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ABSTRACT Shift-invariant and sampling spaces play a vital role in the fields of signal processing and
image processing. In this paper, we extend the generalized shift-invariant and sampling subspaces from
the traditional sampling spaces to the compressed sampling, and develop a compressed sampling method for
analog sparse signals based on the shift-invariant spaces associated with fractional Fourier transform (FrFT).
First, we show the generalized shift-invariant and sampling subspaces can be used to explain the traditional
sampling spaces with single generator or multiple generators in the fractional Fourier domain (FrFD). The
non-ideal sampling structures of single channel and multiple channels are special cases of the generalized
shift-invariant subspaces. Second, a compressed sampling method for the sparse signals in the FrFD is
proposed by reusing themultiple generators of the shift invariant spaces as sparse representation.We combine
the sensingmatrix of compressed sensing and the framework of sampling scheme in the shift-invariant spaces
to construct a compressed sampling method, which perfectly recovered the original signal with a sufficient
low sampling rate. By choosing different filters, the proposed framework allows to derive many specific
sampling schemes. Finally, a compressed sampling method for multiband signals in the FrFD is proposed
based on the forgoing theorems. The numeral simulation validates the theoretical derivations.

INDEX TERMS Fractional Fourier transform, fractional fourier domain, shift-invariant spaces, compressed
sampling, random demodulation.

I. INTRODUCTION
Fractional Fourier transformation (FrFT) is an extension of
the ordinary Fourier transform (FT). The FrFT essentially
allows the signal in the time-frequency domain to be pro-
jected with an additional degree of freedom. The definition
of the FrFT [1] is as follows:

Xα(u) = Fα
{x(t)}(u) =

∫
R
Kα(u, t)x(t)dt, (1)

where Fα denotes the FrFT operator. The transform kernel
function Kα(u, t) is given by:

Kα(u, t) =


ϕαλα(t)λα(u)e−jtu cscα, α 6= kπ,
δ(u− t), α = 2kπ,
δ(u+ t), α = (2k + 1)π,

(2)

where ϕα =
√

1−j cotα
2π . λα(·) = e

j
2 (·)

2 cotα . k ∈ Z.
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The FrFT is a powerful mathematical tool in the fields
of ultra-wideband communication, radar and time-variant
filtering and so on [2]–[4]. Due to the importance of the
FrFT in signal and image processing, sampling theories have
been developed from the traditional frequency domain (FD)
to the fractional Fourier domain (FrFD) for many years.
The generalized sampling model in the FrFD [5]–[7] has
been proposed which used sampling and shift-invariant
spaces (SISs) theory to explain most of the existing sam-
pling models such as Xia’s bandlimited sampling method [8]
and other extension forms [9]–[11]. Sampling in the SISs
named sampling spaces is a special class of the SISs,
in which the coefficient of the generator is determined by
the values of discrete points of the function. The sam-
pling theory without bandlimited constrain is based on
the discrete FrFT whose discretization is derived from the
Shannon’s sampling theorem with the 2π constraints. From
the foregoing analysis, sampling spaces can be used to
derive the new sampling kernel for the fractional Fourier
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bandlimited signals, that means those extensions allow to
sample and reconstruct signal using a broad variety of
filters [5], [12]–[14].

Union SISs theory plays an important role in signal sam-
pling theories because the sampled signal can be expressed
as linear combinations of shifts of a set of generators. The
multiple generators model has been applied in many sig-
nal processing applications, such as extension of Shannon’s
sampling theorem [15], [16]. The multiband signals, whose
energy are concentrated in the FrFD with several separated
bandlimited components, can be understood as the accumu-
lation of several bandlimited signals. Every bandlimited com-
ponent of the multiband signal is represented by a generator,
and all of generators are different from each other and exist
in different sampling channels, then the original signal can
be expressed by the summation of several generators with
different coefficients, each generator could be sampled by a
relatively low sampling rate.

Sampling in the SISs could be understood as using known
generators or bases to represent the signal. Suppose the num-
ber and forms of the generators are known, how can we find
coefficients of the generators from a known complete basis
with a sufficient low sampling rate. This question is a special
case of sampling a signal in a union of subspaces [17]–[19].
In our question, signals can be represented by K < L
generators in the SISs, but we do not know which generators
are chosen, where L is the number of generators in the defined
subspaces. There is no a concrete sampling methods to ensure
efficient and stable recovery under this hypothesis, for exam-
ple, x(t) ∈ Vα,β (θ1, · · · , θL). Signal x(t) can be represented
by function set {θ1, · · · , θL}, but the coefficients of the gen-
erators are unknown. That means we do not know which
generators are necessary. In other words, signals belong to the
subspaces of Vα,β (θ1, · · · , θL), then some generators are not
necessary whose coefficients would be zero, in this situation,
taking the generators as the bases, the signal will show sparse
in Vα,β (θ1, · · · , θL). In this paper, we applied compressed
sensing (CS) to solve this problem in the FrFD.

Compressed sensing (CS) is also a special case of sampling
on a unions of subspaces which combines the compression
and the sampling at the same time [20], [21]. In CS theory,
the original signal x ∈ RN×1 can be projected from a
high-dimensional space to a low-dimensional space RM×1

through a linear projection matrix 8, if the original signal
is sparse or have the sparsity in a transform domain. The
low-dimensional space projection vector y contains all the
information of the original signal. The original signal x can
be recovered frommeasurement vector y accurately. It can be
expressed as:{

y = 8x
x = 9a

→ y = Aa where A = 89, (3)

where 8 ∈ RM×N (M � N ) is the observation matrix (or
measurement matrix) for x. a ∈ CN is a linear K-sparse

representation for x on an appropriate sparse matrix 9 ∈

CN×N . A is sensing matrix which combines 8 and 9.
In simple terms, CS is applied to determine a length N

vector x fromM < N linear measurements, where x is known
to be K-sparse in some bases. Many efficient sampling and
recovery algorithms have been studied for CS associated with
the FrFT [3], but those methods are simply extended from the
FD without analysis of the relationship between the sampling
spaces and compressed methods. Our goal is to combine the
CS and SISs to proposed a more general sampling model
with a sufficiently low analog sampling rate. There are two
problems to prevent us to give this theory. First, there is not
a sampling model defined by multiple generators in the SISs
associated with the FrFT. Second, traditional CS focuses on
the recovery of the finite vectors which cannot be used to the
continuous problem without discretization.

