
Received November 22, 2021, accepted December 12, 2021, date of publication December 15, 2021,
date of current version December 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3136025

A Comparison of Open-Source Home
Automation Systems
BRIAN SETZ 1, (Graduate Student Member, IEEE), SEBASTIAN GRAEF 2,
DESISLAVA IVANOVA 2, ALEXANDER TIESSEN 2,
AND MARCO AIELLO 1, (Senior Member, IEEE)
1Service Computing Department, University of Stuttgart, 70569 Stuttgart, Germany
2Master in Computer Science, University of Stuttgart, 70569 Stuttgart, Germany

Corresponding author: Brian Setz (brian.setz@iaas.uni-stuttgart.de)

This work was supported by the Netherlands Organisation for Scientific Research (NWO) in the Framework of the Indo-Dutch Science
Industry Collaboration Program with Project NextGenSmart Data Center (DC) under Grant 629.002.102.

ABSTRACT Homes are becoming an ecosystem of digital devices and appliances, which can be inter-
connected and controlled. This interconnection can be facilitated by a central smart hub on which home
automation software is deployed. Commercially available hubs, while easy to install and use, often support
a limited set of devices and protocols, and have a high total cost of ownership. Open-source home
automation systems provide an affordable and open alternative, bringing support for devices and services
that are unsupported by commercial alternatives. In recent years, the number of available open-source home
automation systems has increased drastically. Each system comes with its own set of functionalities and
limitations, making choosing a specific solution challenging, as a wrong decision may be costly. In this
work, we overview 20 of the prominent open-source home automation systems, from which we select the
four most promising ones. To evaluate and compare these systems, we identify key features from a set of
use cases and extract specific features for home automation. This results in a two phase study. In the first
phase, we perform a use case based analysis based on the extracted features. In the second phase, we perform
a criteria-based analysis with 34 criteria that covers aspects such as setup time, quality of documentation,
pricing, and hardware requirements. We also identify the commonalities in the architecture that emerge from
the systems. The results help to identify the strengths and weaknesses of the various systems and can help
the developer and the practitioner make an informed choice when selecting an open-source home automation
solution.

INDEX TERMS Home automation systems, Internet of Things, open-source projects, home automation
architecture.

I. INTRODUCTION
The Internet of Things paradigm embraces the idea that
devices, related to physical things, are always connected to
the Internet and able to provide data and actuate in the physi-
cal world [1]. Residential buildings are becoming a prominent
example of this trend as everyday objects are increasingly
equipped with digital controllers that are connected to home
local networks. These buildings are usually referred to as
smart homes. Typically, in smart homes, devices are con-
nected to a central hub on the local network or directly to the
Internet via a home router. IoT provides monitoring and con-
trol of physical spaces and instruments, [2], e.g., monitoring

The associate editor coordinating the review of this manuscript and

approving it for publication was Tyson Brooks .

the room temperature and keeping it within a given range
in a certain time of the day. Monitoring and control are the
foundation for home automation and, in turn, the enabler of
truly smart homes. The goals of a smart home are manifold.
They range from support to people with specific inabilities
or disabilities, to simply increase the comfort and pleasure of
home living. A goal that is becoming gaining relevance is that
of improving the energy efficiency and overall sustainability
of homes [3].

Today, we are able to talk about smart homes because the
pervasiveness of IoT devices and the ease of their instal-
lation and interoperation has brought them to the masses.
This has been a long journey. About 40 years ago, home
automation components were expensive and with non stan-
dardised interfaces, making them isolated components that

167332 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9750-2888
https://orcid.org/0000-0003-1974-1813
https://orcid.org/0000-0003-3953-2074
https://orcid.org/0000-0002-7452-5403
https://orcid.org/0000-0002-0764-2124
https://orcid.org/0000-0001-8691-0141


B. Setz et al.: Comparison of Open-Source Home Automation Systems

would not coordinate and cooperate with other home com-
ponents [4]. Vendors’ lock-in was the standard practice.
Slowly standards for home automation started to appear and
interoperability efforts occurring in other areas of ICT con-
taminated also the home environment. More than 15 years
ago, we proposed the use of XML based web services stan-
dards for resolving the home automation problem and we
illustrated an application for supporting the elderly in their
own homes [4], [5]. Today, the situation is very different.
Not only are internetworking and interoperation standards
widely adopted, but there are also commercially available
smart home hubs and even (open source) software for device
integration. Smart hubs facilitate the integration of products
from different vendors, such as the Fibaro Home Center 3,
Athom Homey, or the Samsung SmartThings Hub v3. While
these hubs are easy to install, and easy to use, they do have
their limitations. Typically, these hubs support only a few
protocols and device types, and have a high total cost of
ownership [6]. Vendor lock-in is also still a challenge that
consumers face when using commercial smart home hubs,
as these systems often promote the use of devices that are
manufactured by the same company. On the contrary, open-
source home automation systems, as open-source software
enables the use of well-developed system free of charge,
though quality control may suffer [7]. In recent years there
has been a significant increase in the number of free and
open-source home automation systems. Their open-source
nature allows them to provide support for hundreds, if not
thousands, of diverse devices, overcoming the vendor lock-
in issues that some of the commercial solutions have. At the
same time, there is no cost associated with the software itself,
which can often run on cheap single board computers such
as the Raspberry Pi. Therefore, the total cost of ownership
is also reduced. These types of systems have their own
features and limitations, as will become clear later in this
work.

The challenge today is thus that of selecting the appropriate
open-source home automation system. First of all, there is a
vast number of available systems, eachwith a varying number
of functionalities, different levels of support for devices and
protocols, and also variations in overall maturity and quality
of the software. Second, while vendor lock-in is not a critical
issue with these open platforms, migrating from one system
to another system is time consuming due to the lack of
migration tools. Finally, open-source projects come and go,
which means the longevity of the system also needs to be
considered. Projects with fewer contributors and low commit
activity in the community are at higher risk of becoming stale
or inactive. Therefore, it is important to be able to choose the
system that fits the requirements of the users. To the best
of our knowledge, there are no works that: (1) present an
overview of available systems, (2) identify which of these
systems are actively developed, or (3) perform any type of
comparisons between these systems to identify differences
in functional and non functional requirements, as well as
identify gaps in the state of the art.

The present work is multi-purpose: it is a framework which
can be applied to related domains by researchers, it is a tool
for the practitioner to help make an informed decision when
designing a home automation system, and it is an overview of
open-source software for smart homes for the hobbyist. This
work achieves these goals by evaluating 20 home automation
systems based on five core criteria, and making a selection
of the top four systems based on the combined score of
these criteria. These four systems are then methodologically
compared in greater detail. The detailed comparison consists
of two views: a use case based analysis to determine what is
supported, and a criteria-based analysis that considers other
useful aspects such as setup complexity and pricing. This
evaluation is practical in nature; to evaluate each system,
we installed and configured it on specific hardware. When
applicable, the criteria is evaluated using the deployed sys-
tem. Furthermore, a reference architecture for home automa-
tion is identified based on the commonalities that emerge
from the analysis of the four systems.

The rest of this paper is organised as follows. In Section 2,
we review related work and discuss the gaps in the litera-
ture. The methodology is described in Section 3, from initial
selection of the systems to the detailed criteria. In accordance
with the methodology, the system selection is discussed in
Section 4, as well as the emerging architecture. The use case
based analysis is the content of Section 5, while the following
Section 6 contains the analysis of the selected systems in
greater details using a predetermined set of criteria. The
discussion of the results from the comparisons is presented in
Section 7. Conclusions and open perspectives are the content
of the final section, Section 8.

II. RELATED WORK
Home Automation Systems and Smart Homes have been the
focus of many publications, though, to the best of our knowl-
edge, none of them review and analyze existing open-source
project for them in detail. Next we review recent surveys on
home automation systems.

Taiwo, et al. propose a taxonomy of home automation
systems, with the main focus on technology, trends, and
challenges [8]. The systems included come from existing
literature and are primarily closed-source studies with limited
to no adoption. The taxonomy highlights five components of
a home automation system: (1) application area, (2) automa-
tion layers, (3) protocols, (4) platforms, and (5) sensors.
These components are also important to study open-source
systems discussed in the present work. Taiwo, et al. also
identify trends and challenges in home automation. The cur-
rent research trends focus on: energy efficiency and energy
reduction, privacy and security, and innovative technologies.
Furthermore, the following challenges are identified: authen-
tication and authorization, privacy, high cost and incompat-
ibility, and energy management. The authors conclude by
stating that the next steps are the incorporation of home
automation systems within smart cities infrastructures.

VOLUME 9, 2021 167333



B. Setz et al.: Comparison of Open-Source Home Automation Systems

Jerabandi, et al. provide an overview of existing home
automation and IoT frameworks [9]. While their work rec-
ognizes the prevalence of generic commercial and open-
source systems, the focus is on academic works that address
very specific problems. Based on the review of 14 sys-
tems, the authors identify numerous design issues related
to home automation systems. The issues are: serviceability,
scalability, programmability, auto-configuration, centralised
vs. decentralised architectures, heterogeneity, transparency,
security, open standards, robustness, and energy efficient
communication. A generic framework for home automation
systems is briefly described. In our work, we recognise that
the issues identified by Jerabandi, et al. also exist in open-
source systems, and that some systems are more effective at
addressing specific issues.

Smirek, et al. investigate the criteria required for univer-
sally usable interfaces in the domain of home automation
systems [10]. From the user perspective three criteria are
identified: abstraction, pluggable user interfaces, and adap-
tive user interfaces. From the designer’s perspective the fol-
lowing three criteria are mentioned: modularity and clearly
defined interfaces, expandability, and openness. The authors
highlight that openness is an important prerequisite for
experts to contribute to the system. This confirms the findings
in our work that highlight the benefits of open-source home
automation systems. Our work differs in the fact that the focus
is not exclusively on user interfaces, and the criteria that are
defined in this work are less abstract and more granular.

