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ABSTRACT To accommodate the rapid change of radio propagation environment for mobile communication
scenarios, millimeter-wave beamforming requires instantaneous channel state information (CSI) to update
its operational parameters in real time, resulting in heavy system overhead. As the number of antennas
increases, the system overhead associated with beammanagement will increase dramatically. To address this
overarching problem, a neural network-aided millimeter-wave beamforming algorithm is proposed in this
paper. A new parameter, referred to as ‘‘beam adjustment interval’’, is proposed to evaluate the beamforming
performance. It is defined as the maximum time duration in which the signal-to-interference-plus-noise
ratio (SINR) of the user equipment can be maintained above the predefined threshold. Besides, a predictive
method of beam adjustment to maximize the beam adjustment interval is developed, which considers the
SINR not only at the current location but also future possible locations. Simulation results show that the
proposed algorithm can significantly increase beam adjustment interval and reduce the total number of
beam adjustments for the moving user equipment, thus reducing the system overhead 41.4% on average
over 10 randomly generated test traces.

INDEX TERMS Beamforming, beam adjustment interval, millimeter-wave, neural network.

I. INTRODUCTION
With the explosive growth of traffic demand in wireless
communication networks, millimeter-wave frequency band
(30∼300 GHz) has attracted increasing attention due to a
large amount of underutilized spectrum. As a feasible solu-
tion to improve network capacity, millimeter-wave bands
can be employed to achieve hundreds of times increase in
network capacity for the current 5G cellular networks [1].
In comparison with the low frequency band, millimeter-wave
suffers more severe path loss and is easily blocked, making
it necessary to utilize high-gain directional transmission and
reception. In addition, the short wavelength allows large-scale
antennas fabricated in a small physical space, making it pos-
sible to combine the millimeter-wave and massive multiple-
input multiple-output (MIMO) to obtain high gain [2], [3].
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Most millimeter wave beamforming algorithms claim both
the transmitter and the receiver update beamforming param-
eters in real time based on perfect channel state information
(CSI), especially in multiuser scenarios. On one hand, it is
hard to obtain perfect CSI for the fast-changing channel when
considering the highly-mobile millimeter-wave applications;
on the other hand, real-time update causes heavy system over-
head, including measurement, computation and processing
overhead.

So far, many standards working groups have conducted
research on beamforming and beam management. In third
generation partnership project (3GPP) Release 16 for new
radio (NR), beam management is defined as procedures to
acquire and maintain a set of transmission reception beams
that can be used for downlink and uplink transmission or
reception. The procedure of beam management includes at
least the following aspects: beam sweeping, beam measure-
ment, beam determination and beam reporting. The overhead
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of beam management and latency reduction are also consid-
ered in NR [4]. Beam management procedures should also
flexibly support different antenna configurations [5]. In addi-
tion, a coexistence manager has been introduced in various
standards to coordinate interference among neighboring cells
of different networks [6]. However, when the user equip-
ment (UE) is moving, the beam pattern has to be frequently
updated so as to avoid harmful interference to the neighboring
cells, also resulting in heavy system overhead. Some gen-
eral guidelines for the selection of the beam management
parameters were provided in [7]. The performance of the
beam management schemes is assessed in terms of detection
accuracy, reactiveness, and overhead. And the overhead is
defined as the ratio between the amount of time and frequency
resources allocated to beam management operations and all
the available resources.