In this paper, we propose sampling and compressed sam-
pling methods under the generalized shift-invariant spaces
associated with the FrFT. In section I, some useful definitions
are introduced such as the continuous form of the fractional
Fourier, the classic sampling spaces with multiple generators,
sampling in single generator shift-invariant spaces associated
with the FrFT. The remainder of the paper is as follows.
In section II, we will explain some multi-channel sampling
schemes by the generalized model [7], and show the sim-
plified multi-channel sampling theorems are special cases
of the generalized model. In section III, we proposed two
compressed sampling methods based the compressed sensing
and framework of the generalized shift-invariant sampling
spaces. One compressed method reused the sparse generator
in the shift-invariant and discrete sensing matrix in the CS
to solve the compressed problem of discrete problem. The
other approach combining the filter and sensing matrix in
the CS can be used to compressed sample signals directly.
In section IV, two simulation parts are given, one is applied
to validate the theorem of the generalized sampling spaces
associated with the FrFT, the other is an example which is to
show the proposed method is effective for multiband signals
in the FrFD with a simple sampling structure.

II. GENERALIZED SAMPLING SPACES ASSOCIATED WITH
THE FrFT AND NON-IDEAL SAMPLING MODELS
A. GENERALIZED SAMPLING SPACES ASSOCIATED WITH
THE FrFT
Theorem 1 (Generalized SISs Associated With the FrFT):

Let {c`(·)} ∈ `2,{θ`(·)} ∈ L2(R), 1 ≤ ` ≤ L and consider the
chirp-modulated SISs of L2(R).

Vα,β (θ1, · · · , θL)

=

{
x(t) =

L∑
`=1

ϕβλ
∗
α(t)

+∞∑
k=−∞

ĉα,`[kT ]θ̂β,`(t − kT )
}

(4)

where θ̂β,`(t − kT ) = λβ (t − kT )θ`(t − kT ), ĉα,`(kT ) =
λα(kT )c`(kT )
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FIGURE 1. Multiple generators non-ideal sampling model in the SISs associated with the FrFT.

Then {θ̂β,`(·)} is a Riesz basis for Vα,β (θ1, · · · , θL) if and
only if there exist two positive constants ζ1, ζ2 > 0 such that:

ζ1 ≤

+∞∑
k=−∞

∥∥2β,`(ũ− ũk )∥∥2 ≤ ζ2, 1 ≤ ` ≤ L (5)

where ũk = uk
sinβ
sinα . uk = k1, and 1 = 2π sinα/T . ũ =

u sinβsinα . u ∈ [0,1]. 2β,`(·) is the βth-order FrFT of θ`(·).
According to αth-order FrFT, the semi-discrete convolu-

tion theorem and the Parseval’s identity. The specific proof is
as reference [5], [7].

Proof: Let x(t) ∈ Vα,β (θ1, · · · , θL). Hence

x(t) =
L∑
`=1

+∞∑
k=−∞

ϕβλ
∗
α(t)ĉα,`[kT ]θ̂β,`(t − kT ). (6)

According to αth-order FrFT and the semi-discrete convo-
lution theorem, the αth-order FrFT of x(t) is as follows:

Xα(u) =
∫
R
x(t)Kα(u, t)dt

= ϕαϕβ

L∑
`=1

∑
k∈R

ĉα,`[kT ]λα(u)ejkT ũ cscβ

×

∫
R
θ̂β,`(t − kT )ej(t−kT )ũ cscβdt

= ϕα

L∑
`=1

∑
k∈R

ĉα,`[kT ]λα(u)ejkTu cscαλ∗β (ũ)2β,`(ũ)

=

L∑
`=1

λ∗β (ũ)Cα,`(u)2β,`(ũ) (7)

where Cα,`(u) is the αth-order semi-discrete FrFT of
c`(·). 2β,`(ũ) is the βth-order FrFT of θ`(·). Cα,`(u) =
ϕα
∑
+∞

k=−∞ c`(kT )λα(u)λα(kT )e−j cscαkTu.

‖Xα(u)‖2L2(R)

=

∫
+∞

−∞

L∑
`=1

∣∣∣λ∗β (ũ)Cα,`(u)2β,`(ũ)∣∣∣ du
=

L∑
`=1

+∞∑
k=−∞

∫ uk+1

uk

∣∣Cα,`(u)2β,`(ũ)∣∣2 du
=

L∑
`=1

+∞∑
k=−∞

∫ 1

0

∣∣Cα,`(u+ uk )∣∣2 ∣∣2β,`(ũ+ ũk )∣∣2 du (8)

Since e−j cscαnTuk = e−2πnkj = 1, then:

Cα,`(u+ uk )

= ϕα

+∞∑
n=−∞

Tc`(nT )λα(u+ uk )

×λα(nT )e−jnT (u+uk ) cscα

= ϕα

+∞∑
n=−∞

Tc`(nT )λα(u)λα(nT )e−jnTu cscα

× λα(uk )ejuuk cotαe−jnTuk cscα

= Cα,`(u)λα(u+ uk )λ∗α(u). (9)

Hence
∣∣Cα,`(u+ uk )∣∣ = ∣∣Cα,`(u)∣∣, it follows that

‖Xα(u)‖2 =
L∑
`=1

+∞∑
k=−∞

∫ 1

0

∣∣Cα,`(u)∣∣2 ∣∣2β,`(ũ)∣∣2 du
=

L∑
`=1

∫ 1

0

∣∣Cα,`(u)∣∣2 Gβ,2` (ũ)du (10)

where Gβ,2` (ũ) =
∑
+∞

k=−∞

∣∣2β,`(ũ+ ũk )∣∣2 is shifted
Grammian of θ` with angle β.
According to the Parseval’s identity.∥∥Cα,`(u)∥∥2L2(0,1)

=

∫ 1

0

( +∞∑
k,n=−∞

Tc`(kT )Kα(kT , u)

×Tc∗`(nT )K−α(nT , u)
)
du

= |ϕα|
2T 2

+∞∑
k,n=−∞

c`(kT )c∗`(nT )λα(kT )λ
∗
α(nT )

×

∫ 1

0
ej cscαu(n−k)T du

= |ϕα|
2T1

∞∑
k=−∞

|c`(kT )|2

=

∞∑
k=−∞

|c`(kT )λα(kT )|2 = ‖c`(kT )‖2. (11)
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FIGURE 2. Single generator non-ideal sampling model in the SISs associated with the FrFT.

