyte
concentration. AbsorbanceAλ of themeasured sample at each
wavelength λ can be expressed as [10]:

Aλ = −log10
{
(Iλ − ID) /

(
Iλ,0 − ID

)}
(6)

where Iλ is the light intensity out from the sample, Iλ,0 is
the light intensity out from the deionized water, and ID is the
dark current of the detector. A higher nitrate concentration
corresponds to a greater decrease in light intensity and a larger
absorbance is. Therefore, the nitrate calculation model can be
established based on different seawater absorbanceAλ values.

III. MATERIAL AND METHODS
A. MEASUREMENT SYSTEM DESCRIPTION
1) STRUCTURE OF THE SYSTEM
The measurement system is designed based on photoelectric
sensor technology and spectral analysis technology. The sys-
tem structure is shown in figure 2, which is mainly composed
of a narrowband tunable light source module, a signal acqui-
sition module and a data processing module.

The narrowband tunable light source module is made by
splitting the broadband ultraviolet spectrum through interfer-
ence filters. One of the slots on the filter wheel is empty,
which can allow broadband light to pass through. The sig-
nal acquisition module includes a collimating lens, sample
cells, a beam-splitting fiber, a temperature control module,
temperature and salinity sensors and a spectrometer. The
beam-splitting fiber is used to monitor the light signal in
real time and reduce the influence of light fluctuations. The
seawater sample is in sample cell 1 (12 in figure 2), and
the deionized water is in sample cell 2 (13 in figure 2).
The temperature and salinity sensors are in sample cell 2 to
collect data for the calculation model. The optical path of the
underwater reflection probe is fixed at 10 mm. An ultraviolet
spectrometer (QE Pro, Ocean Optics Inc., USA) was used to
collect the measurement data. The data processing module
includes model establishment, absorbance calculation and
data analysis. The specifications of the system are shown
in Table 2.
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FIGURE 2. Structure of the measurement system. 1-Deuterium lamp (DH-2000, Ocean Optics Inc., USA); 2, 6-collimating lens; 3-motorized filter wheel
(with12 filter slots, Edmund optics Inc., USA); 4-ultraviolet interference filters; 5-motorized rotation stage (URS100bpp, Newport Corp., USA); 7-ultraviolet
fiber splitter (customized, Wyoptics Co., Ltd., China); 8-temperature control module; 9-temperature sensor; 10-reflection probe; 11-salinity sensor;
12-sample cell 1; 13-sample cell 2; 14-ultraviolet spectrometer.

TABLE 2. Specifications of the system.

2) DESIGN OF THE NARROWBAND TUNABLE ULTRAVIOLET
LIGHT SOURCE MODULE
The light source module is one of the core structures of the
system, which includes a deuterium lamp, a collimator lens,
a filter wheel, a rotation stage and several ultraviolet filters
with different central wavelengths that are placed in the filter
slots. A motor with a limit is used to control the filter wheel
to realize the switching of the filter slots. A stepper motor
is used to control the angle rotation stage to tune the light
incidence angle so that the central wavelength of each filter
can be continuously tuned in a certain range [28].

To accurately collect the real-time data at each wavelength,
the visual software interface is established based on the C++
and QT Creator 5.9 interface framework, and the RS232
protocol is used to communicate with the angle rotation stage,
filter wheel and spectrometer. The flow chart of software
control is shown in figure 3. By controlling the interface, the
filter position and serial ports are initialized, so that the angle
of the rotation stage and the filter position will be set at their
initial positions. The delay timer is used after each rotation
angle of the rotation stage or after the filter wheel reaches
the target position. The program determines whether the next
data acquisition step is required by determining the position
of the angle rotation stage and the filter wheel to ensure the
accuracy of the measurement data.

B. DATA ACQUISITION METHOD
After the deuterium lamp is preheated, the dark noise of
the system is first collected by the spectrometer. Afterwards,
a thermostatic water bath was used to make the sample
at a constant temperature. The temperature and salinity of
the sample were recorded by temperature and salinity sen-
sors, and the spectral data were collected by an ultraviolet
spectrometer. The visual software interface is used to com-
municate with the spectrometer in real time. For each mea-
surement, 6 filters with different central wavelengths must be
replaced, and the spectral data are recorded and stored by the
host computer once the filter turns to each different angle.