Faroom, et al. perform a comparison of home automa-
tion approaches for people with a mobility or physical dis-
ability [11]. Their work focuses on six home automation
approaches which are specifically tailored at usability and
accessibility. The focus is on four aspects: ease of use, instal-
lation costs, scalability, and security. The authors conclude
that home automation systems are solidifying their position
in the market. While their focus is on highly customized and
tailored solutions, the focus of our work is on generic, open-
source home automation systems. The aspects covered by
Faroom, et al. are also relevant for the present work.

Derhamy, et al. focus on commercial IoT frameworks [12].
In their work they analyse 14 different frameworks and plat-
forms. There is particular emphasis on commercially avail-
able IoT frameworks for home automation, including: IPSO
Alliance, IoTivity, AllJoyn, and Thread. The authors recog-
nize that for a platform or framework to succeed they must:
(1) securely expose API’s for third parties, (2) provide proto-
col interoperability with third party API, as well as protocol
extensibility, (3) enable constrained devices to participate,
and (4) enablemanagement and governance of heterogeneous
networks of device and applications. While our work focuses
on freely available and open-source systems, we remark that
for home automation systems to succeed they need to adhere
to the same values as defined for IoT platforms and frame-
works, this can also be deduced from the results of our work.

Risteska Stojkoska, et al. feature a review of the state-of-
the-art in Internet of Things applications in smart homes [13].

They have identified five challenges related to this topic. First
of all, the use of edge computing shows great promise despite
a lack of adoption in existing platforms and frameworks. The
second challenge relates to big data, specifically regarding
the overall performance when handling big data. Selecting
the appropriate network protocols is another challenge, it is
commonly a trade-off between cost and performance. The
fourth challenge pertains to interoperability, which is caused
by a heterogeneous smart home landscape. Finally, security
and privacy is another challenge which is highlighted, which
is primarily due to the way data is transmitted wirelessly in
smart homes.

To summarize, to the best of our knowledge, there are no
works that present an overview of available home automation
systems, that identify which of these systems are actively
developed, or that perform comparisons between these sys-
tems to identify differences in functional and non func-
tional requirements, as well as identify gaps in the state of
the art.

III. METHODOLOGY
The approach that is taken in this work consists of three steps.
First, a list of home automation systems is compiled and
ranked. The list of systems is compiled by searching for open-
source systems on numerous search engines (Wikipedia,
Bing, Google) and online source code management platforms
(GitHub, BitBucket, GitLab, Launchpad). Search terms that
were used include: Home Automation, Building Automation,
IoT Platform. The top four home automation systems are
selected, based on their individual scores, for further analysis.
Next, a catalogue of 13 system features is created based
on 17 use cases, and each of the four systems is subjected to
this catalogue of features in order to determine which features
are supported. The final step is an extensive analysis of 34 dif-
ferent criteria to which the four systems are subjected, each
of these criteria are scored from 0 to 5. For the evaluation, the
systems are deployed on a ThinkPad E490 with an Intel Core
i5-8265U CPU. What follows is a description for each of the
three steps.

A. INITIAL SELECTION
There is a wide variety of open-source home automation
systems available. To reduce the number of systems that
are subjected to the detailed analysis, we perform an initial
selection by ranking each system based on five criteria. Each
criteria has a score i where i ∈ Z : i ∈ [0, 5]. The criteria
scores for each system are summed to obtain the final score.
The criteria for the initial selection are as follows:
S1 Commits: the number of commits to the source code

repository can be an important indicator of the level
of activity within a project. While not all commits are
of equal importance, their frequency is useful indi-
cator. The commit score is calculated according to
Equation 1.

s(x) = log10(x) (1)

167334 VOLUME 9, 2021



B. Setz et al.: Comparison of Open-Source Home Automation Systems

TABLE 1. Use cases and their corresponding features.

where x is the number of commits. When s(x) > 5 then
s(x) = 5.

S2 Stars: the number of stars on a source code repository
is comparable to the number of likes on social media
platforms. These stars are commonly used as a proxy
to determine the overall popularity of a repository
[35], [36]. The score for this criteria is calculated in
the same manner as the number of commits, using
Equation 1, where x becomes the number of stars.

S3 Latest Commit: the date of the latest commit is
checked in order to penalise inactive projects. This is
done by looking at the number of years since the latest
commit, and applying Equation 2.

scommits(x) =

{
5− x, if x ≤ 5
0, otherwise

(2)

where x is the number of years since the last commit.

S4 Documentation: the quality of the documentation is
crucial for home automation systems. For the initial
selection, if the system has any documentation, 5 points
are assigned. If the system has no documentation,
0 points are assigned. This is done in order to penalise
projects without any documentation. A more detailed
review of the documentation will be performed for the
top 4 systems, as part of the criteria-based analysis.

S5 Contributors: the number of people who contribute
to the home automation system are also taken into
account. The number of contributors is important for
multiple reasons. First of all, the longevity of the project
can be jeopardized when there are only a handful of
contributors. Furthermore, there is a positive correla-
tion between the number of contributors and the ease
with which the source code of a system can be extended
or modified. And finally, it is another indication of the

VOLUME 9, 2021 167335



B. Setz et al.: Comparison of Open-Source Home Automation Systems

TABLE 2. Initial selection results.

popularity of the system. The score for this criteria is
calculated using Equation 3.

scontributors(x) =


5, if x > 1000
3, if 100 < x ≤ 1000
1, if 2 < x ≤ 100
0, otherwise

(3)

where x is the number of contributors to the project.
In case home automation systems have identical total score

after evaluating all criteria, a tie breaker is decided as follows:
whichever system has the higher sum of scores for the stars,
latest commits, and documentation criteria. In case the scores
remain equal, the precise values of Equation 1 are used. After
determining the overall ranking, the top four systems are
selected, and these systems are analysed in great detail for
the remainder of this work.

B. USE CASE BASED ANALYSIS
The goal of the use case based analysis is to obtain a high-
level overview of the functionality which the four selected
home automation systems offer. The list of features to which
each of the selected systems is subjected has been extracted
from 17 different use cases. These use cases have been par-
tially selected from a survey by Abbas [14]. The remaining
use cases are defined based on the collective academic and
industrial experience of the authors. Each use case requires
the home automation system to provide a certain set of fea-
tures in order to fulfil the requirements. The collection of use
cases and the corresponding set of features that have been
extracted from the use cases is shown in Table 1.

The thirteen high-level features, that have been identified
based on the uses cases, are divided into five categories:
Visualisation (F1), Localization (F2), Notification (F3), Data-
Handling (F4), Interaction (F5). The high-level features of the
four selected systems will be evaluated. When a system sup-
ports a feature natively, or provides an official plugin (near-
native) then no points are deducted. If the feature is supported
only through third-party plugins or applications, or requires a

workaround, then 0.5 points are deducted. In case the feature
is entirely unsupported, 1 point is deducted. The final score
is calculated according to Equation 4.

sfeatures(x) =

{
5− x, if x ≤ 5
0, otherwise

(4)

where x is the number of points that are deducted for features
that are not (fully) supported. A complete description of each
of the features that have been identified based on the use cases
can be found in the Appendix A ‘‘Description of Features’’.

C. CRITERIA-BASED ANALYSIS
In the final step of the analysis, 34 distinct criteria are
evaluated for each of the four remaining home automation
systems. Similar to the initial selection, each criteria in this
part of the analysis also has a score i where i ∈ Z :
i ∈ [0, 5]. Where 5 indicates that a criterion has been fully
satisfied, and 0 indicates that the criterion is entirely unful-
filled. A complete description of each criteria can be found
in Appendix B ‘‘Description of Criteria’’.

IV. SYSTEM SELECTION
Home automation systems available range from recent
projects to quite mature ones. Based on the proposed method-
ology (see Section III-A), 20 systems are discovered and
considered for further analysis. As the number of systems is
great, a selection is made to reduce this number to 4 systems.
As part of the selection process, each of these systems are
evaluated based on the five metrics: commit count, number
of stars, date of latest commit, documentation, and number
of contributors. A total score for each system is obtained by
summing the scores of the individual metrics.
The results of the initial selection process are presented in

Table 2. The Table is populated with data collected on the
16th of July, 2021. The scores of the individual metrics for
each of the 20 systems are shown, as well as the total score
of each system. Based on the scoring, the top 4 systems are:
Home Assistant, Domoticz, openHAB, and ioBroker. These

167336 VOLUME 9, 2021



B. Setz et al.: Comparison of Open-Source Home Automation Systems

FIGURE 1. Home Assistant core system architecture [37].

are the systems that are selected and analysed in greater detail.
What follows next is a brief description of each of the selected
system, covering its history, how to contribute as a developer,
the software license that applies to the system, as well as
the architecture and conceptual model. And finally, based
on the commonalities between the systems, a generic home
automation architecture is defined.

A. HOME ASSISTANT
Home Assistant was founded by Paulus Schoutsen, and is an
open-source system maintained by a worldwide community.
It currently provides over 1.500 different integrations. These
integrations add support for new devices, adapter protocols,
user interface modifications or extensions, and the integration
of external services. The configuration of Home Assistant is
mainly done through the use of YAML-configuration files.
Though more configuration options are being added to the
user interface instead [38].

The Home Assistant core and its integrations are written
in the Python programming language. The architecture of the
system is shown in Figure 1. As can be seen in this figure,
the event bus is the core of the system, listening to and firing
events to other components. One of these components is the
StateMachine, used to keep track of the state of entities. Each
change in a state fires an event that is handled by the event
bus. The Timer component generates regular ’time changed’
events. The Service Registry allows other components to
register services, and allows these services to be discovered.

In Home Assistant, every sensor, controller, and actor is a
represented as a device which can be organized into groups.
Every device and integration is represented as one or more
entities, each having attributes representing the state of the
entity. For automation, there is the ability to create automation
rules which can be triggered by various things, including
certain states of entity attributes, when a user enters a defined

area, when the sun is set, or when the server restarts. In addi-
tion, the automation rules can have conditions to prevent the
execution of the rule if the conditions are not satisfied. Lastly,
there are actions that specify what should be executed when
the automation rule fires.