Because |ϕα|2 = ϕαϕ
∗
α = ϕαϕ−α =

1
2π sinα , then

1|ϕα|
2
=

1
T . Thus

‖Xα(u)‖2 =
L∑
`=1

∫ 1

0

∣∣Cα,`(u)∣∣2 Gβ,2`(ũ)du. (12)

Suppose ζ1 ≤ Gβ,2`(ũ) ≤ ζ2, for 1 ≤ ` ≤ L, we have

ζ1

L∑
`=1

‖c`(n)‖2 = ζ1
L∑
`=1

‖c`(n)λα(nT )‖2

≤ ‖x‖2 ≤ ζ2
L∑
`=1

‖c`(nT )‖2

= ζ2

L∑
`=1

‖c`(nT )λα(nT )‖2. (13)

{θ`(t)λβ (t)} is a Riesz basis. This completes the proof of
Theorem. 1.

B. NON-IDEAL SAMPLING MODELS
Let {θ`(t)} ∈ L2(R) be a compactly supported function whose
infinite linear shifts span a subspace:

Vα,β (θ1, · · · , θL) = span
L∑
`=1

+∞∑
k=−∞

ĉα,`(kT )θ̂β,`(t − kT )

(14)

The scheme of the non-ideal sampling in the SISs associ-
ated with the FrFT is as Fig. 1.

d`(t) = λ∗α(t)
+∞∑

k=−∞

x̂α(t)ŝβ,`(t − kT )

Dα,`(u) = ϕ
−1
β λ∗β (ũ)Xα(u)S

∗

β,`(ũ), (15)

where ũ = u sinβsinα . Sβ,`(ũ) is the βth-order FrFT of s`(t).
Since x(t) ∈ Vα,β (θ1, · · · , θL), the αth-order FrFT of x(t)
is denoted by:

Xα(u) = Fα(x)(u) =
L∑
`=1

λ∗β (ũ)Cα,`(u)2β,`(ũ). (16)

Substituting Eq. (16) into Eq. (15), we have

Dα,`(u)

= ϕ−1β

+∞∑
k=−∞

λ∗β (ũ− ũk )S
∗

β,`(ũ− ũk )Xα(u− uk )

= ϕ−1β

L∑
i=1

λ∗β (ũ)Cα,i(u)

×

+∞∑
k=−∞

λ∗β (ũ− ũk )S
∗

β,`(ũ− ũk )2β,i(ũ− ũk ). (17)

Let 4S2(u) as follows:

4S2(u) =

ξSβ,12β,1 · · · ξSβ,12β,L
...

...
...

ξSβ,L2β,1 · · · ξSβ,L2β,L

 (18)

where ξSβ,`(u)2α,`(u) = λ
∗
β (u)S

∗

β,`(ũ)λ
∗
β (u)2β,`(u).

Then we have

Dα(u) = ϕ−1β λ∗β (ũ)4S2(ũ)Cα(u), (19)

where Dα(u) = [Dα,1(u), · · · ,Dα,L(u)]T . Cα(u) =

[Cα,1(u), · · · ,Cα,L(u)]T . Thus

Cα(u) = ϕβλβ (ũ)4−1S2(ũ)Dα(u). (20)

Substituting Eq. (15) into Eq. (20), the relationship
between x(t) and Cα(u) is as follows:

Cα(u) = 4−1S2(ũ)Xα(u)S
∗
β (ũ) = Vβ (ũ)Xα(u) (21)

where Vβ (ũ) = 4−1S2(ũ)S
∗
β (ũ). Vβ (ũ) and S∗β (ũ) are the

vectors with `th elements of Vβ,`(ũ) and S∗β,`(ũ) respectively.
The time domain expression is as follows:

c`(t) = λ∗α(t)
+∞∑

k=−∞

x̂α(t)v̂β,`(t − kT ). (22)

where 1 ≤ ` ≤ L, n ∈ Z. The βth-order FrFT of v`(t) is
Vβ,`(u).
The function set {v`(t − nT )} is orthogonal to {θ`(t)}, The

proof is as follows:
Proof:

[4V2(ũ]i`

=
1
T

∑
k∈Z

V ∗β,i

(
ũ−

2π sinβ
T sinα

k
)
2`

(
ũ−

2π sinβ
T sinα

k
)

=
1
T

L∑
r=1

[4−1S2(ũ)]ir
∑
k∈Z

S∗r

(
ũ−

2π sinβ
T sinα

k
)

×2`

(
ũ−

2π sinβ
T sinα

k
)

= [4−1S2(ũ)]
i[4S2(ũ)]` = Ii` (23)

where [J]i denotes the ith row and [J]i denotes the ith column
respectively of the matrix J.
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FIGURE 3. Simplified non-ideal sampling model with multiple generators in the SISs associated with the FrFT.

This follows that [4V2(u cscα)] = I. Thus, {v`(t − nT )}
are orthogonal to {θ`(t)}.

Eq. (21) can be used to recover x(t) from the sampled value
as long as 4S2(u) is invertible. The scheme of Fig. 1 results
in L sequences of samples, each at rate 2π

T , and the total
sampling rate 2πL

T . Sampling in Vα,β (θ1, · · · , θL) is a suitable
and realistic model for a variety of real application, such as,
real acquisition and reconstruction devices, numerical imple-
mentation. These requirements can often be met by choosing
appropriate generator {θ`} of Vα,β (θ1, · · · , θL).
Suppose that L = 1, Theorem 1 reduces to follows:
Corollary 1 (Single Generator SISs Associated With the

FrFT): let c(·) ∈ `2, θ (·) ∈ L2(R) and consider the
chirp-modulated SISs of L2(R).