C. DATA PROCESSING METHOD
1) SPECTRAL CORRECTION METHOD
a: PREPROCESSING OF THE SPECTRAL DATA BASED ON A
NARROWBAND TUNABLE LIGHT SOURCE
The preprocessing flow chart of the measured data is shown
in figure 4. After the light passes through the filter, it is
necessary to determine the transmitted wavelength of each
filter at different angles. Therefore, the intensity data of
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FIGURE 3. Flow chart of the software control.

deionized water are measured and smoothed by the mov-
ing average (MA) method to determine the central wave-
length of each filter at different rotation angles. Afterwards,
the intensity spectrum of the seawater samples is measured
and smoothed. To obtain more data points to smooth the
absorbance spectrum, the absorbance of the central wave-
length ±3 nm of each filter at different rotation angles
is calculated. Afterwards, the absorbance corresponding to
the same wavelength is averaged. Using the interpolation
method, the wavelengths of the narrowband spectrum could
be identical to those of the broadband spectrum, and the final
narrowband absorbance spectrum was obtained.

b: TEMPERATURE AND SALINITY
CORRECTION (TSC) ALGORITHM
The seawater absorbance will be affected by temperature and
salinity [29]. Therefore, the TSC algorithm was established
according to a previous study [10]. First, the low nutrient
seawater (LNS, filteredWestern Pacific seawater) absorbance
was normalized to a salinity of 35. Based on the polynomial
regression equation, the absorbance model of LNS in the
range of the deep ultraviolet (DUV) spectrum can be estab-
lished, and the LNS absorbance (ASS (λ,T , S)) due to the tem-
perature effect at different salinities can be calculated. Hence,
the influence of temperature on absorbance can be subtracted
from the measured seawater absorbance, that is [30]:

A′ = AMeas − ASS (7)

where AMeas is the absorbance of the seawater samples.
However, the TSC-corrected data (A′) still show an offset due

FIGURE 4. Preprocessing flow chart of the measurement data.

to chromophoric dissolved organic matter (CDOM). There-
fore, a linear regression of absorption versus wavelength of
240-270 nm is subtracted from A′, that is [16]:

A′′ = A′ − (e+ f × λ) (8)

where e and f are the regression parameters. Finally, the
SVR regression algorithm can be used to establish the nitrate
calculation model.

2) SUPPORT VECTOR REGRESSION (SVR) ALGORITHM
SVR is a machine learning algorithm based on statistical
learning theory that can properly handle nonlinear regres-
sion and has the characteristics of global optimiza-
tion [31]–[33]. The established method of the SVR algorithm
is briefly described as follows. Suppose that {(x1, y1) , . . . ,
(xi, yi) , . . . , (xl, yl)} ∈ Rn × R is the training sample
set, where xi is the input data, yi is the output data,
and i = 1, . . . , l. y = f (x) is the estimated output
value. Then, the optimal linear regression equation can be
expressed as [34]:

y = w · ϕ (x)+ b (9)

where ‘·’ denotes the inner product, ϕ (·) denotes the nonlin-
ear transformation, and b is the offset. The relaxation factors
ξi and ξ∗i are introduced, and y can be transformed into the
following optimization problem [35]:

min
(
‖w‖2 /2

)
+ C

∑l

i=1

(
ξi + ξ

∗
i
)

s.t


yi − w · ϕ (xi)− b ≤ ε + ξi
−yi + w · ϕ (xi)+ b ≤ ε + ξ

∗
i

ξi, ξ
∗
i ≥ 0

(10)
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where C is the constant coefficient, C > 0, and ε is the
insensitive loss function. The optimization problem in (10)
can be solved by constructing a dual problem. Therefore,
the Lagrange function with dual variables is established as
follows [35]:

L
(
w, b, ξi, ξ∗i

)
= ‖w‖2 /2+ C

∑N

i=1

(
ξi + ξ

∗
i
)

−

∑N

i=1
ai (ε + ξi + yi − w · ϕ (xi)− b)

−

∑N

i=1
a∗i
(
ε + ξ∗i + yi − w · ϕ (xi)− b

)
−

∑N

i=1

(
ηiξi + η

∗
i ξ
∗
i
)

(11)

where ai, a∗i , ηi, η
∗
i ≥ 0 are Lagrange operators, and the par-

tial derivatives of w, b,ξi, ξ∗i should be 0. Finally, according
to the inner product kernel defined by the Mercer theory, the
regression model of SVR can be established as [35]:

y =
∑l

i=1

(
ai − a∗i

)
[ϕ (x) · ϕ (xi)]+ b

=

∑l

i=1

(
ai − a∗i

)
K (x, xi)+ b (12)

where K (x, xi) is the kernel function. The kernel functions
mainly include the linear kernel function, polynomial kernel
function, radial basis kernel function and sigmoid kernel
function. Different learningmachines can be constructedwith
different kernel functions [36]. In this paper, the radial basis
kernel function is used, which can be expressed as [37]:

K (x, xi)= exp
{
−‖x − xi‖2/

(
2σ 2

)}
(13)

where σ is the width of the kernel function.
Coefficient C , kernel function parameter σ and insensitive

loss function ε are three important parameters in the SVR
model. ε determines the support vector number and gener-
alization performance. σ reflects the width of the function;
a smaller σ corresponds to a more selective function. C is
used to control the model complexity, and the fitting cor-
relation coefficient increases with increasing C [38]. Some
results show that the measurement accuracy first increases
with the increase in C and subsequently decreases when C
exceeds a certain value.Moreover, with increasingC , the sup-
port vector number at the boundary will gradually decrease
until 0 [39].

3) SVR-BASED NITRATE CALCULATION MODEL
a: LIBSVM TOOL LIBRARY
LibSVM is an easy-to-use and effective support vector
machine (SVM) software package developed by Dr. Lin
of Taiwan University [40]. The software has the advan-
tages of less parameter adjustment, open source code and
easy expansion, and provides a cross-validation function.
Currently, it has become one of the most widely used SVM
tool libraries [41]–[43]. Therefore, LibSVM is used in this
paper to establish the calculation model.

TABLE 3. Parameters used for SVR model.

b: SVR-BASED MODEL ESTABLISHMENT
It has been proven that the calculation model with wave-
lengths of 217-260 nm can accurately predict the nitrate con-
centration [10]. Therefore, six bandpass filters with central
wavelengths of 220 nm, 228 nm, 239 nm, 250 nm, 260 nm
and 270 nm (Edmund Optics Inc., USA) are used to achieve
wavelengths from 212 nm to 270 nm. The establishment pro-
cess of the nitrate model based on SVR is shown in figure 5.
After data collection, the spectral data are preprocessed by the
method introduced in section 1.1. The size of each obtained
spectral data is 1× 304. TSC correction is performed on the
obtained spectral data, and absorbance data of 212-240 nm
with a size of 1 × 142 are selected as the input of the SVR
model.

When the radial basis function (RBF) is used as the kernel
function in the SVR model, two parameters must be deter-
mined: cost (c) and gamma (g). The cost c influences the
generalization ability of the model, and gamma affects the
distribution of data in high-dimensional space after RBFmap-
ping. At present, there is no recognized optimal parameter
selection method. Therefore, based on the empirical value,
c and g are initialized in a certain range and continuously
adjusted. By selecting the SVR model with the minimum
root mean squared error (RMSE) and maximum coefficient
of determination (R2), the parameters can be determined and
the calculation model is finally established. The calculation
formula of RMSE and R2 can be written as follows [30]:

RMSE =

√∑n

i=1

(
yi − yi,p

)2 (14)

R2 = 1−
∑n

i=1

(
yi − yi,p

)2
/
∑n

i=1

(
yi − ŷ

)2 (15)

where yi and yi,p are the reference and predicted concentra-
tions of the samples, respectively; ŷ is the mean value of the
reference concentration; n is the sample number. Generally,
a smaller RMSE corresponds to better model performance.
The final parameters for SVR and its kernel are shown
in Table 3.