B. DOMOTICZ
Domoticz is a home automation system that is able to mon-
itor and configure a variety of devices. The first version
of Domoticz was released in December 2012. Thanks to
a responsive user interface, the system is usable on both
desktop and mobile devices. It is maintained by a large and
active community of developers.

Domoticz is implemented in the C++ programming lan-
guage. The project also implements its own web server, writ-
ten in C++ as well. Unfortunately, little documentation is
available on the architecture of Domoticz and on the under-
lying concepts of the project. However, Figure 2 shows an
example of a typical Domoticz setup. As is shown, sensors
and actuators are connected to Domoticz through MQTT.
The actuators can be triggered by automation rules defined in
an external system such as Node-RED, or Domoticz’s own
Blockly rule builder. The backend handles the incoming data,
which can then be displayed on the GUI.

C. openHAB
Open Home Automation Bus, commonly known as open-
HAB, is an ‘‘open-source home automation controller’’ [40].
The first lines of code were added to the project in 2010. The
project does not have a singular creator, instead, it has been
implemented by a community of volunteers. The openHAB
system is vendor-independent and it works with many proto-
cols and devices. This is one of its main strengths and goals:
providing a uniform user experience regardless of the vendors
and subsystems it interfaces with.

VOLUME 9, 2021 167337



B. Setz et al.: Comparison of Open-Source Home Automation Systems

FIGURE 2. Domoticz system architecture [39].

openHAB is primarily written in the Java programming
language. A representation of the openHAB architecture can
be seen in Figure 3. The figure clearly demonstrates that the
Event Bus is the central component of the system, enabling
communication between the other openHAB components.
Bindings enable uniform communication between the system
and the devices or services. Thanks to openHAB’s extensi-
bility, there are many different user interfaces available to
interact with the system, as well as a REST API.

Conceptually, openHAB consists of five important ele-
ments: Things, Channels, Bindings, Items, and Links. Things
are objects that are physically added to the system, and
that can provide one or more functions. A temperature and
humidity sensor is one physical Thing that provides two
functionalities: temperature sensing, and humidity sensing.
Each functionality of a Thing is exposed through a Channel.
Bindings are adapters, they enable access to Things through
the system and hide hardware specific details. Items are
stateful, and provide functionality that can be used by appli-
cation or in automation logic. A Link connects one or more
Channels to one or more Items. The act of linking Channels
and Items enables the functionality provided by an Item to be
access through that specific Channel. Figure 4 illustrates this
connection between Things, Items, Channels, and Links.

D. ioBroker
The first version of ioBroker was published in 2014 by the
company ioBroker GmbH. It is the successor of the CCU.IO
project, which was terminated in April 2015 [38]. The goal
of ioBroker is to integrate heterogenous smart home devices

and systems. At the time of writing, ioBroker offers 350+
adapters to integrate with different devices and systems. The
system is non-commercial software, and is developed and
maintained by volunteers. One of the main advantages of
ioBroker is that all configuration can be done through a web
interface. This makes the system accessible by a wide range
of users [38]. Additionally, ioBroker uses the local API of a
device, when this is supported, in order to bypass the online
cloud services of the vendors. The benefit of this approach is
that sensitive data remains local and any security vulnerabil-
ities that might exist in the cloud service are avoided [41].

The ioBroker core is primarily written in JavaScript. The
adapters are also written in JavaScript, though Typescript can
be used as well. The architecture of the system is shown
in Figure 5. It is clear from the figure that two databases
play an important role: the objects database and the states
database. The object database is responsible for storing meta
data and configurations, whereas the states database is used
to keep track of the state of devices and services. By default
in-memory databases are used, but there are adapters avail-
able to support other types of databases. Adapters are used to
integrate with different IoT devices and systems, resulting in
a loosely coupled architecture. The controller is responsible
for managing the adapter processes.

From a conceptual viewpoint, ioBroker is an extremely
modular system. Each module or adapter is responsible for
a specific function. Even the administration user interface is
developed as a separate adapter. A central coordinator, also
known as the js-controller, is responsible for managing the
adapters and realising the communication between them.

167338 VOLUME 9, 2021



B. Setz et al.: Comparison of Open-Source Home Automation Systems

FIGURE 3. openHAB system architecture [40].

FIGURE 4. openHAB conceptual architecture [40].

E. THE HOME AUTOMATION SYSTEM ARCHITECTURE
The architecture of a home automation system influences the
capabilities and the characteristics of the system itself. It is
clear that the architectures of the top four systems show a
large number of commonalities. On the basis of these, we dis-
cuss concepts, components, and designs that are present in
multiple systems and can be considered jointly core architec-
tural principles for a home automation system. Due to a lack
of documentation, especially with respect to system archi-
tecture, the Domoticz system is not included. This emerging
architecture is shown in Figure 6. What follows next is a
description for each of the components.
• Database is a critical component to store historical
device data. The database is generally also used to store
the current state of devices and other entities within
the system. Furthermore, it is also used to track all
devices and extensions. All three systems, Home Assis-
tant, openHAB, and ioBroker support a multitude of
database systems.

• Web-based User Interface is the most popular option to
interact with the home automation system, though not
the only one. While Home Assistant leans heavily on
a single user interface which is highly personalizable,
openHAB and ioBroker support multiple, entirely dis-
tinct, user interfaces each with their own strengths and
weaknesses.

• (REST) API to interact with the system by means other
than the web-based user interface. All of the investigated
systems have an API of some form and shape to enable
interactions with the system, such as triggering actuators
or automation rules.

• Event Bus is present in both Home Assistant and open-
HAB, the event bus plays a central role in facilitating the
asynchronous communication between the components.
The event bus is also used to listen to events generated by
devices or by the system itself. On the contrary, ioBroker
opts for a direct TCP/IP connection for communication
between components.

VOLUME 9, 2021 167339



B. Setz et al.: Comparison of Open-Source Home Automation Systems

FIGURE 5. ioBroker system architecture [42].

• Physical Device, such as a temperature sensor or relay,
needs to be represented in the home automation system.
Home Assistant simply refers to a physical device as
’device’, openHAB uses the label ’thing’. ioBroker does
not make a clear distinction, though in general physical
devices are abstracted and represented as the ’object’
data type.

• Virtual Device can represent a physical device that
has multiple sensors, and sometimes multiple actuators,
to uniformly abstract individual features provided by
physical devices. In Home Assistant, a virtual device is
called an ’entity’, while openHAB uses the name ’item’.
Again, ioBroker does not support such abstraction.

• Extensions are critical for home automation system
given the high dynamicity of the related ecosystem.
Extensions allow the systems to offer support for many
devices and services. Though, there is no agreement on
what they should be called; openHAB talks about ’bind-
ings’, HomeAssistant considers them ’integrations’, and
ioBroker uses the concept of ’adapters’.

• Rule Engine enables the automation of the home to
define and execute rules. Home Assistant and open-
HAB provide their own components to wire together
devices and events. ioBroker relies on extensions, such
as Blockly and Node-RED. Though both Home Assis-
tant and openHAB also support Node-RED.

V. USE CASE BASED ANALYSIS
The features supported by the four selected systems largely
overlap, though they are not exactly the same. Let us consider
the four system under the lenses of those identified in Table 1.
The support for each of these features is determined and
translated into a numeric score as described in Section III,
Equation 4. In order to determine which features are

supported, each system is deployed in practice in order to
verify the support of each feature. The results are summarised
in Table 3 where the symbol ‘‘X’’ indicates native or near-
native support of the feature; ‘‘O’’ indicates that the feature
is supported by means of a third-party solution, or that it
requires significant effort (e.g. writing custom scripts) from
the user; and finally, ‘‘-’’ indicates that the feature is not
supported.

F1.1 (ePaper / eInk Display): Home Assistant is the
only system that supports ePaper Displays natively. There are
third-party alternatives available for Home Assistant, such as
Basic-Hass-Dash or HASS eInk Display, which can display
the Home Assistant dashboard in an ePaper-friendly manner.
The remaining systems only support this feature through
third-party solutions. Domoticz has the ‘‘Dashticz’’ third-
party dashboard that could be user on ePaper devices with
a browser. For openHAB there is a third-party project called
PaPiRus-MQTT, which uses the lightweight message queue
MQTT to transmit the data from openHAB to the ePaper
device. For ioBroker a solution suggested in the community
forums is to use RPC calls and a Homematic display.

F1.2 (Dashboard): All systems have native support for
dashboards to display data and to control devices. Both Home
Assistant and ioBroker make use of the Lovelace UI. All
systems also support third-party dashboards. For example,
by connecting to an InfluxDB time-series database and using
the Grafana visualization platform.

F2.1 (GPS-Tracking): Home Assistant includes a native
companion app that can be installed on mobile devices to
enable detailed tracking information. No native support is
provided by Domoticz, though there are workarounds to
include GPS data or to use the GeoFence mobile app. open-
Hab includes native add-ons that offer integration with appli-
cations such asOpenPaths andOwnTracks to provide detailed

167340 VOLUME 9, 2021



B. Setz et al.: Comparison of Open-Source Home Automation Systems

FIGURE 6. The generic home automation system.

tracking. For ioBroker, the community provides third-party
adapters, such as ioBroker.places, which adds support for
mobile apps such as OwnTracks.

F2.2 (Presence Detection): All systems provide support
for detecting the users presence using IP-based approaches,
tracking the presence of mobile devices in the home net-
work. Additionally, HomeAssistant, Domoticz, and openHab
provide native support for Bluetooth Low Energy (BLE)
beacons. Third party adapters exist for ioBroker to enable
presence detection through BLE.

F3.1 (Mobile Notification): All systems support mobile
notifications. Email notifications are supported on all sys-
tems, and addons are also provided for Telegram notifica-
tions. Push notifications are also supported on all systems.