Recently, the application of artificial intelligence (AI)
algorithms including machine learning (ML) algorithms in
wireless communication has attracted a lot of attention in
research community. AI can be applied in the following
two beam management aspects: beam training and beam
tracking [8]. Beam tracking is a widely-adopted approach to
address the problem of device mobility. Generally speaking,
factors like direction, velocity and location need to be taken
into account for beam tracking. An intelligent millimeter-
wave beam tracking method with reinforcement learning
algorithm was proposed in [9]. The UE can always have an
excellent service with the best millimeter-wave beam for each
UE position. Besides, an adaptive beam management scheme
based on deep learning for mobile high-speed 5G millimeter-
wave networks was proposed in [10]. The proposed deep
learning architecture can predict the matching beam through
learning the mobility information and the matching beam of
the UE. To enable highly-mobile millimeter-wave applica-
tions, a novel integrated machine learning with coordinated
beamforming solution has been proposed. The solution can
overcome the challenges such as the use of narrow beams, the
sensitivity of millimeter-wave signals to blockage, the relia-
bility of highly-mobile links, the frequent handoff between
base stations in densely deployed networks, and the heavy
system overhead as detailed in [11]. In addition to the above
research, there are also researches using machine learning
beam management for millimeter-wave intelligent reflecting
surface (IRS) and unmanned aerial vehicles (UAV) [12], [13].

As a kind of machine learning algorithm, neural networks
have been applied to beamforming due to their strong non-
linear fitting ability, adaptive learning ability, and classifi-
cation capacity of complex data. In general, beamforming
can be seen as an adaptation problem, which can be imple-
mented by an artificial neural network. In [14], a phase
transmittance radial basis function neural network (RBF-NN)
beamforming for static and dynamic channels was proposed.
A beamforming neural network was designed to deal with
the power minimization problem in [15]. The functionality
of neural networks relies on good training data. Each record
of training data includes proper input and the corresponding

desired output. By off-line training, a neural network model
is established. Then it can operate online to give desired
output corresponding to any proper input. The existing neural
network-based beamforming algorithms usually aim to point
the nulls to interference and the main beam to the desired
signal. Input data is always the transformation of the corre-
lation matrix of the received signal, for the reason that there
exists sufficient direction information of the desired signal
and interference that can be learned by neural network.

Most of the prior research has been focused on developing
beamforming strategies and beam management. However,
there are few studies dedicated to the overhead reduction
of millimeter-wave beamforming [16]. To reduce the system
overhead, a machine learning-based approach, more specifi-
cally, radial basis function neural network is employed in this
paper to train the beam pattern and minimize the number of
beam adjustments for the moving UEs. The main contribu-
tions of this paper can be summarized as follows.
• A neural network-aided millimeter-wave beamforming
algorithm is proposed to reduce the system overhead.
The algorithm is suitable for mobile communication sce-
narios, and we formulate our beam adjustment problem
as a beam adjustment interval maximization problem.

• A new parameter, referred to as ‘‘beam adjustment inter-
val’’, is defined to evaluate the beamforming perfor-
mance and the system overhead. ‘‘Beam adjustment
interval’’ is defined as the maximum time duration in
which the signal-to-interference-plus-noise ratio (SINR)
of the desired UE can be maintained above the prede-
fined threshold.

• A predictive method of beam adjustment is presented to
maximize the beam adjustment interval, which considers
the SINR not only at the current location but also future
possible locations.

The rest of this paper is organized as follows: the system
model is presented in section II. Then in section III the
proposed neural network-aided millimeter-wave beamform-
ing algorithm is discussed in detail. After that, the perfor-
mance of the proposed algorithm is simulated and analyzed
in section IV. Finally, conclusion of this paper is given in
section V.

II. SYSTEM MODEL
Consider a scenario as shown in Fig. 1, where each base sta-
tion (BS) is equipped with a uniform linear array (ULA) ofM
antennas, and each BS can serve multiple users. In practical
applications, the BS can flexibly select uplink and downlink
beams according to needs. For downlink, it can adopt a
narrow beam with high gain to transmit, and for uplink, it can
adopt a wide beam with low gain to receive. For simplicity,
assuming that each BS serves one UE within its coverage
at a given time instance and the UE is equipped with an
omnidirectional antenna. The UE moves randomly, and it is
always connected with a beam from the serving BS.