D. MEASUREMENT METHOD
(1) A measurement system based on a narrowband tun-

able ultraviolet light source was established. The relationship
between the incident angles and the central wavelengths of
each filter was calibrated.

(2) The seawater of Aoshan Bay (Qingdao, China), West-
ern Pacific, South China Sea and Sanggou Bay (Weihai,
China) was filtered using a 0.4 µm filter membrane.
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FIGURE 5. Establishment process of nitrate calculation model based
on SVR.

AutoAnalyzer 3 (SEAL, Germany) was used to measure the
background nitrate concentration in these seawater samples.
The background nitrate concentrations are 1.99 µmol/L and
8.00 µmol/L in Aoshan Bay seawater and Sanggou Bay
seawater, respectively. For the seawater of theWestern Pacific
and South China Sea, the nitrate concentrations are less than
0.1µmol/L. Afterwards, different amounts of standard nitrate
(0-100µmol/L) were added to make seawater samples. All of
these samples were frozen at -20 ◦C in clean high-density
polyethylene bottles.

(3) The seawater sample data were measured at different
temperatures (4-25 ◦C at 1 ◦C intervals) by systems based on
broadband light source and narrowband tunable light source.
The wavelength range of the nitrate calculation model was
selected, and the TSC algorithm was established based on
Western Pacific seawater data.

(4) A nitrate calculationmodel based on the SVR algorithm
was established, and the measurement data of the systems
based on broadband light source and narrowband tunable
light source were compared and analyzed.

IV. RESULTS AND ANALYSIS
A. PERFORMANCE OF THE NARROWBAND
TUNABLE LIGHT SOURCE
At the initial operation of the rotation stage, it cannot be
guaranteed that the light is normally incident onto the filter.
Therefore, it is necessary to calibrate the relationship between

the angle of the rotation stage and the central wavelength of
the transmitted light. Based on (5), the angle versus wave-
length model for each filter can be calculated as:

f (x) = a
√
1− {bsin [π (x − c)/180]}2 (16)

where a is the central wavelength of the filter with normal
incidence, b is the value of n0/N , x is the angle in the angle
rotation stage, and parameter c compensates for the initial
angle position. Therefore, (x − c) is the incident angle of
each filter. The measurement results of these filters are shown
in figure 6, where (a)-(c) and (g)-(i) show the relationships
between rotation angle and transmitted central wavelengths
of the filters, and (b)-(f) and (j)-(l) show the intensity spectra
at different rotation angles of the filters.

Figure 6 shows that with increasing incident angle, the
central wavelength of the transmitted light moves to a short
wavelength. Considering the minimum effective wavelength
of the 220 nm filter, spectral data of 212-270 nm are selected
for modeling and calculation. The parameters in (16) are
shown in Table 4. The results show that the experimen-
tal data and theoretical data fit well with R2 values larger
than 0.999.

TABLE 4. Modeling parameters of each filter.

B. NARROWBAND SPECTRUM PRE-PROCESSING RESULTS
The narrowband spectrum data are processed by the MA
method and interpolation method. The preprocessing spec-
trum and original spectrum of Aoshan Bay seawater are
compared in figure 7, where (a) is the absorbance calculated
from the original intensity data, and (b) is the absorbance
spectrum after the data preprocessing. In figure 7, the trend
of the preprocessing spectrum is consistent with the original
spectrum, and the influence of noise is reduced. Therefore,
the preprocessing of the data is necessary for model estab-
lishment and data calculation.

C. TEMPERATURE INFLUENCE
The absorbance changes in the sodium bromide solution
(0.8 mmol/L), sodium nitrate solution (30 µmol/L) and
seawater from Aoshan Bay (Qingdao, China), the Western
Pacific, Sanggou Bay (Weihai, China), and the South China
Sea were measured in the temperature range of 4-25 ◦C with
a gradient of 1 ◦C. The measurement results at 217 nm are
shown in figure 8.