F4.1 (Sensor – Read): All systems support the reading of
sensor data from devices.

F4.2 (Device – Actuation): All systems support the actu-
ation of devices.

F4.3 (Automation Rule): The creation of automation
rules is an integral part of the dashboard provided by Home
Assistant and openHAB. Domoticz and ioBroker rely on

scripts written by the user, or the use of Blockly, a third-party
visual programming editor.

F4.4 (Media Streaming): This criteria of Media Stream-
ing is evaluated based on the support for the Real Time
Streaming Protocol. Home Assistant, openHAB, and ioBro-
ker have out-of-the-box support for it. Domoticz does not
offer native support for the protocol, though third-party
workarounds do exist.

F5.1 (Remote control): Home Assistant and openHAB
provide official mobile applications, for both Android and
iOS, that enable the remote control of devices connected
to the system. ioBroker only offers an official iOS applica-
tion, and a third-party Android application. Domoticz pro-
vides support for multiple third-party applications, such as
Domoticz for Android, and ImperiHome.

F5.2 (External API Calls): All systems have support for
external service REST API calls.

F5.3 (Scheduler): Home Assistant, openHAB, and ioBro-
ker offer native solutions for time-based triggers and schedul-
ing. Whereas, Domoticz relies on user-defined scripts or
Blockly functionality.

VOLUME 9, 2021 167341



B. Setz et al.: Comparison of Open-Source Home Automation Systems

F5.4 (Biometric User Authentication): The only system
providing native support from biometric features is Home
Assistant. There are official integrations available for Dlib
Face Detect, Facebox, and Microsoft Face Detect, among
others. Third-party projects also explain how to integrate fin-
gerprint recognition. For both openHAB and ioBroker, third
party projects are available that demonstrate the addition of
face recognition. Domoticz offers no support for this feature.

TABLE 3. Features overview: X (near-)native support, O 3rd-party
support, – no support.

VI. CRITERIA-BASED ANALYSIS
To complete the analysis of the system, after having studied
the functionalities derived from uses cases, we proceed with
checking the features identified in Section III-B. Each criteria
is evaluated, and a score between 0 (not fulfilled) and 5 (com-
pletely fulfilled) is assigned to each system. The practical
evaluation is performed on the previously deployed systems
by young junior domain experts.

C1.1 (Activity): All four systems are actively maintained.
The latest commit to the source code repository for each
system was made on the 16th of July, 2021. As a result,
the four systems receive the maximum score of 5 for this
criterion.

C1.2 (Developer Popularity): Popularity is based on the
Stargazersmetric as defined by Jarczyk et al. [43]. Themetric
is defined as follows:

f (x) = log10(x + 10) (5)

where x is the number of stars a source code repository has
received. Applying Equation 5 to each of the systems and
rounding to the nearest integer value yields the results shown
in Table 4.

C1.3 (Overall Popularity): The Google Popularity Index
is used to measure overall popularity. Figure 7 shows the

TABLE 4. Developer popularity.

trend of the relative popularity index over time. The value
represents the search interest relative to the highest point
on the chart. A value of 100 represents the peak popularity.
Scores are assigned based on the results of the latest relative
popularity as is shown in Table 5, where the most popular
system receives the highest score.

FIGURE 7. Google popularity index (2016 - April 2020).

TABLE 5. Relative popularity (2016 - April 2020).

C2.1 (Support Plans): None of the four home automation
system provide support plans. The support is provided by
the communities in the shape of chat rooms and discussion
boards. Therefore, for this category, all of the systems receive
zero points.

C2.2 (Minimum Hardware Requirements): Single
board computers such as the Raspberry Pi are popular hard-
ware platforms for home automation systems. Not only do
they have a small form factor, they also are one of the
most affordable hardware options available for these systems.
Table 7 shows the mapping between price and score. The
minimum hardware requirements for each system, their price,
and the score, are shown in Table 6. These prices are in
accordance with what is expected in the market for 2021.

167342 VOLUME 9, 2021



B. Setz et al.: Comparison of Open-Source Home Automation Systems

TABLE 6. Minimum hardware requirements.

TABLE 7. Price to score.

C2.3 (Recommended Hardware Requirements):
Table 7 shows the mapping between price and score. The
recommended hardware requirements for each system, their
price, and the score, are derived and shown in Table 8. These
prices are in accordance with what is expected in the market
for 2021.

TABLE 8. Recommended hardware requirements.

C3.1 (System Start-Up Time): Each home automation
system provides Docker container images for deployment.
Since Docker containers automate many of the installation
steps, using these containers is generally the fastest way to
setup a system. Therefore, the time to download and fully
initialise these containers is measured. The results are shows
in Table 9. Scores are assigned as follows, where time is
measured in seconds: 5 points for ≤ 40, 4 points for ≤ 80, 3
points for ≤ 120, 2 points for ≤ 180, and 1 point for ≤ 300.

TABLE 9. System start-up time.

C3.2 (Basic Sensor Setup): To evaluate this criteria,
a MQTT broker (Eclipse Mosquito) and a virtual MQTT
sensor are set up using Docker containers. The virtual MQTT
sensor generates random sensor data. The number of required
steps for each system to integrate this MQTT-based sensor is
measured. The results, shown in Table 10 show that setting
up the sensors requires a comparable number of steps, the

minimum is three for Domoticz and the maximum is 11 for
ioBroker.

TABLE 10. Interaction steps to setup an MQTT sensor.

C4.1 (Effort): To measure the effort, we consider the
implementation of the following task from the Smart Home
Scenario data set is measured: ‘‘During the day, whenever I
walked into the bathroom the light would come on. However,
after a certain time, when it is night, when I walk in the
bathroom I would want a much softer light to come on’’ [14].
All systems are tested with virtual sensors and lighting fix-
tures, which are set-up ahead of time. The automation rule
creation of Domoticz is tested through its integrated rule
engine Blockly.1 The creation of the automation rule and the
corresponding scene takes 43 clicks using Domoticz. In turn,
openHAB offers an experimental UI-based rule engine [44],
which is used in this test. Overall, it takes 70 clicks to install
the rule engine and create the necessary rules in openHAB.
Home Assistant comes with a built-in automation rule editor,
which is used in this test, taking 38 clicks in total to setup the
rules to fulfil the scenario. Due to an unexpected error within
a required module of ioBroker, the score for this system
cannot be evaluated. Table 11 provides an overview of the
results and the scoring, which is assigned by rank.

TABLE 11. Effort of creating the automation rules for the user story.

C4.2 (Task Time): The scenario and tasks used to evaluate
the Task Time criteria are identical to 41 (Effort). The same
setup is also used. In our evaluation, the time to complete the
task takes 1:39 minutes with Domoticz, 2:16 minutes with
openHAB, and 1:00 minute with Home Assistant. Because
of an error with a required module, ioBroker cannot be eval-
uated. An overview of the test result is shown in Table 12.

C4.3 (Extensibility): In terms of extensibility, Home
Assistant has 25 official widgets available for its Lovelace UI.
Panels can also be customized using ReactJS. Domoticz does
not have built-in widgets. There are ways the dashboard can
be customized, but they are quite limited, such as applying
skins and modifying icons. Domoticz can be used with a

1https://developers.google.com/blockly (June 21, 2020)

VOLUME 9, 2021 167343



B. Setz et al.: Comparison of Open-Source Home Automation Systems

TABLE 12. Completion time of the user story.

number of third-party dashboards, including Reacticz, New
Frontpage, and Dashticz. openHAB has 13 built-in widgets.
It also allows for inclusion of custom widgets, which can
then be accessed through the widget gallery. The fourth and
final system, ioBroker, has a considerable number of third
party widgets, that can be imported into the system. The
widgets can also be customized further by changing the CSS
attributes.

Home Assistant and openHAB both provide official UI
widgets and other means to customise the UI, therefore they
receive the maximum score of 5. The other two systems,
Domoticz and ioBroker, appear to only support third party
widgets, thus receiving a score of 3.

C4.4 (Responsiveness): All home automation systems
provide a UI that is responsive, ensuring that it functions on
smartphones, tablets, and other mobile devices. However, the
UI of Domoticz is lacking with regards to its responsiveness,
for example, the automation rule editor is borderline unusable
on a mobile device as it does not scale well. Therefore,
two points are deducted from its score. To conclude, Home
Assistant, Domoticz and openHAB receive full marks, and
Domoticz has a score of 3.

C5.1 (User Authentication): Domoticz, openHAB, and
ioBroker only offer basic-auth as a login method. Home
Assistant is the only system which provides webauthn as an
additional login method. In addition, Home Assistant sup-
ports Multi-Factor Authentication and 2-Factor Authentica-
tion for self-hosted solutions. The other systems only support
2FA for their online cloud-hosted solutions. Table 13 shows
the results. Basic-auth yields a score of 3, additional points
are given for webauthn support, as well as MFA/2FA support.

TABLE 13. Protected settings by authentication.

C5.2 (Multiple User Accounts): Multiple user accounts
are either supported (5 points), or not (0 points). All four
systems support multiple user accounts, therefore receiving
the full score of 5.

C5.3 (Authorization management): Both Domoticz and
ioBroker provide some form of authorization management.

Domoticz supports a single admin user and multiple regular
users, who can be invited by the admin. ioBroker has a similar
authentication concept to Domoticz, there is one admin user
and there can bemultiple regular users. However, in ioBroker,
users be separated into different user groups with different
permissions. Currently, Home Assistant does not provide
authorization management. Thus, all users have the same
level of access. openHAB also does not provide any kind of
authorization management. ioBroker receives a score of 5,
as it provides the most comprehensive authorization manage-
ment. Domoticz receives a score of 3, as the features are more
limited. Home Assistant and openHAB do not currently have
authorization management and therefore receive a score of 0.