In this paper, the neural network-based beamforming algo-
rithm directs the main beam to the desired signal by default,
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and the received signal yk of the UE served by the k-th BS is
represented as

yk =
√
PkhHkkwksk +

K∑
i=1,i6=k

√
PihHikwisi + zk (1)

where Pk is the transmit power of the k-th BS, hik ∈ CM×1

is the channel response vector from the i-th BS to the UE
served by the k-th BS, ( )H denotes the conjugate transpose,
wi ∈ CM×1 is the transmit beamforming weight vector of
the i-th BS, si is the modulated symbol with the unit norm
for the UE served by the i-th BS, and zk is the additive white
Gaussian noise (AWGN) at the UE served by the k-th BSwith
the noise power of σ 2

k . According to the above signal model,
the SINR of the UE served by the k-th BS is expressed as

SINRk =
PkhHkkwkwH

k hkk∑K
i=1,i6=k Pih

H
ikwiwH

i hik + σ
2
k

(2)

By maximizing the beam adjustment interval (i.e., the
maximum time interval during which the SINR of the desired
UE can be maintained above the predefined threshold), the
system overhead can be reduced while meeting the SINR
requirement of the desired UE. The beam adjustment interval
maximization problem can be further formulated as

wk = arg max
wl

1Tk

s.t. SINRk ≥ SINRthk
Pk ≤ Pmax

k (3)

where 1Tk is the beam adjustment interval of the UE served
by the k-th BS, wl is the l-th codeword in the selected code-
book, l = 0, 1, · · · ,L − 1, L is the number of codewords in
the codebook. SINRthk is the SINR threshold of the UE served
by the k-th BS, and Pmax

k is the maximum transmit power
of the k-th BS. Assuming that codebook-based beamforming
is employed, each column of the codebook is a codeword,
which represents the beamforming weight vector that can
form the corresponding beam pattern. In this paper, only
the beamforming weight vectors of the UE’s serving BS
are optimized, while the transmit power and beamforming
vectors of the other interfering BSs are fixed. Therefore, the
goal of the maximization problem is to obtain the codeword
wk of the serving BS with the maximized beam adjustment
interval.

III. NEURAL NETWORK-AIDED BEAMFORMING
ALGORITHM
In this section, we first present a neural network-aided mil-
limeter wave beamforming algorithm in detail. And then
discuss a new approach to obtain the training data, which is
used to construct the neural network for beamforming.

A. PROPOSED BEAMFORMING ALGORITHM
Tomaximize the beam adjustment interval for the desiredUE,
we need to choose the beam pattern that can provide satis-
factory performance at the current location as well as future

FIGURE 1. Illustration of millimeter-wave communication systems with
mobile user equipment.

possible locations. Therefore, a neural network needs to be
constructed to reach this goal based on a predictive method.
The procedures of the proposed algorithm are comprised of
the following four steps [17].
Step 1: an application scenario is chosen, which includes

the desired signal and the co-channel interference. For both
the desired signal and the co-channel interference, the chan-
nel condition can be divided into three types, namely, line of
sight (LOS), none line of sight (NLOS) and obstructed line of
sight (OLOS). For the LOS scenario, there is no obstruction
between the transmitter and the receiver. For the NLOS sce-
nario, there exist obstacles like buildings that will block the
signal transmission between the transmitter and the receiver.
For the OLOS scenario, there are obstacles like trees which
may increase the path loss to some extent. In addition, the
radio signal may experience rain attenuation and atmospheric
attenuation during millimeter-wave radio propagation [18].
Thus, atmospheric attenuation is considered in this paper,
although this is a negligible problem in microwave systems.
An application scenario can be any combination of three types
of the desired signal and the co-channel interference as shown
in Fig. 1. In this paper, we only consider the desired signal and
interference both under LOS scenario for simplicity.
Step 2: the training data is generated based on a predictive

method to train the neural network. Firstly, the beamforming
weight vectors and the corresponding array gain of the base
station antenna will be generated. And then, a 360-degree
judgment of the UEmovement direction is performed accord-
ing to the relative position between the UE and the serving
BS, combinedwith the SINR threshold. Finally, the SINR and
the beam adjustment interval can be calculated. This step will
be detailed in Section III.B.
Step 3: a neural network is constructed according to the

optimization problem as depicted by (3). The neural network
is constructed as a multi-classification model of beam weight
vector index. Any neural network algorithm that can solve the
multi-classification problem can be employed to establish the
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FIGURE 2. Block diagram of RBF-NN.