Vα,β (θ ) =
{
x(t) = ϕβλ∗α(t)

+∞∑
k=−∞

ĉα[kT ]θ̂β (t − kT )
}

(24)

where θ̂β (t − kT ) = λβ (t − kT )θ (t − kT ), ĉα(kT ) =
λα(kT )c(kT ).
θ̂β (·) is a Riesz basis for Vα,β (θ ) if and only if there exist

two positive constants ζ1, ζ2 > 0 such that:

ζ1 ≤

+∞∑
k=−∞

∥∥2β (ũ− ũk )∥∥2 ≤ ζ2 (25)

where ũk = uk
sinβ
sinα . uk = k1, and 1 = 2π sinα/T . ũ =

u sinβsinα . u ∈ [0,1]. 2β (·) is the βth-order FrFT of θ (·).
The non-ideal scheme in the SISs with single generator as

Eq. (24) is in Fig. 2. Let c(·) ∈ `2, θ (·) ∈ L2(R) and consider
the chirp-modulated SISs of L2(R),

x(t) = ϕβλ∗α(t)
+∞∑

k=−∞

ĉα[kT ]θ̂β (t − kT ) (26)

Suppose the digital filter in the FrFD is as follows:

ϕβλβ (ũ)H
−1
β (ũ) = ϕ−1β λ∗β (ũ)S

∗
β (ũ)λ

∗
β (ũ)2β (ũ) (27)

where Hβ (ũ) is the βth-order FrFT of h(n). x(t) can be per-
fectly recovered from this sampling scheme, since Cα(u) =
ϕ−1β λ∗β (ũ)Dα(u)Hβ (ũ).
Suppose that β = α and L = 1, Theorem 1 reduces to

traditional sampling method with single generator.

C. SIMPLIFIED NON-IDEAL SAMPLING MODEL
Suppose that β = π

2 , Theorem 1 reduces to follows:
Corollary 2: let {c`(·)} ∈ `2,{θ`(·)} ∈ L2(R), 1 ≤ ` ≤ L

and consider the chirp-modulated SISs of L2(R).

Vα, π2 (θ1, · · · , θL)

=

{
x(t) =

1
√
2π

L∑
`=1

λ∗α(t)
+∞∑

k=−∞

ĉα,`[kT ]θ`(t − kT )
}
,

(28)

where ĉα,`(kT ) = λα(kT )c`(kT )
Then {θ`(·)} is a Riesz basis for Vα, π2 (θ1, · · · , θL) if and

only if there exist two positive constants ζ1, ζ2 > 0 such that:

ζ1 ≤

+∞∑
k=−∞

‖2`(ũ− ũk )‖
2
≤ ζ2, 1 ≤ ` ≤ L, (29)

where ũk = uk cscα. uk = k1, and 1 = 2π sinα/T . ũ =
u cscα. u ∈ [0,1].
2`(·) is the FT of θ`(·).
The non-ideal sampling method in Vα, π2 (θ1, · · · , θL) is

as Fig. 3. The non-ideal sampling model in Fig. 1 applied
many chirp mixing which would increase the complexity
of hardware design and energy consuming. Compared with
Fig. 1, Fig. 3 is a simplified sampling structure. Considering
x(t) ∈ Vα, π2 (θ1, · · · , θL).

x(t) =
1
√
2π

L∑
`=1

+∞∑
k=−∞

λ∗α(t)ĉα,`(kT )θ`(t − kT ) (30)

The αth-order FrFT of x(t) is denoted by:

Xα(u) = Fα(x)(u)

=
1
√
2π

Fα

{
L∑
`=1

+∞∑
k=−∞

λ∗α(t)ĉα,`(kT )θ`(t − kT )

}
(u)

= F

{
L∑
`=1

+∞∑
k=−∞

ĉα,`(kT )θ`(t − kT )

}
(u cscα)

= ϕα

L∑
`=1

Ĉ`(u cscα)2`(u cscα)

= ϕα

L∑
`=1

2`(u cscα)
∫
∞

−∞

λα(t)eju cscαtc`(t)dt
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=

L∑
`=1

λ∗α(u)Cα,`(u)2`(u cscα) (31)

where F is the Fourier transform (FT) operator.
According to Fig. 3, d`(t) is denoted by:

d`(t) =
+∞∑

k=−∞

x̂α(t)s∗`(t − kT )

D`(u cscα) =
1
√
2π
ϕ−1α λ∗α(u)Xα(u)S

∗

` (u cscα), (32)

where S∗` (u cscα) is the FT of s`(t).
Substituting Eq. (31) into Eq. (32), we have

D`(u cscα)

=
1
√
2π
ϕ−1α

+∞∑
k=−∞

λ∗α(u− uk )S
∗

`

(
u− uk
sinα

)
Xα(u− uk )

=
1
√
2π
ϕ−1α

L∑
i=1

λ∗α(u)Cα,i(u)

×

+∞∑
k=−∞

λ∗α(u− uk )S
∗

`

(
u− uk
sinα

)
2i

(
u− uk
sinα

)
. (33)

Let 4S2(u cscα) as:

4S2(u cscα) =

ξS121 · · · ξS12L
...

...
...

ξSL21 · · · ξSL2L

 (34)

where ξS`2i = S∗` (u cscα)2i(u cscα).
Eq. (33) simplifies as follows:

D(u cscα) =
1
√
2π
ϕ−1α λ∗α(u)4S2(u cscα)Cα(u), (35)

where D(u cscα) = [D1(u cscα), · · · ,DL(u cscα)]T .
Cα(u) = [Cα,1(u), · · · ,Cα,L(u)]T . Thus

Cα(u) =
√
2πϕαλα(u)4

−1
S2(u cscα)D(u cscα). (36)

According to Eq. (32) and Eq. (36), the relationship
between x(t) and Cα(u) is as:

Cα(u) = 4−1S2(u cscα)Xα(u)S
∗(u cscα)

= V(u cscα)Xα(u) (37)

where V(u cscα) = 4−1S2(u cscα)S
∗(u cscα). V(u cscα) and

S∗(u cscα) are the vectors with `th elements V`(u cscα)
S`(u cscα) respectively. The time domain expression is as:

ĉα,`(n) = x(t)⊗ v`(−t)