C6.1 (Custom Extensions): All four home automation
systems provide the means for their systems to be extended
with additional functionality using custom extensions or plu-
gins. One thing of note is that ioBroker, unlike the other
systems, does not provide a well documented framework
for implementing extensions. As all systems support custom
extensions, they all receive the full score of 5 points.

C6.2 (Extension Count): The number of available
extensions for each home automation system is obtained
by analysing official wiki’s and available documentation,
as well as plugin repositories or marketplaces, when avail-
able. An overview of the number of available extensions for
each system can be found in Table 14. Score is assigned in
accordance with the system ranking.

TABLE 14. Extension count.

C6.3 (Quality of Documentation): The quality of doc-
umentation is defined by the following sub-criteria: 6(3)1
Actuality, 6(3)2 Completeness / comprehensiveness, 6(3)3
Examples), 6(3)4 Findability, 6(3)5 Readability, and 6(3)6
Skimmability. The overall quality of the documentation is
determined as the average over all sub-criteria. The final
scores are presented in Table 15. What follows next is a more
detailed analysis for each of the sub-criteria.

TABLE 15. Quality of documentation.

C6.3.1 (Actuality): The actuality of the documentation
is determined by the date of the last change. This data was

167344 VOLUME 9, 2021



B. Setz et al.: Comparison of Open-Source Home Automation Systems

gathered either from the documentation of the system, or from
its source code repository. At the time of writing, each of the
four system had their documentation updated within the last
two days, and therefore they all receive 5 points.

C6.3.2 (Completeness / Comprehensiveness): The com-
pleteness and comprehensiveness of the documentation is
determined by how often other sources besides the official
documentation had to be consulted for the analysis in this
work. These other sources may include forums and chat
rooms, or external websites. The scores are assigned as fol-
lows: 5 for a complete and comprehensive documentation and
rarely needing other sources, 3 for a mostly complete docu-
mentation where other sources had to be consulted multiple
times, and 0 in case there is no documentation or external
sources had to be primarily used to perform the analysis
in this work. Home Assistant scores full marks for its very
complete documentation, openHAB scores 3 points for suf-
ficient but incomplete documentation. Both Domoticz and
ioBroker are lacking critical information in their documenta-
tion, requiring external sources to be accessed regularly and
therefore receive a score of 0.

C6.3.3 (Examples): Home Assistant provides a separate
section dedicated to examples of many different use cases.
Therefore, it receives the full score for the availability of
examples criterion. Domoticz offers a manual that shows
how many of its features can be used, individually. Though,
it does not provide complete example use cases. Therefore,
Domoticz receives a score of 3. Both openHAB and ioBroker
do not provide any examples use cases in their documenta-
tion, and therefore receive a score of 0.

C6.3.4 (Findability): Since all of the home automation
systems have made it simple to locate the documentation,
either through links on their websites or via the source code
repositories, each of them receives the full score.

C6.3.5 (Readability): Each of the home automation sys-
tems use clear terms for the description of their system and
features. It is interesting to note that the same concepts have
different terms in different systems, but the terms are well
defined. Despite this, it is not difficult to understand the
similarities between the systems. Therefore, each of the four
systems receives a score of 5 for this criterion.

C6.3.6 (Skimmability): To determine skimmability, each
system’s documentation is analyzed in terms of: (1) infor-
mative headlines, (2) short paragraphs, (3) table of content,
(4) global index, and (5) glossary . If an item is partially or
not available, then 1 point is deducted from the score. The
results are shown in Table 16.

TABLE 16. Quality of Documentation - Skimmable.

C6.4 (Variety of Support): Each home automation sys-
tem has some presence on social media for support. Home
Assistant is on Twitter, Facebook, and Reddit, as well as Dis-
cord. Domoticz is on Facebook, Reddit, and Twitter, though
the Twitter account appears to be inactive. openHAB is on
Twitter, Facebook, Reddit, and YouTube. Though, both Face-
book and YouTube accounts appear to be inactive. ioBroker
is on Twitter, Facebook, and Reddit. In this case, the Twitter
account appears to be inactive. When it comes to email sup-
port, openHAB and ioBroker provide an email address, Home
Assistant does too but not for support purposes, andDomoticz
has no email contact details. Each of the four systems has a
forum available for support. The final score can be found in
Table 17.

TABLE 17. Variety of support.

C7.1 (Concurrency): To evaluate the concurrency crite-
rion, a virtual MQTT sensor is created and connected to each
of the home automation systems. The sensor updates at a
frequency of one message per second. The number of virtual
sensors is gradually increased until noticeable performance
issues arise. These performance issues can include, but are
not limited to, out-of-order message processing, data incon-
sistency, high system response time, UI freezes, or system
crashes. The systems are deployed on a Raspberry Pi 3Model
B+ using the preconfigured Docker containers that each
system provides. The virtual sensors and MQTT broker are
deployed on separate machines.

When testing, ioBroker was able to handle at least 100
concurrent sensors. However, at this point problems do arise
when displaying the real-time logs of the incoming sensor
data, which becomes notably slow until the page is refreshed.
Domoticz was able to handle up to 10 concurrent sensors,
at which point the processing of messages was notably
delayed, and the order in which the messages were processed
became inconsistent. Home Assistant was able to process the
data from 70 concurrent sensors. When increasing beyond
this number of sensors, Home Assistant is unable to process
themessages on time, and the visual representation of the data
will be delayed. Unfortunately, openHAB does not support
this automated test bench, and each virtual sensor has to be
manually configured. Therefore, only 10 sensors were set
up. These manual tests indicated that openHAB was able to
handle at least 10 concurrent sensors. Table 18 shows the
results, the score is assigned in accordance with the ranking.

C7.2 (Update Rates): To evaluate update rates, the same
setup as in 71 is used, with the difference that there is
only one virtual MQTT sensor. However, this single virtual

VOLUME 9, 2021 167345



B. Setz et al.: Comparison of Open-Source Home Automation Systems

TABLE 18. Maximum concurrent sensors.

MQTT sensor is able to transmit data at varying rates: 1,
10, and 100 messages per second. Tests show that all of the
systems are able to handle a single sensor with update rates
of up to 100 messages per second. The results are shown in
Table 19.

TABLE 19. Maximum update rates.

C7.3 (Scalability): Two of the four home automation sys-
tems that were examined offer horizontal scaling. ioBroker
supports amulti-host-mode setup, whichmakes it possible for
multiple instances to operate in parallel. And openHAB sup-
ports a special version called openHAB-cloud, that enables
off-loading to the cloud or a local cluster. Both ioBroker and
openHAB receive a score of 5, whereas Home Assistant and
Domoticz receive 0 points due to the lack of scalability.

C8.1 (Code reviews): Each of the home automation sys-
tems requires code reviews before a pull or merge requests
is accepted. Home Assistant and openHAB provide a con-
tribution document, in which the process to contribute to
the source code is detailed. Domoticz and ioBroker are less
restrictive, but do enforce code reviews. Therefore, all sys-
tems receive the full score.

C8.2 (End-to-End Test Metric): None of the four home
automation systems provides end-to-end tests, neither in their
main source code repositories, or their UI-specific source
code repositories. Therefore, a score of 0 is assigned to each
of the systems.

C8.3 (Formal Code Metric): The maintainability of the
source code is critical for the longevity of the project. Each
of the home automation systems provides a core source code
repository which contains the code for the backend of the
system. To determine the size of the backend, the lines of code
are determined for each of the core repositories. Scores are
assigned in accordance with the lines of code, where fewer
lines of code equates a higher score. The results are shown in
Table 20

C8.4 (Pipeline Support): Each of the home automation
systems uses some form of CI/CD pipeline to automate the
software engineering process such as testing, and the creation
of Docker images. All of the systems use either Travis or

TABLE 20. Lines of code of the core repository.

GitHubworkflows for this purpose. To conclude, each system
receives 5 points for this criterion.

C8.5 (Quality checks for 3rd party plugins): Home
Assistant provides an elaborate quality scale to determine the
quality of 3rd party plugins [45]. The focus of Domoticz is
more on the technical specification of the plugins, rather than
on the process that developers have to follow. openHAb on
the other hand, performs static code analysis, and provides a
detailed list of requirements for contributions [46]. ioBroker
ensures that all 3rd party plugins are checked before they
are made available in their adapter repository. Additionally,
there is a forum on which developers search for members to
evaluate the new plugins, and verify that they are functioning.
The final scores are as follows: Home Assistant, openHAB,
and ioBroker receive full marks for their elaborate checks.
Whereas Domoticz receives 3 points as their quality checks
are significantly less elaborate.

C8.6 (Unit testmetric): HomeAssistant makes use of unit
tests, though the available information on how they should be
written is limited. openHAB provides a detailed explanation
about how the unit tests and integration tests should be coded,
highlighting the importance of these tests in the project.
ioBroker also provides comprehensive documentation on the
practices that should be used when writing tests. Domoticz
on the contrary does not have unit tests. The three systems
that do have unit tests receive a score of 5, whereas Domoticz
receives a score of 0.

VII. DISCUSSION
The comparison of the systems on the basis of the use cases
and features has highlighted many similarities among the
currently available open source projects, but also some key
differences. What follows is a discussion of the findings of
the previous sections in terms of use cases realizability and
feature possession.

A. USE CASE BASED ANALYSIS (F1-F5)
The use case analysis has highlighted Home Assistant is
the highest scoring system, followed closely by openHAB;
ioBroker is in third place, and Domoticz has the lowest score,
as summarized in Table 3. Each system supports the basic
operations that one may expect from a home automation
system, such as reading sensor data, sending commands to
actuate devices, and creating automation rules. Though, none
of the systems have native support for ePaper and eInk
displays. That said, almost all functionality that is not sup-
ported natively can be provided by third party extensions or

167346 VOLUME 9, 2021



B. Setz et al.: Comparison of Open-Source Home Automation Systems

plugins. This highlights the strong points of open-source and
extensible home automation systems, which is extensibility
and the ability for anyone to contribute to the project. It is of
note to mention that the use cases were defined before any
practical evaluation, and that the use cases are considered to
be comprehensive for smart buildings, for both residential and
non-residential buildings. The fact that all systems are able to
support every use case, either natively or through extension,
demonstrates the maturity of these systems.