Figure 8 shows that seawater absorbance is strongly
temperature-dependent because bromide absorbance is
temperature-sensitive [10], [44], [45]. However, nitrate

168274 VOLUME 9, 2021



X. Zhu et al.: Design and Application of Nitrate Measurement System

FIGURE 6. Calibration results of different filters. (a)-(c) Relationship between the rotation angles and the transmitted central wavelengths for the
220 nm, 228 nm and 239 nm filters, respectively; (d)-(f) intensity spectrum at different rotation angles for the 220 nm, 228 nm and 239 nm filters
respectively; (g)-(i) relationship between the rotation angles and the central wavelengths for the 250 nm, 260 nm and 270 nm filters respectively;
(j)-(l) intensity spectrum at different rotation angles for the 250 nm, 260 nm and 270 nm filters respectively.

absorption is caused by the π → π∗ transition within the
molecule in the ultraviolet band, so the absorbance of the
nitrate solution does not obviously change with tempera-
ture [46]. As bromide is conserved with salinity, the bromide
concentration is reported as a source of salinity [47], [48].
To remove the influence of temperature and salinity, TSC

models are established based on LNS (filtered Western
Pacific seawater) data measured by a narrowband tunable
light source system and broadband light source system,
respectively. The parameters are shown in Table 5, which
shows no significant difference between these two TSC
models.
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FIGURE 7. Comparison of the original spectrum and preprocessing spectrum.

FIGURE 8. Relationship between temperature and absorbance of the
samples at 217 nm.

TABLE 5. Parameters of the TSC models.

D. ESTABLISHMENT OF THE NITRATE
CALCULATION MODEL
1) A NITRATE CALCULATION MODEL BASED ON THE
BROADBAND LIGHT SOURCE SYSTEM
The TSC algorithm was used for the training set (seawater
samples from Aoshan Bay, the Western Pacific, Sanggou
Bay and the South China Sea with nitrate concentrations of
0-102 µmol/L). Afterwards, the calculation model based on
the SVR algorithm was established to predict 380 testing
samples. The ISUS algorithm was applied to the seawater
data to make the comparison, which is shown in figure 9.
The calculation model based on the data of 217-240 nm was
established. The fitting function of the oligotrophic seawater

absorbance by the ISUS algorithm can be expressed as [10]:

A = (A+ B× T )× exp ((C + D× T )×W ) (17)

where T is the sample temperature in deg C, and W is the
wavelength minus 210 nm. The resultant regression param-
eters A, B, C, and D are 1.1500276, 0.02840, -0.3101349
and 0.001222, respectively. Since the predicted nitrate con-
centrations of the ISUS algorithm are notably linear with
the reference nitrate concentrations, a linear correction to
the ISUS values to obtain the final high accuracy values
was derived and applied [30]. Figures 9 (a)-(c) show the
prediction results of the TSC-SVR algorithm, (d)-(f) show
the prediction results of the SVR algorithm, and (g)-(i) show
the prediction results of the ISUS algorithm after linear cor-
rection. In (a), (d) and (g), the data of four seawater sam-
ples can be distributed around y = x, which indicates that
different algorithms can well predict the seawater samples.
(b), (e) and (h) show that the ISUS and SVR algorithms have
large error ranges, while those calculated by the TSC-SVR
algorithm are more concentrated at ±2.5 µmol/L. From (c),
(f) and (i), the SVR algorithm and ISUS algorithm have larger
error ranges than the TSC-SVR algorithm.Moreover, with the
TSC algorithm, the error range is reduced to±4 µmol/L, and
the residuals are more concentrated at±2µmol/L. Therefore,
the TSC-SVR algorithm has the best prediction performance
for the data based on the broadband light source system.