beam adjustment interval maximization model. RBF-NN is
adopted to address this issue in this paper.
Step 4: the established neural network is applied into

dynamic beam adjustment after training. When the SINR of
the desired UE cannot be satisfied, meta-data such as the
starting location for beam adjustment, moving direction of
UE, beamwidth and direction of the interfering beam will
be collected and input into the established neural network to
obtain the beam pattern with the maximized beam adjustment
interval.

A three-layer RBF-NN, as shown in Fig. 2, is adopted
in the simulation owing to its prominent merits such as
strong capacity in classification, fast learning convergence,
and strong nonlinearity fitting ability. Certainly, the RBF-NN
as a local approximation network can meet the real-time
requirements, despite it is prone to the phenomenon of abnor-
mal data when the data is insufficient. The possible problem
can be solved by fully learning the historical source domain
knowledge (i.e., the center vector of the radial basis function)
to make up for the deficiency of the generalization ability of
the current domain. The learning algorithm of RBF-NN based
on self-organizing selection center has two stages: the first
stage is a self-organizing learning stage in which the center
and the variance of basis function need to be learned; the
second stage is a supervised learning stage in which weights
between the hidden layer and output layer need to be found.

Generally, RBF-NN employs Gaussian function as radial
basis function. Assuming that there are NI , NH , NO nodes in
the input layer, hidden layer, and output layer, respectively.
The n-th value vn of the output vector v = [v1, v2, · · · , vNO ]
can be expressed as

vn =
NH∑
j=1

gj,ne
−
‖r−cj‖

2

2σ2j (n = 1, 2, · · · ,NO) (4)

The beamforming weight vector index with the maximum
beam adjustment interval vo is a single output in this paper.
r = [r1, r2, · · · , rNI ] is the input vector, which includes
starting adjustment location r1, r2, moving direction of UE
r3 in this paper. cj and σj are the central vector and standard
deviation of the j-th Gaussian function, respectively, and gj,n

is the weight from the j-th node of the hidden layer to the n-th
node in the output layer.

B. GENERATION OF TRAINING DATA
There are multiple ways to generate training traces, including
uniformly-interval sampling the azimuth angle of UE, the
distance from the serving BS, possiblemoving directions, and
other ways like street information-based prediction or random
mobility model-based prediction. In order to find the proper
beamforming weight vector that can satisfy the SINR of the
desired UE at most (if not at all) locations along the probable
trajectories, a uniformly-interval sampling traversal search
based predictive method is adopted to generate the training
data. The starting positions of the UE in the serving area
are uniformly sampled, and the possible movement directions
at each starting position are judged. If the location of the
next point is outside the serving area, no training will be
conducted in that direction. And then training traces including
all possible starting adjustment locations and possiblemoving
directions are generated.

A codebook is a matrix, each column of which represents
a beamforming weight vector that forms a certain beam pat-
tern. The most commonly used codebooks are beamsteer-
ing codebook and phase shift-specific codebook [19], [20].
Beams generated by beamsteering codebook are directed to
different directions for the reason that they are based on
array steering vectors on quantified angle of arrivals (AOAs).
While beams generated by phase shift-specific codebook are
directed to a specific direction, since the phases of antenna
elements are randomly chosen from a specific set of phases,
such as {±1,±j}. The generation procedures of beamsteering
codebook are as follows: assuming that the angular range of
serving sector is (−Φ/2,+Φ/2), and the number of code-
words in the codebook is L. Therefore mainlobe interval of
adjacent beams is Φ/(L − 1), and the l-th beam is directed
to ϕl = −Φ/2 + lΦ/(L − 1). Thus the l-th codeword wl is
represented as

wl =W (:, l) =
1
√
M

[1, ej
2π
λ
d sinϕl , · · · , ej

2π
λ
(M−1)d sinϕl ]T

(5)
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where W is M × L matrix of the codebook that forms diver-
sified beam patterns, wl is l-th column of codebook, λ is
wavelength of millimeter wave, d is spacing of the ULA, and
the operator ( )T stands for transpose.
Considering the millimeter-wave propagation model

derived from [21], the path loss could be obtained using

PL (d) [dB] = α + β10 log10 (d)+ ξ (6)

where d is the distance from BS to UE in meters, the values
of parameter α, β are the least square fits of floating intercept
and slope over the measured distances, and ξ ∼ N