B. POPULARITY AND COMMUNITY (C1)
The popularity among developers, as well as users, are an
important factor to consider when choosing a system, as these
factors influence the available support and longevity of the
project. Table 21 summarises the results of the Popularity
and Community category, which consists of three individual
criteria. While all systems are actively developed by their
community of developers, there is a clear difference in overall
popularity. Home Assistant takes the lead in both Developer
Popularity, as well as Overall Popularity. Interestingly, while
openHAB appears to be the least popular among developers,
their overall popularity is second highest.

TABLE 21. Popularity and community score.

C. PRICING (C2)
The upfront costs can be a significant hurdle when first
purchasing a home automation system. Deciding on an open
source solution instead of a commercial system can help dras-
tically reduce them, while sacrificing paid support. Table 22
provides an overview of the scores related to the Pricing
category, considering both support plans and hardware costs.
First of all, none of the systems provides paid support plans.
For any kind of assistance, one has to rely on the com-
munity of developers and users. While commercially avail-
able closed-source home automation systems are expensive
(e250-e600), the hardware required to deploy the open
source systems considered in this work are significantly
cheaper. All four systems can be deployed on the Raspberry
Pi single board computer. The minimum and recommended
hardware requirements are nearly identical for all systems.
Note that we excluded the cost of the power supply and the
non-volatile memory card, as these costs are identical for all
four systems.

D. SETUP COMPLEXITY (C3)
The complexity of a system is an important aspect to consider,
while uncomplicated systems make it easy to connect hard-
ware to the system, a more complex system may offer more

TABLE 22. Pricing score.

options and functionality that can be configured. Table 23
presents the results of the Setup Complexity category. While
all systems are easy and quick to start from a fresh setup,
thanks to Docker support, there are still some differences
in the time it takes to start the Docker container. openHAB
starts the fastest, in 69 seconds. Whereas ioBroker takes
the longest, with 94 seconds. A bigger discrepancy can be
found in the number of steps it takes to setup a basic MQTT
sensor. In Domoticz this only takes 3 steps, whereas ioBroker
requires 11 steps.

TABLE 23. Setup complexity score.

E. USER INTERFACE AND USER EXPERIENCE (C4)
Many of the interactions with the home automation system
take place through the web interface provided. Therefore,
the experience and functionality that the interface offers are
important when deciding which system to adopt. Table 24
shows the results for the User Interface and User Experi-
ence categories.While HomeAssistant and Domoticz require
nearly the same number of clicks to setup an automation rule
(around 40), openHAB requires nearly double that amount
(70 clicks). The time it takes to setup an automation rule
also widely differs, from 60 seconds for Home Assistant, to
136 seconds for openHAB. When it comes to extensibility of
the UI, Home Assistant and openHAB support this function-
ality natively, whereas the other two systems have third party
support for extending the UI. Domoticz is the only system
which has a number of issues with its responsive design,
making it less prone to be used on mobile and handheld
devices. Unfortunately, 41 and 42 could not be evaluated for
ioBroker, due to an error in one of the modules.

F. SECURITY AND AUTHENTICATION (C5)
Home automation systems deal highly sensitive data in terms
of privacy, which should be managed with care. Table 25
presents the results of the Security and Authentication cat-
egory, which consists of three criteria. All four systems
provide support for basic-auth. Only Home Assistant pro-
vides MFA/2FA and webauthn support for their self-hosted

VOLUME 9, 2021 167347



B. Setz et al.: Comparison of Open-Source Home Automation Systems

TABLE 24. UI and UX score.

solution. The other systems provide MFA/2FA only in their
cloud-hosted solutions. Perhaps unsurprisingly, all four sys-
tems have support for multiple user accounts. Authoriza-
tion management is in general lacking; in most systems
there is either only two predefined roles (user and admin),
or just one single role that provides everyone with the
same level of access. The main exception here is ioBro-
ker, which provides the most detailed level of control over
permissions.

TABLE 25. Security and authentication score.

G. EXTENSIBILITY AND SUPPORT (C6)
A home automation system should provide support for as
many devices and protocols as possible. Though in prac-
tice not every system supports every device or protocol.
While popular protocols, such as Z-Wave and ZigBee, are
widely supported, more obscure or niche devices and proto-
cols may not be supported. Table 26 summarises the result
for the Extensibility and Support Category. While all sys-
tems provide support for extensions, the number of available
extensions varies widely. Home Assistant has over 1.600
extensions available, whereas Domoticz has about 80. The
quality of the documentation also varies widely, with Home
Assistant having excellent documentation, while ioBroker’s
documentation is clearly lacking, especially when it comes
to completeness and the inclusion of examples. All of the
systems rely heavily on the community to provide support
to users. The support is often provided via forums or social
media.

H. SYSTEM PERFORMANCE (C7)
Current trends show that there is an increase in the number
of devices and appliances that can be connected to home
automation systems [47]. Therefore, it is important that the
system is able to scale to support this increasing number
of home smart devices. Table 27 provides an overview of
the results for the System Performance category. The results

TABLE 26. Extensibility and support score.

show that ioBroker is best suited to handle many sensors
working concurrently. Domoticz appears to struggle with
more than 10. All systems support at least up to 100 messages
per second from a single sensor. Horizontal scalability is lack-
ing in Home Assistant and Domoticz, whereas both ioBroker
and openHAB support it.

TABLE 27. System performance score.

I. SOFTWARE QUALITY (C8)
The quality of software is not trivial to quantify, however,
there are indicators to the quality such as the presence of tests
(unit, e2e, etc.), lines of code, and the general processes and
checks in place when contributing to a project. Table 28 sum-
marises the results for the Software Quality category. Source
code reviews are present for all four systems. Interestingly,
none of the systems performs end-to-end testing, which could
benefit the overall user experience. Though unit tests are
performed by all systems with the exception of Domoticz.
ioBroker’s lines of code are significantly less than for the
other systems, with Home Assistant having by far the most
lines of code. Quality checks are also in place for third party
plugins, though Domoticz’s checks are not as elaborate as the
checks that are in place for the other systems.

TABLE 28. System software quality score.

J. DISCUSSION AND LIMITATIONS
While at first glance all four systems appear to offer very
similar functionalities, as deduced from the use case based

167348 VOLUME 9, 2021



B. Setz et al.: Comparison of Open-Source Home Automation Systems

TABLE 29. Overview of all categories.

analysis, on closer inspection, several differences emerge.
These differences are visualised in Table 29, which presents
an overview of the satisfaction of the criteria for each one of
the top four systems. The results show quite some variance for
each criteria going from two to five stars for some of them,
e.g., for criteria C7. This indicates that the systems are not
equivalent and making an informed choice when selecting
one will have consequences for the effort and success of
a home automation project. Furthermore, the importance of
each criteria may differ based on the desired application;
some deployments may desire high performance, while oth-
ers value the support of a wide range of devices. Therefore,
the criteria are not weighted: this should be done on a per-
deployment basis.

A limitation of the present work is that the results obtained
in the analysis are a snapshot of a specific moment in time.
The code base of these systems, especially for open source
projects, is highly volatile and ever changing as many con-
tributors are continuously making changes to the source code
on a daily basis. That said, the underlying architecture of the
systems is fundamental and therefore not as susceptible to
continuous changes. We therefore do not expect the common
architecture that emerges from the four systems to be sub-
jected to significant changes in the near future.

As the systems continuously change, it is challenging to
obtain a snapshot of critical privacy and security vulnerabili-
ties. Furthermore, these vulnerabilities are also strongly influ-
enced by the deployment environment: from the connected
IoT hardware, to the configuration of the operating system
on which the software is installed. Therefore, the analysis of
vulnerabilities is not included in this work.

VIII. CONCLUSION AND OPEN PERSPECTIVES
The selection of available home automation systems is
vast, making an informed decision when designing a smart
home is difficult. Not only because the available systems
offer different functionalities, but also because retroactively
migrating from one system to another one is not a triv-
ial task. This means that the expected longevity of the
open source project is of importance too. In this work,

these concerns are addressed by providing an overview of
the 20 most-known open source home automation systems,
and investigating the four most relevant ones in greater
detail.

Of these four systems, the architecture is analyzed and
seven distinct components that all systems have in common
are identified and discussed. We deem these components
to be essential parts of a modern home automation system
architecture. Furthermore, the use case based analysis shows
that almost all systems support the list of thirteen essen-
tial features. The support is either native or through third
party extensions, highlighting the importance of an extensible
home automation platform. A further analysis is done based
on thirtyfour criteria. This criteria-based analysis reveals the
strengths andweaknesses of the selected systems.With Home
Assistant presenting a very solid user experience, Domoticz
providing an uncomplicated setup, openHAB having strong
scores in all categories, and ioBroker offering great sys-
tem performance. It is for the practitioner or requirements
engineer to assign the appropriate weights to each criteria,
as each deployment will have distinct requirements. Signif-
icant shortcomings among the systems were also identified,
and include: the lack of role-based access control, no hori-
zontal scalability, and no options for enterprise or paid sup-
port. Finally, we have also described the common architecture
that emerges from the design of the four systems, identifying
the key components of which a home automation system is
comprised.

The present work serves several purposes. The basic ser-
vice is that of inventorising existing open source home
automation systems. The second one is to provide mean-
ingful features to actually evaluate these kind of systems.
The features and methodology adopted may also be useful
for research in other related fields beyond home automation
systems. The final, and perhaps, more relevant service is that
of acting as a decision tool for the practitioner and for the
developer who intend to deploy and contribute to open source
home automation systems.

APPENDIX A
DESCRIPTION OF FEATURES
What follows is the list of features and their descriptions.
These features were extracted from 17 different uses cases.
Each feature is categorized in one of 5 categories.