=

∫
∞

t=−∞
v`(t − nT )x(t)dt (38)

where 1 ≤ ` ≤ L, n ∈ Z. The FT of v`(t) is V`(u).
The function set {v`(t − nT )} is orthogonal to {θ`(t)}, the

proof is similar to Eq. (23).
Eq. (36) can be used to recover x(t) from L sampling

sequence as long as 4S2(u cscα) is invertible. The non-ideal
sampling model of Fig. 3 explicitly how to recover x(t) from

FIGURE 4. Simplified non-ideal sampling model with single generator in
the SISs associated with the FrFT.

these samples by an appropriate filter bank. The scheme
results inm sequences of samples, each at rate 2π

T , and overall
sampling rate is 2πL

T .
Suppose that β = π

2 , L = 1, Theorem 1 reduces to the
follows:
Corollary 3: let c(·) ∈ `2. θ (·) is a continuous function in

L2(R). The space Vα, π2 (θ ) is a well-defined, closed subspace
of L2(R) with Riesz basis {θ (t − nT )λ∗α(t)λα(nT )}n∈Z if and
only if there exist two positive constants 0 < ζ1 ≤ ζ2 < +∞,
such that [12]

ζ1 ≤ 2πG2(u cscα) ≤ ζ2, u ∈ R (39)

where G2(u cscα) is defined as:

Gθ (u cscα) ,
∑
k∈Z
|2(u cscα + 2kπ )|2 (40)

Based on the above facts, Shi et al. [12] gave the sampling
theorem for the FrFT without bandlimited constraints. A sim-
plified non-ideal sampling scheme in the SISs with single
generator for Fig. 2 is as Fig. 4. The simplified sampling
method for single channel would reduce hardware design
and energy consuming. This simplified structure is derived
from the Corollary 3. Suppose the digital filter h(n) is such
that:

H (u cscα) =

√
2πϕαλα(u)

S∗(u cscα)2(u cscα)
(41)

whereH (u cscα) is the FT of the h[n]. x(t) could be perfectly
recovered by this sampling scheme, because ĉ(t) = d(t) ⊗
h(t). F (ĉ)(u cscα) = Ĉ(u cscα) = D(u cscα)H (u cscα).
D(u cscα) is the FT of d(t).

Compared with the simplified non-ideal sampling schemes
which only need two chirp mixings, the non-ideal sampling
schemes in Fig. 1 and Fig. 2 need many chirp modulators
which would increase the complexity of the hardware and
energy consumption. Both the non-simplified and simpli-
fied schemes use the properties of the convolution, and the
difference lies in the analysis methods: the non-simplified
structure is analyzed by the FrFT, whereas the simplified
method is analyzed by the FT. From the theoretical analysis,
the simplified schemes simply reduce the complexity of the
hardware design without improving the accuracy of recov-
ered signal. The sampled signal in the simplified model is
x(t)λα(t) instead of x(t), correspondingly, the recovery pro-
cess is the same with the sampling process. For some chirp-
modulated signals, the simplified sampling method would
reduce the complexity of the sampled value without changing
the recovery accuracy.
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FIGURE 5. Compressed sampling associated with the SISs.

FIGURE 6. The multiband signal in the FrFD.

D. POTENTIAL APPLICATIONS
The proposed theory of generalized sampling spaces states
that signals can be restored in summation of multiple gen-
erators in time domain. In other words, each signal can be
expressed by the summation of several generators with dif-
ferent coefficients.

The applications of the proposed theorem can be found
in processing some multiband signal whose energy is con-
centrated in the FrFD with several separated bandlimited
components (see Fig. 6). These multiband signal is projected
to the traditional one generator sampling space in which the
sampling kernel must model the whole signal, but if each ban-
dlimited component of multiband signal can be represented
by one generator, and all the generators exist in different
sampling channels, then the original signal can be expressed
by the summation of several generators with different coef-
ficients, each generator could be sampled by a relative low
sampling rate.

Another example is chirp ultra-wideband signal which
transmitted in some radar, sonar and communication system
occupy very wide band which probably reach giga-hertz,
thus designing a single channel sampling system with a flat
spectrum in the whole band of signal is not practical, and
multi-channel sampling architectures as reference [22]–[24]
with each channel operating at a fractional of the Nyquist
rate need to be employed. The multi-channel method applies
multiple linear fractional filtering operators to represent ban-
dlimited signal in the FrFD.

III. COMPRESSED SAMPLING IN THE SISs ASSOCIATED
WITH THE FrFT
Theorem. 1 and its non-ideal sampling model point out that
any signal x(t) in generalized SISs generated by L functions
shifted with period T can be perfectly recovered from L
sampling sequences, which obtained by filtering x(t) with
a bank of filters and uniformly sampling with rate 2π

T . The
overall sampling rate is 2Lπ

T . If the signal is generated by K

out of L generators. The signal can be sampled at 2Kπ
T rate

with uniform sampling rate 2π
T and K filters. Furthermore,

how we can use a lower sampling rate when we know the
signal is composed by K of the generators, but we do not
know which generators. At this case, we can also recover
signal from the original system with sampling the output of
L filters, but it will result in the increasing of the sampling
rate, and a waste of hardware. According to [24,25], there is
a unique SI signal recovered from samples when the over-
all sampling rare is at least 2Kπ

T . In follows, we will give
an algorithm to recover x(t) from sampling the output of
K ≤ m < L filters at sampling rate 1/T .

In this part, we proposed two compressed sampling meth-
ods combining the ideas of CS and sampling in the SISs. The
first method constructs a discrete CS algorithm which using
the sensing matrix A to compressed the results of the sam-
pling in the SISs. The secondmethod realized by constructing
random filters can be used to sample analog sparse signals
directly in the FrFD, and the random filters consist of sensing
matrix and the filter of SI sampling.

A. CS ASSOCIATED WITH THE SISs
Suppose the signal is generated by K out of L generators,
then there are K out of L nonzero sequences ĉ` in Eq. (28).
Under this assumption, the compressed sampling method for
this situation is as Fig. 5. The approach combines analog
front-end of Fig. 3 and discrete CS, consists of L filters and
uniformly sample at rate 1/T . Since the vectorC[n] is sparse,
we first use the infinite measurement vector model to recover
the sparse vector C[n], then combine the results of Fig. 3
and the recovered sparse vector to reconstruct the original
signal x(t).