2) A NITRATE CALCULATION MODEL BASED ON THE
NARROWBAND TUNABLE LIGHT SOURCE SYSTEM
After spectral preprocessing and TSC correction for the
measurement data based on the narrowband tunable light
source system, the calculation model is established to cal-
culate the nitrate concentrations in testing seawater samples.
The results are shown in figure 10, where (a)-(c) show the
prediction results of the TSC-SVR algorithm, (d)-(f) show
the prediction results of the SVR algorithm, and (g)-(i) show
the prediction results of the ISUS algorithm after linear cor-
rection. Similar results are found for these testing samples
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FIGURE 9. Prediction results based on the broadband ultraviolet light source system. (a) Predicted nitrate concentrations of TSC-SVR algorithm
versus reference concentrations; (b) residuals of TSC-SVR algorithm; (c) histogram plots of the residuals of TSC-SVR algorithm; (d) predicted nitrate
concentrations of SVR algorithm versus reference concentrations; (e) residuals of SVR algorithm; (f) histogram plots of the residuals of SVR
algorithm; (g) predicted nitrate concentrations of ISUS algorithm versus reference concentrations; (h) residuals of ISUS algorithm; (i) histogram
plots of the residuals of ISUS algorithm.

in figure 10. Furthermore, the SVR-based algorithm has
much smaller residuals than the ISUS algorithm with an error
range of ±4 µmol/L. From (c) and (f), we see that with the
TSC algorithm, the residuals are further reduced, and the
error range is basically ±2 µmol/L.

The parameters of different algorithms are shown and
compared in Table 6. The experimental results show that
the SVR-based algorithms has better prediction performance
than the ISUS algorithm, including a smaller RMSE, a higher
R2 and a smaller error range. Table 6 shows that based on
the SVR model, the narrowband tunable light source system
obtained better prediction results than the broadband light
source system. For the SVR algorithm, the RMSE and R2

of the narrowband light source system are improved from
1.40 to 1.06 µmol/L (by 24.28%) and from 0.9980 to 0.9989,
respectively, and the measurement error range is reduced

from [−5.34, 5.16] to [−4.03, 3.01] µmol/L compared with
the results of the broadband light source system. For the
TSC-SVR algorithm, the RMSE and R2 of the narrowband
light source system are improved from 1.20 to 0.85 µmol
(by 29.16%) and from 0.9985 to 0.9993, respectively, and
the measurement error range is reduced from [−3.47,4.57]
to [−3.01,2.99] µmol/L compared with the results of the
broadband light source system. For the SVR-based results
of the broadband ultraviolet light source system, the RMSE
is reduced from 1.40 to 1.20 µmol/L using the TSC algo-
rithm. For the results of the narrowband light source system,
the RMSE is reduced from 1.06 to 0.85 µmol/L using the
TSC algorithm. Therefore, the TSC correction algorithm can
effectively increase the prediction accuracy of nitrate. Based
on the ISUS algorithm, the broadband light source system
has better prediction results than the narrowband light source
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FIGURE 10. Prediction results based on the narrowband tunable light source system. (a) Predicted nitrate concentrations of TSC-SVR algorithm versus
reference concentrations; (b) residuals of TSC-SVR algorithm; (c) histogram plots of the residuals of TSC-SVR algorithm; (d) predicted nitrate
concentrations of SVR algorithm versus reference concentrations; (e) residuals of SVR algorithm; (f) histogram plots of the residuals of SVR algorithm;
(g) predicted nitrate concentrations of ISUS algorithm versus reference concentrations; (h) residuals of ISUS algorithm; (i) histogram plots of the
residuals of ISUS algorithm.

TABLE 6. Comparison of different model parameters.

system, but the error range remains large. The SVR algorithm
uses multiple independent variables for regression, which can
well separate the overlapping spectral data. In conclusion,
the proposed method based on the narrowband tunable light
source system and TSC-SVR algorithm has the best predic-
tion performance.