F1 Visualization
F1.1 ePaper/eInk: allows the user to employ a paper-

white display in a static way. Most commonly
used for low resolution wall displays.

F2.2 Dashboard: allows the user to create customised
dashboards, which can display a lot of live infor-
mation (e.g. news feeds, states of other sensors).
Also provides the user with control of various
devices from a single location.

F2 Localization
F2.1 GPS-Tracking: enables the system to track the

location of the user using GPS coordinates.

VOLUME 9, 2021 167349



B. Setz et al.: Comparison of Open-Source Home Automation Systems

F2.2 Presence Detection: detects the presence of a
human in an area of interest. Typically realised
with Bluetooth Low Energy beacons, sometimes
also realised with motion sensors. This includes
geo-fencing.

F3 Notification
F3.1 Mobile Notification: includes all types of notifi-

cations that can be received on a mobile device,
for example: e-mail, SMS, Telegram, WhatsApp,
push-notifications, and voice calls.

F4 Data-Handling
F4.1 Sensor – Read: forms the foundation of a smart

home, allows the system to collect data from
Internet of Things devices.

F4.2 Device – Actuation: forms the foundation of a
smart home, allows the system to actuate Internet
of Things devices.

F4.3 Automation rule: transforms the ‘‘Internet of
Things home’’ into a smart home. Rules can be
defined which react to certain events.

F4.4 Media Streaming: allows the user to video and
audio streams. It can be used for both surveillance
cameras and baby monitors.

F5 Interaction
F5.1 Mobile Remote Control: extends feature 42,

to enable of any Internet of Things device con-
nected to the system using a mobile application.

F5.2 External API Calls: enables the system to use
services on the Internet. For example to show
weather information to the user or interact with
an external calendar.

F5.3 Scheduler: allows a user to schedule an action
at a specific time. Also enables the creation of
recurring events.

F5.4 Biometric User Authentication: enables the user
to use biometric authentication. It can be used for
private information on dashboards via ‘‘face id’’
or fingerprint for door lock access control.

APPENDIX B
DESCRIPTION OF CRITERIA
What follows is the list of criteria and their descriptions. Each
criteria is categorized in one of 8 categories.

C1 Popularity and Community
C1.1 Activity: is the system actively maintained? This

is determined by the time of the latest commit to
the core repository.

C2.2 Developer Popularity: how popular is the sys-
tem amongst developers? This is measured
using the Stargazers Metric as defined by
Jarczyk et al. [43]. The metric makes use of the
number of stars that a source code repository has
received.

C3.3 Overall Popularity: what is the popularity
index of the system? The popularity index is

determined using Google Trends.2 The name of
the system is used as a search term. The mean
popularity over the last 24 months is used to
quantify this criteria.

C2 Pricing
C2.1 Support Plans: are there support plans available,

and what is their cost? The cheapest support plan
is considered.

C2.2 Minimum Hardware Requirements: what are the
minimum hardware requirements? And is the
cost associated with these requirement? Prices
are gathered from German retailers.

C2.3 Recommended Hardware Requirements: what
are the recommended hardware requirements?
And is the cost associated with these require-
ment? Prices are gathered fromGerman retailers.

C3 Setup Complexity
C3.1 System Start-Up Time: how much time does it

take to download and install the system? Only
fresh installations are considered. The time is
measured from download until the moment the
system user interface becomes responsive.

C3.2 Basic Sensor Setup: how many steps does it take
to setup the system and add a MQTT based
sensor? After the completion of all the steps,
the sensor data should be in the desired format,
ready to be displayed and used. A step in this
context is not individual clicks or keystrokes,
but a significant step in the overall process. For
example, opening the plug-in marketplace.

C4 User Interface and User Experience
These criteria will be measured by means of a self-
review in the context of a workbench use-case exper-
iment. The metrics defined by Sauro et al. [48] are
used.
C4.1 Effort: how much effort is needed to create the

required automation rules to fulfil a scenario?
The scenario is taken from the Smart Home Sce-
narios data set [14]. The results are measured
by the number of clicks necessary to finish the
tasks.

C4.2 Task Time: how much time does the user need to
complete the task from 41? The time required to
complete all tasks is measured.

C4.3 Extensibility: does the system allow for exten-
sion of the user interface? The number of avail-
able user interface widgets in the source code
repository or on the marketplace are measured.

C4.4 Responsiveness: does the system provide a user
interface that adheres to the responsive web
design principles? Responsiveness is the ability
to correctly render the user interface on a vari-
ety of devices with different display sizes, from
smartphones and tablets to 4K TV’s.

2https://trends.google.com/trends/

167350 VOLUME 9, 2021



B. Setz et al.: Comparison of Open-Source Home Automation Systems

C5 Security and Authentication
C5.1 User Authentication: is there any form of user

authentication available? If so, what type of user
authentication is supported?

C5.2 Multiple User Accounts: is it possible to create
multiple user accounts within the system?

C5.3 Authorization Management: does the system
provide role or attribute based access control,
to limit and control a user’s permission?

C6 Extensibility and Support
C6.1 Custom Extensions: does the system pro-

vide the possibility to implement custom
plug-ins?

C6.2 Extension Count: howmany extensions are avail-
able that extend the system to enable support for
different IoT devices and protocols? Other types
of extensions, such as user interface extensions,
are excluded.

C6.3 Quality of Documentation: the quality of the doc-
umentation is defined by six sub-criteria, adapted
from [49]–[51].
C6.3.1 Actuality: does the system provide

up-to-date documentation? The date of
the most recent change to the documen-
tation is taken.

C6.3.2 Completeness and Comprehensiveness:
does the documentation cover all aspects
of the system?

C6.3.3 Examples: does the documentation
include examples on standard techniques
to use the system.

C6.3.4 Findability: how easy is it to find the doc-
umentation? Is the documentation ref-
erenced on the homepage or the source
code repository of the system?

C6.3.5 Readability: does the documentation use
clear terms for describing the system and
its features?

C6.3.6 Skimmable: is the documentation made
to skim through quickly? The following
sub-criteria are investigated: (1) infor-
mative headlines, (2) short paragraphs,
(3) table of content, (4) global index, and
(5) glossary

C6.4 Variety of Support: does the system pro-
vide a variety of different support meth-
ods? This is determined by the availability of
e-mail support, forum support, and social-media
support.

C7 System Performance
C7.1 Concurrency: how many concurrent MQTT-

sensors are supported?
C7.2 Update Rates: howmany updates per second can

the system handle without performance drops?
C7.3 Scalability: does the system support horizontal

scaling?

C8 Software Quality
C8.1 Code reviews: does the system require code

reviews before new features are added to the
codebase?

C8.2 End-to-end Test Metric: does the system have
end-to-end tests?

C8.3 Formal Code Metric: how many lines of code
does the source code of the system have?

C8.4 Pipeline Support: does the system use Continu-
ous Integration / Continuous Delivery pipelines?

C8.5 Quality Checks for Third-Party Plugins: does the
system guarantee a certain level of quality of
third-party plug-ins added to the repositories?

C8.6 Unit Test Metric: what is the unit test coverage
level?

REFERENCES
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things

(IoT): A vision, architectural elements, and future directions,’’ Future
Generat. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[2] I. Lee and K. Lee, ‘‘The Internet of Things (IoT): Applications, invest-
ments, and challenges for enterprises,’’ Bus. Horizons, vol. 58, no. 4,
pp. 431–440, 2015.

[3] A. ElShafee and K. A. Hamed, ‘‘Design and implementation of a WIFI
based home automation system,’’World Acad. Sci., Eng. Technol., vol. 68,
pp. 2177–2180, Aug. 2012.

[4] M. Aiello and S. Dustdar, ‘‘Are our Homes ready for services? A domotic
infrastructure based on the web service stack,’’ Pervas. Mobile Comput.,
vol. 4, no. 4, pp. 506–525, Aug. 2008.

[5] M. Aiello, M. Zanoni, and A. Zolet, ‘‘Exploring web-service notification:
Building a scalable domotic infrastructure,’’ Dr. Dobb’s J., Softw. Tools
Prof. Developer, vol. 371, pp. 48–51, Oct. 2005.

[6] A. J. B. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon,
‘‘Home automation in the wild,’’ in Proc. SIGCHI Conf. Hum. Factors
Comput. Syst., May 2011, p. 2115.

[7] V. Vukovic and L. Rakovic, ‘‘Open source approach in software
development—Advantages and disadvantages,’’ Int. Sci. J. Manage. Inf.
Syst., vol. 3, pp. 29–33, Dec. 2008.

[8] O. Taiwo, L. A. Gabralla, and A. E. Ezugwu, ‘‘Smart home
automation: Taxonomy, composition, challenges and future direction,’’ in
Computational Science and Its Applications—ICCSA 2020. O. Gervasi,
B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan,
A. M. A. C. Rocha, E. Tarantino, C. M. Torre, and Y. Karaca, Eds.
Cham, Switzerland: Springer, 2020, pp. 878–894. [Online]. Available:
https://link.springer.com/chapter/10.1007%2F978-3-030-58817-5_62,
doi: 10.1007/978-3-030-58817-5_62.

[9] M. Jerabandi and M. M. Kodabagi, ‘‘A review on home automation
system,’’ in Proc. Int. Conf. Smart Technol. Smart Nation, Aug. 2017,
pp. 1411–1415.

[10] L. Smirek, G. Zimmermann, and D. Ziegler, ‘‘Towards universally usable
smart homes-how canMyUI, URC and openHAB contribute to an adaptive
user interface platform,’’ in Proc. IARIA, Nice, France, 2014, pp. 29–38.

[11] S. Faroom, M. N. Ali, S. Yousaf, and S. U. Deen, ‘‘Literature review on
home automation system for physically disabled peoples,’’ in Proc. Int.
Conf. Comput., Math. Eng. Technol. (iCoMET), Mar. 2018, pp. 1–5.