The vector sequence C[n] is an infinite vector which can
be resolved by the infinite measurement vector model as:

y[n] = Ac[n], n ∈ Z (42)

where the sensing matrixA ∈ ZL×m.A satisfies the restricted
isometry property (RIP), that meansK -sparse vectorC[n] can
be perfectly recovered from m measurement. Eq. (42) can
be resolved by transforming it to an equivalent MMV. The
recovery properties of equation depend on the matrix A [25].
The reconstruction algorithm is depicted by continuous-to-
finite (CTF) [25].
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FIGURE 7. Compressed sampling analog associate with the SISs.

In our paper, we consider the generalized equation in the
FrFD as:

Yα(u) =W(u)ACα(u) (43)

where Yα(u), Cα(u) are the vectors with components Yα,`(u)
andCα,`(u).W(u) is an invertiblem×mmatrix with elements
Wi`(u). Eq. (43) expresses in time domain as:

yi[n] =
m∑
`=1

wi` ⊗

(
L∑
r=1

A`r ĉr [n]

)
, 1 ≤ i ≤ m (44)

where wi` is the DFT of Wi`(u). ⊗ denotes the convolution
operator.

According to Eq. (43) and Eq. (44), we can recover the
sequence ĉ`[n] fromm < L discrete time sequence y[n] either
in the FrFD or time domain. The drawback of the sampling
scheme in Fig. 5 is obvious, that is the overall sampling rate
is L/T which is not less than the traditional method, because
the input signal must be fully sampled with L channels, then
compressed by the CS matrixA. In next section, we proposed
a compressed sampling method of analog signal directly
without discretization ahead.

B. CS OF ANALOG SIGNAL ASSOCIATED WITH SI
This approach consists of m < L filters and uniformly
sampling. Comparing with the fist method in the last
section, CS of analog signal simplifies the design of hard-
ware. The critical challenge is how to design the filters
{h∗`(t)}, 1 ≤ ` ≤ m in the Fig. 7. A simple approach to design
the filter bank is moving the discrete filters 4V2(u cscα)
and sensing matrix AW(u) to the analog domain. The fil-
ters {h∗`(t)} combine the filters {s∗`(t)}, the discrete filter
4V2(u cscα) and the sensingmatrixAW(u). The compressed
sampling results y`[n] can be obtained directly from x(t) by
uniformly sampling the output of p filters {h`(t)}.
Let the filter bank H(u cscα) be constructed by:

H(u cscα) = W∗(u cscα)A∗V(u cscα)

= W∗(u cscα)A∗4−∗S2(u cscα)S(u cscα) (45)

where H(u cscα) is the vector with `th element H`(·).
S(u cscα) is the vector with `th element S`(·). V(u cscα) =
4−1S2(u cscα)S

∗(u cscα). V(u cscα) is the vector with `th
element V`(u cscα), which is the FT of v`(t). Eq. (45) in time

domain is as follows:

hi(t) =
m∑
`=1

p∑
r=1

∑
n∈Z

w∗ir [−nT ]A
∗

r`v`(t − nT ) (46)

where wir is the inverse FT of [W(u cscα)]ir .

vi(t) =
m∑
`

∑
n∈Z

ξ∗i`[−nT ]s`(t − nT ) (47)

where ξ∗i`[−nT ] is the inverse transform of [4−1S2(u cscα)]i`.
If we can proof the 4H2(u) = W(u)A, then x(t) can be

perfectly recovered fromm sampling sequence {y`[n]}, which
can be obtained by sampling the output of the filters {h∗`(−t)}
at the rate 1

T .

[4H2(u)]i`

=
1
T

∑
k∈Z

H∗i

(
u

sinα
−

2kπ
T sinα

)
2`

(
u

sinα
−

2kπ
T sinα

)

=
1
T

m∑
r=1

[W (u)A]ir
∑
k∈Z

V ∗r

(
u

sinα
−

2kπ
T sinα

)
×2`

(
u

sinα
−

2kπ
T sinα

)
= [W(u)A]i[4V2(u)]` (48)

where [J]i denotes the ith row and [J]i denotes the ith column
respectively of the matrix J.

Since [4V2(u)] is a m×m identity matrix in Eq. (23), the
equation 4H2(u) = W(u)A is proved. From the foregoing
analysis, scheme of Fig. 7 can be used to compressive sample
analog signals directly. The compressed sampling scheme
consists of filter band, uniformly sampling, CTF (continuous
to finite) and a set of generators. The system can compres-
sively and directly sample the analog signal by filtering x(t)
with m < L filters. The coefficients of the generators are
reconstructed by the CTF block. The signal can be finally
reconstructed by linear combination of generators.

In this section, we first use the conventional theory of
CS to sample and recover the sparse basis of signal in the
SISs. Considering this proposed scheme is a discrete problem
which cannot compressive sample directly, we proposed a
compressed sampling method of analog signal associated
with the SISs by constructing a bank of filters and uni-
formly sampling. This approach can be easy to put into
practice.

IV. NUMERICAL SIMULATION
In many practical applications, sampling a chirp signal is
ubiquitous in radar, sonar and communications systems [2].
The Nyquist sampling rate in the FrFD is lower than the
conventional Fourier domain for sampling a chirp signal.
We demonstrate the numerical simulation in two parts includ-
ing multiple generators sampling method and compressed
sampling in the SISs associated with the FrFT.
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TABLE 1. Parameters of signal.

From the theoretical analysis, the difference between
the non-simplified and simplified schemes is the anal-
ysis method. The simplified method sample and recon-
struct signals in the traditional Fourier domain, whereas the
non-simplified method is in the FrFD which needs more
chirp modulators. The simplified schemes simply reduce the
complexity of the hardware design without improving the
accuracy of the recovered signal. The non-simplified and
simplified methods have the same recovered waveform when
sampling and reconstructing the same signals. For some
chirp-modulated signals, the simplified sampling method
would reduce the complexity of the sampled value but not
change the recovery accuracy.