A comparison of the results with the existing literature
is shown in Table 7. Nitrate was measured based on UV
spectroscopy in previous [18], [49]–[52]. In [18] and [50],
SUNA (Satlantic Inc., USA) was used to measure nitrate in
different water samples. With a larger measurement range,
the error range will increase. In [49], the final nitrate cal-
culation model was established based on the absorbance
at 220 nm and 275 nm, since organic matter and nitrate
do not have a strong absorption effect at a wavelength of
220 nm, while nitrate does not have an absorption effect
at 275 nm. Therefore, the absorption at 275 nm is used to
compensate for the nitrate at 220 nm. The detection range was
1-10 mg-N/L, and the error range was [-22, 34.28] µmol/L.
In [51], the absorbance at 302 nm was used to calculate the
nitrate content. In [52], scientists measured nitrate in turbidity
water samples. After smoothing the spectrum, turbidity com-
pensation was obtained, and the partial least squares (PLS)
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TABLE 7. Comparison of different methods for measuring nitrate in water
samples.

algorithm was performed to establish the calculation model.
The detection range was 0-0.82 mg-N/L, and the error range
was [-3.53, 10.7]µmol/L. References [49] and [51] show that
when nitrate is measured based on a single wavelength or
two wavelengths of absorbance, the error range is relatively
large.When it is measured based on amulti-wavelength spec-
trum, the measurement error range is smaller with a similar
detection range. Therefore, with more spectral information,
the multi-wavelength spectrum demonstrates better measure-
ment performance than single-wavelength or two-wavelength
absorbance. Compared with the results in the existing litera-
ture, the proposed method has the highest R2 value and small-
est error range. Therefore, the proposed method has better
performance for nitrate measurement in water samples and
can directly obtain the final results without further correction.

The temperature and salinity dependency of the residuals
based on the narrowband light source system is calculated.
The results are shown in figure 11, where (a) and (b) are the
results of Aoshan Bay seawater, (c) and (d) are the results
of Western Pacific seawater, (e) and (f) are the results of
Sanggou Bay seawater, and (g) and (h) are the results of South
China Sea water. Figure 11 shows that there is no obvious
temperature or salinity dependency for the sample residuals.

V. DISCUSSION
When using an ultraviolet spectrometer to determine the
nitrate concentration in seawater, interference by other sub-
stances in the seawater, such as bromide and organic mat-
ter, occurs [53]. The absorbance values of seawater from
Aoshan Bay (Qingdao, China), the Western Pacific, Sanggou
Bay (Weihai, China), and the South China Sea at 217 nm
were measured in the temperature range of 4-25 ◦C. These
seawater samples have similar absorbance change trends to
bromine ions, which is consistent with the results in previous
investigations [53]. Since the nitrate concentration inWestern
Pacific seawater is less than 0.1 µmol/L, the TSC correction
algorithm based on Western Pacific seawater is established
based on a previous study [10] to reduce the influence of
temperature and salinity on nitrate measurements.

The calculation results of different seawater samples are
compared and analyzed by differentmodels based on the SVR
algorithm. Since we only measured the seawater samples in
the laboratory, the influence of depth was not considered.

FIGURE 11. Temperature and salinity dependency results.
(a)-(b) Temperature and salinity dependency of Aoshan Bay seawater;
(c)-(d) temperature and salinity dependency of Western Pacific seawater;
(e)-(f) temperature and salinity dependency of Sanggou Bay seawater;
(g)-(h) temperature and salinity dependency of South China Sea water.

For both the broadband light source system and narrow-
band light source system, the TSC-SVR algorithm has bet-
ter prediction performance than the SVR without the TSC
algorithm, and this conclusion is consistent with [10]. The
reason is that the accuracy of nitrate prediction is improved
when the spectral signal due to bromide is removed from
the fit [9], which shows the effectiveness of the TSC algo-
rithm. When calculating based on the same algorithm (SVR
or TSC-SVR), the residuals based on the data obtained by
the narrowband light source system are smaller than those
of the broadband light source system, which indicates that
the narrowband light source system can be applied to nitrate
measurements with better performance. In conclusion, the
narrowband light source systemwith the TSC-SVR algorithm
demonstrates the best prediction performance with the largest
R2 value and lowest RMSE, which can be used to predict
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nitrate concentrations in different sea areas. However, the
SVR algorithm cannot self-learn. If the concentration exceeds
the concentration range of the calculation model, then the
accuracy will differ [35].