(
0, σ 2

)
,

σ 2 is the lognormal shadowing variance. The values of α, β
and σ 2 are 61.4, 2, 5.8, respectively in 28 GHz LOS scenario
as shown in [21]. For each UE, let d be the distance between
UE and BS where beam exists. The receive power Pr in dBm
can be calculated by

Pr [dBm] = Pt [dBm]+ Gt [dB]− PL (d) [dB] (7)

where Pt is the transmit power of the BS in dBm, and Gt is
the antenna array gain in dB.

For the beam pattern of each training trace, the SINR of
the desired UE needs to be determined whether it can be
maintained above the required SINR threshold, and the beam
adjustment interval can be calculated. The calculation of UE’s
SINR needs to consider the interference from neighboring
cells. For each training trace, the beam adjustment interval
is calculated at the starting adjustment location by traversing
each codeword, and then take the codeword corresponding to
the maximum beam adjustment interval and record the beam
index. By traversing each training trace, the beam index with
the maximum adjustment interval of each training trace can
be found. Due to the considerations of the SINR of the desired
UE not only at the current location but also future possible
locations, intelligent prediction can be achieved to a certain
extent.

Then, a neural network model shown in Fig. 2 is
established as a beamforming weight vector classification
network. Input parameters of the neural network consist of
starting adjustment location, moving direction of UE. The
output of the neural network is the beamforming weight vec-
tor indexwith the correspondingmaximized beam adjustment
interval. The major procedures of the proposed training data
generation algorithm are shown in Algorithm 1.

IV. SIMULATION RESULTS
In this section, the performance of the proposed algorithm
is evaluated. Fig. 3 shows the training scenario and part
of the training traces. The cell radius of the serving BS is
30 m, the signal of the target UE (i.e., the desired signal) is
under the LOS, and the signal of the UE that interferes with
the BS (i.e., the interference signal) is also under the LOS.

Following the procedures described in Section III.B to gen-
erate training traces and training data. In order to ensure train-
ing efficiency and model accuracy, a compromised method is
adopted to generate training data according to the following
interval: the starting positions are taken every 1 degree in the

Algorithm 1 Training Data Generation
1: Adopt a uniformly-interval sampling traversal search

based predictive method to generate training traces in the
serving area;

2: Select a proper beam codebookW;
3: Set the required SINR threshold SINRth;
4: for each training trace do
5: Initialize transmit power Pt ;
6: for each beam pattern wl in the codebook do
7: Find out the corresponding beam adjustment inter-

val 1T as the UE moves along the training trace;
8: end for
9: Take themaximum value of1T as themaximum beam

adjustment interval and record the beam index;
10: end for
11: Obtain the corresponding w for each training trace with

the maximum 1T ;

FIGURE 3. Training scenario.

sector arc direction and every 1 m in the radial direction. The
possible moving directions are taken every 10 degrees within
the range of 360 degrees. After excluding those starting points
on the boundary of the serving cell, a total of 123868 training
data are obtained. The starting adjustment location and mov-
ing direction of UEwere taken as input, and the beamforming
weight vector index with the corresponding maximized beam
adjustment interval was taken as output to train the neural
network. This training process can be implemented by the
MATLAB Deep Learning Tool Box.