A. SAMPLING WITH MULTIPLE GENERATORS IN THE SISs
In this part, we consider a problem of sampling multiband
signal which is a complex signal comprised by several ban-
dlimited signal. The sampled mulbiband signal is given by:

x(t) =
N∑
i=1

Eirect(t) exp(−jπkit2) exp(π fit) (49)

where rect(·) is a rectangle time-window.
The parameters in Eq. (49) is as table 1.
The fractional order of the FrFT is α = arccot(k1).

The maximum fractional Fourier frequency is 21π , t ∈
[−1, 1), so the bandwidth of the selected generator must
be wider than the sampled signal’s bandwidth. In order to
compare with other methods, we demonstrate the simula-
tion results for three different cases, including the traditional
method with multiple generators, the single generator method
associated with the FrFT and the proposed multiple gener-
ators method. The multiple generators for traditional sam-
pling method are selected as {e−18jπ tsinc(8t), e20jπ tsinc(5t)}.
The single generator is selected as ej cotαt

2
{sinc(21t)}. The

multiple generators for the proposed method are selected
as ej cotαt

2
{e−18jπ tsinc(8t), e20jπ tsinc(5t)}. Using the normal-

ized mean squared error (NMSE) to evaluate the performance
of the sampling method. NMSE is denoted by:

NMSE =

∫
+∞

−∞
|x(t)− x̄(t)|2dt∫
+∞

−∞
|x(t)|2dt

(50)

where x(t) is the original signal and x̄(t) denotes the recovered
signal.

Fig. 8 shows the recovery accuracy with the different
sampling rates and the SNR. The sampling rate ranges
in {25, 50, 100}Hz. SNR ranges in [1,10] with step 1.

FIGURE 8. NMSE of the chirp signals with different sampling rates and
SNRs.

FIGURE 9. NMSE of the chirp signals with different sampling rates and
quantization bits.

The recovery accuracy increases with the SNR and sampling
rate increasing. It is obvious our proposedmultiple generators
method in Eq. (4) has higher recovery accuracy under the
same sampling conditions.

Fig. 9 shows the recovery accuracy under the different
sampling rate and number of sampling quantization bits.
The sampling rate ranges in {25, 100}Hz. The number of
sampling quantization bits is {3, 4, 5, 6, 7}. The recovery
accuracy increases with the number of sampling quantization
bits and the sampling rate increasing until the number of
sampling quantization bits reaches 6. The traditional multiple
generators method has higher recovery accuracy compared
with single function method as Eq. (24). To reach the same
recovery accuracy, the traditional methods need higher sam-
pling rate. The simplified generatorsmethods have the similar
recovery accuracy under the same sampling condition for
both multiple generators method and single generator meth-
ods. The multiple generator sampling methods have better
recovery accuracy for the chirp type signal than the single
generator methods.

In this part, the sampled signal is a typical multiband
signal which is comprised by two bandlimited signals, the
traditionalmethod for this type signalmust work at least twice
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FIGURE 10. The multiband signal represented by multiple generators.

the maximum fractional Fourier frequency of the signal. The
sampled signal can be efficiently modeled by the multiple
generators, in which, every generator can use a low sampling
rate model, thus, the high sampling rate is not necessary.

B. COMPRESSED SAMPLING FOR MULTI-BAND SIGNALS
IN FrFD
In most applications, how to choose the generators in the
SI sampling spaces is difficult. To simplify the design of
compressed sampling method, we propose a multichannel
parallel sampling and recovery architecture. The proposed
method averages thewhole sampling region into several equal
intervals in the FrFD. The multiple generators are selected as:

{θ1, · · · , θ`, · · · , θL0 , · · · , θ2L0+1}

= {e−j2πL0ustsinc(ust), · · · , e−j2π`ustsinc(ust),

· · · , sinc(ust), ej2πustsinc(ust),

· · · , ej2πL0ustsinc(ust)} (51)

where L = 2L0 + 1 is the number of generators. To cover
the whole bandwidth, L ≥ (uNYQ/us), where uNYQ/2 is the
maximum frequency in the FrFD. us is the bandwidth of the
generator. The SI sampling subspaces which is comprised
by the selected generator satisfies the condition Theorem 1.
We select4−∗S2(u cscα) = I in Eq. (45), where I is an identity
matrix. Since4−∗S2(u cscα) = I, S∗(·) and the generators2(·)
are orthogonal, S∗(·) is the same with the generators 2(·).
It’s obvious every generator has the same bandwidth, and all
generators average the whole sampled zone into L parts as
Fig. 10.

The random sampling matrix P ∈ {±1}m×N is selected as
a different periodic repeating pattern ofM random equiprob-
able sign values, in which all of the elements are {±1}. P is a
discrete sequence which is realized by:

pi(t) = Pik , k
Tp
N

6 t 6 (k + 1)
Tp
N
, 0 6 k 6 N − 1 (52)

where pi(t) is the ith row of P. Pik ∈ {+1,−1} and the
period of pi(t) is Tp. The index i = 1, 2, · · · ,m identifies
the mixing channel. Sign vectors are assumed to be mutually
uncorrelated with E[pTi (t), pj(t)] = 0 for i 6= j. E[·] denotes
the statistical expectation operator which is referred to the
probability of sign values. The Fourier expansion of Tp-
periodic pi(t) and its coefficient cil are as follows:

pi(t) =
+∞∑
l=−∞

cile
j 2πTp lt ,

cil =
1
Tp

∫ Tp

0
pi(t)e

−j 2πTp ltdt. (53)

hi(t) is the time expression which is denoted by:

hi(t)

=

L0∑
`=−L0

∑
n∈Z

pi(nT )ej`us(t−nT )sinc(us(t − nT )) (54)

According to Eq. (45), suppose 4−∗S2(u cscα) is an identity
diagonal matrix.

Hi(u) = F {pi}(u)F


L0∑

`=−L0

ej2π`ustsinc(ust)

 (u)

=

∫
R

+∞∑
l=−∞

cile
j 2πTp lte−j2πutdt

×

∫
R

L0∑
`=−L0

ej2π`ustsinc(ust)e−j2πutdt

=

+∞∑
l=−∞

cilδ(u−
l
Tp

)
L0∑

`=−L0

rect((u− `)us) (55)

where rect(·) is a rectangular window.
x(t) is sent in parallel tommixing channels simultaneously.