The measurement errors might come from several sources.
First, bending of optical fibers in the operation process might
cause a variation in absorbance, which will introduce a mea-
surement error. Therefore, all optical fibers should remain
straight and fixed to avoid this error. Second, it is necessary
to remeasure ID and Iλ,0 after the light source is turned on
each time, since the light intensity will slightly fluctuate, and
this drift of the lamp output is not a constant proportion at
each wavelength [10]. Third, the presence of bubbles and
biofouling in the probe will also affect the measured light
intensity. The spectral error caused by this situation does
not shift the baseline by a constant amount, which results in
measurement error. Therefore, the probe condition should be
handled in time to obtain accurate data.

The uncertainty of nitrate measurements using this
approach greatly depends on the composition of the sampled
water. Therefore, the uncertainty can be further reduced by
processing absorbance spectra using additional information
such as temperature, salinity, turbidity, CDOM and pres-
sure [54]. In addition to temperature and salinity, CDOM
has a certain absorbance in the ultraviolet wavelength range.
In open and coastal oceans, the absorption spectrum of
CDOM can be compensated by using a simple linear regres-
sion in the wavelength range for nitrate calculation [16].
Therefore, in this paper, the CDOM value is corrected based
on a linear regression model after TSC correction to reduce
the uncertainty. Other researchers also use additional infor-
mation to process the data to obtain better results. For exam-
ple, Sakamoto et al. studied the absorbance characteristics
of seawater at different temperatures. The results show a
clear reduction in measurement uncertainty when consider-
ing the influence of temperature, salinity and CDOM [10].
Zielinski et al. also found that the uncertainty decreased in
turbid costal water measurements when considering temper-
ature, salinity, turbidity and CDOM [16]. In addition, dur-
ing deep-sea measurements, the pressure affects the nitrate
measurement results. The results also show a reduction in
uncertainty after the pressure has been considered in a deep-
sea high-pressure environment [55].

The accuracy and sensitivity of the instrument are the
key factors to accurately and rapidly detect nitrate. There-
fore, future work will center on accuracy and sensitivity
improvement. Since all seawater samples were filtered using
a 0.45 µm filter membrane in this study, the influence of
suspended particle matter (SPM) on the nitrate measurement
was removed. However, for coastal sea water, the turbidity
effect is an issue. Therefore, a turbidity correction algorithm
will be studied to improve the detection precision of the
system. To establish a real-time detection system and ensure
its calculation speed, spectral data in the range of 212-240 nm
are directly used for calculation without applying the feature
extraction method, which simplifies the calculation model.

However, an appropriate feature selection method will be
considered in future optimized algorithms to improve the
accuracy. Furthermore, a UV narrowband filter with bet-
ter monochromaticity will be designed to cooperate with
the photomultiplier (PMT) to improve the sensitivity of the
system.

VI. CONCLUSION
A novel method to measure nitrate in seawater based on a
narrowband tunable light source and an SVR-based algorithm
has been proposed in this paper, which can realize real-time
data acquisition and accurate calculation of nitrate concen-
trations. The DUV light source module was designed based
on the wavelength-tunable principle of the interference filter.
The parameters of the ultraviolet filters were calibrated, and
the relationship between rotational angle and transmission
wavelength of each filter was determined. The TSC algorithm
based on LNS data was established in the temperature range
of 4-25 ◦C, and the nitrate calculation model was established
based on the SVR algorithm. The results show that based
on the system with a narrowband tunable light source, the
TSC-SVR algorithm demonstrates the best prediction results
with an RMSE of 0.85 µmol/L and an error range from -
3.01 to 2.99 µmol/L, which verify the advantages of the
proposed method. This method has pollution-free, real-time
measurements and high accuracy, which lays the foundation
for in situ and accurate nitrate measurements.
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