In order to verify the accuracy and generalization abil-
ity of the trained neural network model, the test trace is
generated by the random mobility model, which is different
from the method used in training data generation. Fig. 4(a)
and Fig. 4(b) show the difference between the two meth-
ods. Principles of random mobility model are as follows:
randomly choose a starting point in the serving sector; then,
move towards a randomly chosen ending point in the serving
sector with a certain velocity, which is equivalent to randomly
choosing a possiblemoving direction; repeat the last step until
the desired UE stops moving.
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FIGURE 4. Methods of training data generation and test trace generation.

TABLE 1. List of simulation parameters.

Table 1 lists the major simulation parameters. The transmit
power of the serving BS is the total power provided by the BS
transmitter. 30 dBm is the maximum transmit power of the
servingBS, which canmeet the basic communication require-
ments. For simplicity of simulation, the transmit power of
the interfering BS is actually the equivalent isotropic radiated
power (EIRP), and 5 dBm is the average of the radiated power
in all directions. The trained neural network is applied to real
time beam adjustment in the test trace. In the meantime, the
total number of beam adjustments during the random moves
is counted. And then the performance of beam adjustment is

FIGURE 5. Comparison of the CDF of SINR.

FIGURE 6. Comparison of the beam adjustment intervals.

compared between two beamforming algorithms, namely, the
proposed neural network aided beamforming algorithm and
a baseline beamforming algorithm. The baseline algorithm is
similar to the exhaustive search algorithm proposed in [22].
If the SINR of the UE cannot be met, the BS starts to scan the
beam through a predefined codebook. Once a beam higher
than the SINR threshold is found, this beam will be selected
to reach the UE.

Fig. 5 shows the cumulative distribution function (CDF)
curve of SINR under the two algorithms. It can be seen
from the figure that the beam adjustment algorithm proposed
in this paper works better and the complexity is reduced.
The probability of not reaching the SINR threshold is much
smaller than the baseline algorithm, therefore the superiority
of this algorithm is obvious. In the simulation, there are only
16 outages in 3182 test data, and the probability is only 0.5%.
As shown in Table 2, the proposed algorithm helps to decrease
the total number of beam adjustments from 608 to 316 when
moving along the same trace, so the processing overhead can
be reduced by 48.0%.

In Fig. 6, the beam adjustment interval presents an increas-
ing trend with the increase of SINR of UE. However, the
proposed algorithm has higher beam adjustment interval and
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TABLE 2. System overhead comparison with different system settings.

better SINR than the baseline algorithm. In the same search-
ing time, the method proposed in the paper has fewer adjust-
ments to the beam, and the frequency of beam adjustment is
slow. While the comparison method requires constant search
and adjustment of the beam, and scans the beam until a
satisfactory beam is found once the SINR of the desired
UE cannot be met, so the frequency of beam adjustment is
relatively high.

Fig. 7 depicts the bit error rate (BER) of the UE’s commu-
nication quality when moves randomly near the base station.
Fig. 7(a) shows the CDF of BER along the test trace, and we
take the logarithmic value of BER for comparison purposes.
In Fig. 7(b), the 47 trajectory points are selected at equal
intervals from the 3182 test data (e.g., a UE location point
to select every 68s). From the average BER of the UE in the
entire moving trace, the average BER of the method in this
paper is 2.1×10−5, while the average BER of the comparison
algorithm is 1.3 × 10−3. It can be seen that the BER of the
proposed algorithm is 2 orders of magnitude less than that of
the baseline algorithm. The possible reason is that the beam
of the baseline algorithm is narrow. It is easier to move from
an area with a high beam gain to an area with a low beam
gain when the user is moving. Therefore, the research on the
influence of beamwidth and beam type on user communica-
tion performance will be further research content.