[12] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, ‘‘A survey of commercial
frameworks for the Internet of Things,’’ in Proc. IEEE 20th Conf. Emerg.
Technol. Factory Autom. (ETFA), Dec. 2015, pp. 1–8.

[13] B. L. R. Stojkoska and K. V. Trivodaliev, ‘‘A review of Internet of Things
for smart home: Challenges and solutions,’’ J. Cleaner Prod., vol. 140,
no. 3, pp. 1454–1464, 2017.

[14] T. Abbas. (Sep. 2018). Smart Home Scenarios. Accessed:
Dec. 14, 2021. [Online]. Available: https://figshare.com/articles/
dataset/SMART_HOME_SCENARIOS_27_09-2018_xlsx/7140428/1

[15] P. Schoutsen. Home Assistant. Accessed: Dec. 14, 2021. [Online].
Available: https://www.home-assistant.io/

[16] Domoticz Team. Domoticz. Accessed: Dec. 14, 2021. [Online]. Available:
https://www.domoticz.com/

[17] K. Kreuzer. Empowering the Smart Home. Accessed: Dec. 14, 2021.
[Online]. Available: http://www.openhab.org/

VOLUME 9, 2021 167351

http://dx.doi.org/10.1007/978-3-030-58817-5_62


B. Setz et al.: Comparison of Open-Source Home Automation Systems

[18] V. Khaeva. Iobroker–Automate Your Life–Open Source Automation
Platform. Accessed: Dec. 14, 2021. [Online]. Available: https://www.
iobroker.net/

[19] G-Labs Open Source Factory. Homegenie. Accessed: Dec. 14, 2021.
[Online]. Available: http://www.homegenie.it/

[20] Calaos. Accessed: Dec. 14, 2021. [Online]. Available: https://calaos.fr/
[21] C. Kratky. Wirehome. Accessed: Dec. 14, 2021. [Online]. Available:

https://github.com/chkr1011/Wirehome.Core/
[22] O. Bv. Openmotics. Accessed: Dec. 14, 2021. [Online]. Available:

https://wiki.openmotics.com/
[23] E. Nicoletti, M. Cicolella, G. Pulido de Torres, A. Mengoli, and

M. Mazzoni. Freedomotic. Accessed: Dec. 14, 2021. [Online]. Available:
https://freedomotic-user-manual.readthedocs.io/

[24] R. König. Fhem Wiki—Informationsportal Zum Fhem Smarthome-
Server. Accessed: Dec. 14, 2021. [Online]. Available: https://wiki.
fhem.de/wiki/Hauptseite

[25] K. R. Keegan.Misterhouse—It Knows Kung-Fu. Accessed: Dec. 14, 2021.
[Online]. Available: http://misterhouse.sourceforge.net/

[26] S. Strömberg. Opennethome. Accessed: Dec. 14, 2021. [Online].
Available: http://opennethome.org/

[27] H. Klein. Ago Control. Accessed: Apr. 15, 2021. [Online]. Available:
https://wiki.agocontrol.com/

[28] B. Morgan and B. T. Hill. The Thing System–Take Control of Things.
Accessed: Dec. 14, 2021. [Online]. Available: http://thethingsystem.com/

[29] V. Goel and S. Sharma. Äautomate. Accessed: Dec. 14, 2021. [Online].
Available: https://uautomate.herokuapp.com

[30] T. Giachi. Neon Homecontrol. Accessed: Dec. 14, 2021. [Online].
Available: https://neon-home-control.readthedocs.io/

[31] K.-D. GitHub. Pytomation. Accessed: Dec. 14, 2021. [Online]. Available:
http://www.pytomation.com/

[32] U. Freese. Smarthomatic. Accessed: Dec. 14, 2021. [Online]. Available:
https://www.smarthomatic.org/

[33] Smart Haus—How to Build the Most Robust and Secure Home
Automation System. Accessed: Dec. 14, 2021. [Online]. Available:
https://medium.com/free-code-camp/the-most-robust-and-secure-home-
automation-system-6d0ddbb39f29

[34] F. Wautier. Autobuddy. Accessed: Dec. 14, 2021. [Online]. Available:
http://frawau.github.io/AutoBuddy/

[35] A. Sanatinia and G. Noubir, ‘‘On GitHub’s programming languages,’’
CoRR, vol. abs/1603.00431, pp. 1–10, Mar. 2016.

[36] M. Papamichail, T. Diamantopoulos, and A. Symeonidis, ‘‘User-perceived
source code quality estimation based on static analysis metrics,’’ in Proc.
IEEE Int. Conf. Softw. Qual., Rel. Secur. (QRS), Dec. 2016, pp. 100–107.

[37] Home Assistant. Architecture. Accessed: Dec. 14, 2021. [Online].
Available: https://developers.home-assistant.io/docs/architecture/core

[38] P. Hüwe and S. Hüwe, IoT at Home. München, Germany: Carl Hanser
Verlag GmbH, May 2019.

[39] Domoticz Team. Domoticz MQTT Architecture. Accessed: Dec. 14, 2021.
[Online]. Available: https://www.domoticz.com/wiki/MQTT

[40] F. Heimgaertner, S. Hettich, O. Kohlbacher, and M. Menth, ‘‘Scaling
home automation to public buildings: A distributed multiuser setup for
OpenHAB 2,’’ in Proc. Global Internet Things Summit (GIoTS), 2017,
pp. 1–6.

[41] I. Fischer, ‘‘Weitergepuzzelt-die wichtigsten neuen erweiterungen der
smart-home-steuersoftware iobroker sein,’’ in Proc. Heise Medien, 2019,
pp. 178–179.

[42] IoBroker GmbH. IoBroker Architecture. Accessed: Dec. 14, 2021.
[Online]. Available: https://github.com/ioBroker/ioBroker/blob/mas
ter/img/architecture.png

[43] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A. Wierzbicki,
‘‘GitHub projects quality analysis of open-source software,’’ in Proc. Int.
Conf. Soc. Informatics, 2014, pp. 80–94.

[44] openHAB Community and the openHAB Foundation. Next-
Generation Rule Engine. Accessed: Dec. 14, 2021. [Online]. Available:
https://www.openhab.org/docs/configuration/rules-ng.html

[45] Home Assistant. Home Assistant Quality Scale. Accessed: Dec. 14, 2021.
[Online]. Available: https://www.home-assistant.io/docs/quality_scale/

[46] OpenHAB Community. Contributing to the Development of OpenHAB.
Accessed: Dec. 14, 2021. [Online]. Available: https://www.openhab.org/
docs/developer/contributing.html

[47] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, ‘‘Internet
of Things (IoT) for next-generation smart systems: A review of current
challenges, future trends and prospects for emerging 5G-IoT scenarios,’’
IEEE Access, vol. 8, pp. 23022–23040, 2020.

[48] J. R. Sauro,Quantifying the User Experience: Practical Statistics for User
Research, 2nd ed., J. Sauro and J. R. Lewis, Eds. Burlington, MA, USA:
Morgan Kaufmann, 2016.

[49] A. D. Scott,CollaborativeWebDevelopment. Newton,MA, USA: OReilly
Media, 2017.

[50] N. Carvalho, A. Simáes, and J. Almeida, ‘‘DMOSS: Open source soft-
ware documentation assessment,’’ Comput. Sci. Inf. Syst., vol. 11, no. 4,
pp. 1197–1207, 2014.

[51] A. Wingkvist, M. Ericsson, R. Lincke, and W. Lowe, ‘‘A metrics-based
approach to technical documentation quality,’’ in Proc. 7th Int. Conf. Qual.
Inf. Commun. Technol., Sep. 2010, pp. 476–481.

BRIAN SETZ (Graduate Student Member, IEEE)
received the master’s degree in computing science
from the University of Groningen. He is currently
pursuing the Ph.D. degree with the Institute of
Architecture of Application Systems (IAAS), Uni-
versity of Stuttgart, where he is also a member of
the Service Computing Department. He is also a
Research Assistant with the Institute of Architec-
ture of Application Systems (IAAS), University of
Stuttgart. His research interests include the Inter-

net of Things, green computing, cloud computing, and energy efficient data
centers.

SEBASTIAN GRAEF received the bachelor’s and
master’s degrees in software engineering from
the University of Stuttgart, in 2018 and 2021,
respectively. He is currently a Software Developer
and a Consultant at Novatec Consulting GmbH,
where he mainly focuses on web-based enter-
prise application architecture. His research inter-
ests include cloud computing, AI-planning, the
Internet of Things, and system automation.

DESISLAVA IVANOVA received the bachelor’s
degree in business informatics and the master’s
degree in software engineering from the Univer-
sity of Stuttgart, Germany, in 2018 and 2021,
respectively. From 2016 to 2021, she worked as a
Student Assistant at the Department of Informa-
tion Systems, University of Hohenheim, Stuttgart,
Germany. She is currently pursuing a career as a
Software Engineer. Her research interests include
home automation, the IoT, and NLP.

ALEXANDER TIESSEN received the bachelor’s
degree in software engineering from theUniversity
of Stuttgart, Germany, in 2019. He is currently
writing his master’s thesis in cooperation with
ITK Engineering with the University of Stuttgart.
Together with the Fraunhofer Society, he worked
on a project regarding explainable artificial intel-
ligence, in 2020. His research interests include
deep learning, natural language processing, and
explainable AI.

MARCO AIELLO (Senior Member, IEEE)
received the Ph.D. degree in logic from the Uni-
versity of Amsterdam, the Habilitation degree in
applied informatics from TU Wien, and the mas-
ter’s degree in engineering from the La Sapienza
University of Rome. He is currently a Professor
of computer science and the Head of the Service
Computing Department, University of Stuttgart,
Germany. He is also an Elected Member of the
European Academy of Sciences and Arts and an

Honorary Professor of distributed systems at the University of Groningen,
The Netherlands, where he was a Faculty Member, from 2006 to 2018. His
research interests include service computing and smart energy systems.

167352 VOLUME 9, 2021