Since the millimeter-wave frequency band is often
accompanied by wider bandwidth and more antennas, the
comparison of different antenna configurations and different
bandwidths is also listed in Table 2. When we use the same
antenna configuration, increasing the bandwidth will signif-
icantly reduce the processing overhead. The reason is that
the noise will be increased when increasing the bandwidth,
therefore the SINRwill decrease. In order to meet the UE per-
formance, the beam adjustment will be more frequent. How-
ever, the neural network-aided beam adjustment algorithm
can choose the beam that keeps the user performance longer
due to the existing learning foundation. Every adjustment will
reduce a lot of overhead compared to the baseline algorithm.
When the adjustment is more frequent, the cumulative effect
makes the total overhead greatly reduced. Similarly, with an
increase in the number of antennas, the beamwill be narrower
and more accurately aimed at the user, which also means
more frequent beam adjustments. It can be seen that the total
processing overhead can be reduced by 62.9%. In addition,
we also compared the algorithm performance at different
moving speeds of the UE. It is obvious that the overhead
reduction is higher when the UEmoves at a lower speed (e.g.,
0.5 m/s).

FIGURE 7. Comparison of BER.

Next, let us take the first 50 beam adjustments as an exam-
ple. As shown in Fig. 8, the vertical axis is the corresponding
time instance of the current beam adjustment index during
the random moves. The proposed algorithm significantly
increases the beam adjustment interval, and in the mean-
time, greatly reduces the total number of beam adjustments
(i.e., it is reduced from 608 beamforming adjustments to
316 adjustments).

For a small section of the moving trace of the desired
UE from 174 seconds to 190 seconds, the beam is adjusted
9 times with the beam index of [1 2 3 1 2 3 1 2 3] and the cor-
responding adjustment interval of [2 1 3 1 1 3 1 1 3] seconds
when using the baseline algorithm. In contrast, the beam is
adjusted only 3 timeswith the beam index of [9 11 14] and the
corresponding beam adjustment interval is as long as [8 2 6]
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FIGURE 8. Comparison of the first 50 beam adjustments.

TABLE 3. Comparision of overhead in different test traces.

seconds when using the proposed algorithm. The simulation
results show that the proposed beamforming algorithm can
significantly increase beam adjustment interval and reduce
the number of beam adjustments, thus reducing the system
overhead.

Table 3 shows the results of 10 simulations in different test
traces, including the number of beam adjustments N ∗d when
using the proposed algorithm, the number of beam adjust-
mentsNd when using the baseline algorithm, the system over-
head reduction, and the average system overhead reduction
in 10 simulations. It is clear that the method proposed in this
paper has fewer beam adjustments with an average of 328,
while the baseline method has frequent beam adjustments
and the average number of adjustments is 560. On the whole,
the average reduction in system overhead of the method pro-
posed in this paper is 41.4% in 10 simulations. Therefore, the
method proposed in this paper can greatly reduce the system
overhead.

The 3GPP provides frame structure and measurement sig-
nals for NR physical layer, both Frequency Division Duplex-
ing (FDD) and Time Division Duplexing (TDD) will be
supported [23], [24]. In millimeter-wave, TDD is generally
used. In 5G cellular systems, beam management is required
whether the UE is in initial access or in tracking stage.
Note that the reference signals used for beam measurement
are different. For the downlink, beam measurement is per-
formed based on the synchronization signal (SS) block in

FIGURE 9. SS blocks and CSI-RSs time-frequency resources
configurations.

TABLE 4. List of symbols and descriptions.

initial access stage. Beam measurement is performed based
on SS block and the channel state information-reference sig-
nal (CSI-RS) allocated to the UE in tracking stage. An SS
block is a group of 4 orthogonal frequency division mul-
tiplexing (OFDM) symbols in time and 240 subcarriers in
frequency. SS blocks are sent to the UE at a fixed period by
beam sweeping. Multiple CSI-RSs can be configured after
each SS burst, as shown in Fig. 9. In order to evaluate over-
head reduction and the improvement in system capacity, the
following analysis is carried out. All the symbols are shown
in the Table 4.

As the synchronization signal for initial access, SS block
needs to be sent periodically, while CSI-RS does not need
to be sent periodically but only triggered when the beam is
adjusted. In the entire beam management procedure shown
in Fig. 10, the BS first sends the SS block during initial
access. Then the UE determines the beam through beam
measurement and reports it to the BS. During tracking, the
BS sends SS block and CSI-RS to the UE to adjust the beam.
When adopting the proposed algorithm, the number of beam
adjustments can be reduced, and the transmission of CSI-RS
can be reduced due to the existing learning foundation. The
UE directly determines the beam and reports the beam infor-
mation to the base station.

The total number of time-frequency resources RSS sched-
uled for the transmission of NSS SS blocks is given by

RSS = NSS4Ts240∆f = 960NSSTs∆f (8)
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FIGURE 10. Beam management procedure.

Moreover, additional overhead is introduced by the trans-
mission of CSI-RSs after the SS burst, so the total number of
time-frequency resources RCSI is given by

RCSI = NCSINsTsρB (9)

Besides, UE needs to report beam management informa-
tion (e.g., cri-RSRP, ssb-Index-RSRP) to the base station
according to the 3GPP standard [25]. This will also occupy
time-frequency resources, which can be given by

RUE = 4TsNRB12∆f = 48TsNRB∆f (10)

Taking into account both the SS blocks, the CSI-RSs and
the beam report, the total time-frequency resources occu-
pancy ratio using the proposed algorithm and the baseline
algorithm are Ω∗ and Ω , respectively, which are given by

Ω = (RSS + (RSS + RCSI + RUE )Nd ) / (TSSBNd ) (11)

Ω∗ =
(
RSS +

(
RSS + R∗CSI + RUE

)
N ∗d
)
/ (TSSBNd ) (12)

Owing to the time-frequency resources saved by using
the proposed algorithm, the system capacity for the serving
BS can be improved. More specifically, the increase rate of
system capacity for the serving BS can be defined as

IC =
(
Ω −Ω∗

)
Nd/Tt (13)

Substituting (8)-(12) into (13), the final formula of the
increase rate of system capacity for the serving BS is

IC =
(RSS + RUE )

(
Nd − N ∗d

)
+ RCSINd − R∗CSIN

∗
d

TSSBTt
(14)

Supposing NSS = 64, Ts = 8.92 µs,1f = 120 kHz, Ns =
4, ρ = 0.72, B = 40 MHz, TSS = 10 ms, NRB = 4, NCSI =
25, Nd = 560, N ∗CSI = 1, N ∗d = 328, Tt = 3182 s, the result
is IC = 2.3%. In other words, the system capacity for the
serving BS can be increased by 2.3%. As indicated by (14),
the increase rate of system capacity is related to the number of
beam adjustments and total time-frequency resources occu-
pied in the beam management procedure. And the number

of beam adjustments is related to factors such as the antenna
configurations, the moving speed of the UE, the bandwidth,
the SINR threshold of the UE, the applicable channel model,
etc. For example, different channel models will result in
different calculated SINR, thereby affecting the number of
beam adjustments. When the number of base station antennas
increases, the beam pattern and beamwidth will change, thus
affecting the number of beam adjustments. In sum, the system
capacity for the serving BS can be affected by various system
settings and system scenarios.

V. CONCLUSION
Nowadays, the system overhead associated with beam man-
agement in millimeter-wave massive MIMO is an increas-
ingly prominent problem. In this paper, a radial basis function
neural network-aided millimeter-wave beamforming algo-
rithm is proposed to reduce the system overhead. By training
the RBF-NN based beam adjustment model with the max-
imum beam adjustment interval as the optimization target,
and applying the trained beam adjustment model to real-time
adaptive beam adjustment, the number of beam adjustments
can be greatly reduced for the moving user equipment. At the
same time, it can improve the communication performance
of the user equipment compared with the baseline algorithm.
Simulation results show that the proposed algorithm can
significantly increase beam adjustment interval and reduce
the total number of beam adjustments, thus reducing sys-
tem overhead remarkably, on average 41.4% in 10 different
test traces. Our study shows many factors have impacts on
the system overhead reduction, such as the bandwidth, the
antenna configurations, the moving speed of user equipment,
the applicable channel model, the beamwidth and so on. For
future work, it is worthwhile to evaluate the performance in
more practical scenarios.
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