Taking ith channel as an example, x(t) is filtered by hi(t), the
filtered result is as:

x(t)λα(t)⊗ hi(t)

=

∫
R
x(τ )λα(τ )hi(t − τ )dτ

=

∫
R
x(τ )λα(τ )

L0∑
`=−L0

∑
n∈Z

pi(nT )ej`us(t−τ−nT )

×sinc(us(t − τ − nT ))dτ (56)

The FT of the filtered results is denoted by:

Yα,i(u cscα) = F {x(t)λα(t)⊗ hi(t)} (u cscα)

= F {x(t)λα(t)}(u cscα)Hi(u cscα)

= ϕ−1α λ∗α(u)Xα(u)
+∞∑
l=−∞

cilδ(u cscα −
l
Tp

)

×

L0∑
`=−L0

rect((u cscα − `)us)

= ϕ−1α

∞∑
l=−∞

cilλ∗α(u− uAl)Xα(u− upl)

×

L0∑
`=−L0

rect((u− ` sinα)us). (57)

where up = 2π sinα/Tp = sinαfp. Xα(u) is αth-order
FrFT of x(t). It is a bandlimited signal with the maximum
bandwidth not exceeding Bα .
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λ∗α(u − upl)Xα(u − upl) is also a bandlimited signal with
the maximum bandwidth Bα and a relatively upl shifting in
the FrFD. The mixing product is filtered by a low-pass filter
with cutoff us/2. Ts is the sampling period for every single
channel, us = fs sinα = 2π sinα

Ts
is the sampling rate. Since

the anti-aliasing filter rect(u) is an ideal rectangle function in
FrFD. rect(u) = 1, u ∈ [− 1

2 ,
1
2 ], otherwise rect(u) = 0.

Yα,i(u) = ϕ−1α
L0∑

l=−L0

cilλ∗α(u− upl)Xα(u− upl). (58)

The spectrum of Ỹα,i(u) is the repetition of the spectrum
of λ∗α(u)Xα(u). L0 is chosen as the smallest integer such that
it must cover all nonzero spectrum slices of the Xα(u). The
exact value of L0 is calculated by: −

us
2 + (L0 + 1)up ≥

uNYQ
2 ,

then L0 =
[ uNYQ+us

2up

]
− 1. us = fs sinα is the fractional

sampling rate. up = fp sinα is the fractional ‘‘frequency’’ of
the mixing signal pi(t). The fractional Nyquist sampling rate
of α-bandlimited signal is uNYQ = 2bN/2 when the maximum
fractional Fourier ‘‘frequency’’ of the signal is bN/2. L0 =
(bN/2 cscα + fs)/(2fp)− 1. We choose the sign matrix signal
fp ≥ Bα cscα, and the sampling rate fs = fp ≥ Bα cscα. The
number of spectrum slices is L = 2L0 + 1.
The ith channel interpolation formula is as:

yi(t) =
1
2π

L0∑
l=−L0

+∞∑
n=−∞

cilx(nTs)λα(nTs)

×
sin[(t − nTs)us cscα]
(t − nTs)us cscα

ejlup cscα(t−nTs). (59)

According to Eq. (53), cil = wl
∑M−1

k=0 pikqlk where q =

ej2π/M . wl = 1
M , for l = 0, else wl =

1−ql

2jπ l . Let F̄ be the
M × M discrete Fourier transformation matrix and the ith
column: F̄i =

[
q0i̇, q1i̇, . . . , q(M−1)i̇

]T
, i ∈ [0,M − 1]. Let

F = [F̄L0 , · · · , F̄−L0 ] be M × L matrix. To guarantee no
distortion of the original signal’s spectrum, set M = L. Let
S be the m ×M sign matrix. W = diag(wL0 , . . . ,w−L0 ) is a
L × L diagonal matrix. Substituting the above definitions to
Eq. (58),

Yα(u) = PFWzα(u), (60)

where zα(u) = G(u)Vα(u), Vα(u) = [Xα(u −
L0up), · · · ,Xα(u), · · · ,Xα(u + L0up)]T . G(u) =

diag[gL0 , · · · , g−L0 ], where gl = λ∗α(u − upl). Rewrite
Eq. (58) in discrete fractional Fourier domain as yα,i(n) =∑L0

l=−L0
cilzα,l(n), where zα,l(n) is the sampling sequence of

the lth spectrum slice of zα(u). cil is the entries of sensing
matrix A = PFW. The matrix A and sub-Nyquist downsam-
pling stage is an important implementation of the sub-Nyquist
sampling which allows compressive acquisition of sparse
wideband signals at sub-Nyquist rates. zα(u) can be recovered
from Eq. (60) by using the simultaneous orthogonal matching
pursuit (SOMP), which is fast and easy to implement for
engineers to construct signals in the simulations.

TABLE 2. Parameters of signal.

We use the chirp signal as the test subject which is a typical
fractional Fourier bandlimited signal. Chirp-like signals can
be interpreted as the first order approximation of the poly-
nomial frequency modulation signals. The normalized mean
squared error (NMSE) and successful recovery probability
are used to measure the performance of the compressed
sampling. Successful recovery probability is defined as the
ratio of the number of empirical successful reconstructions
and total trials. Successful recovery is defined when the
estimated support set is equal to the true support. Obvi-
ously, the greater the successful recovery probability is, the
better the performance. We demonstrate the results for two
cases: the performance of proposed system with different
generators, robustness and recovery accuracy with different
SNRs, sparsity and number of channels. Every simulation has
300 trials to ensure statistically stable results. The original
multiband signal is given by follows:

x(t) =
N /2∑
i=1

Eirect(
t − τi
si

) cos(2πkit2 + 2π fit) (61)

where N /2 is the number of signals. Suppose the symme-
try of the real signal spectrum, N is the sparsity. Ei is the
amplitude of signal which could be random or fixed. si is the
time scale factor which determines the signal duration, in our
simulation, si is fixed to be 2µs. τi is the time delay between
different signals which is selected randomly. ki is the signal
modulation rate. fi is frequency carrier in [fs, fNYQ]. fNYQ is
10GHz. With α = −0.2 × 10−13 order FrFT, the bandwidth
of three components are {40, 20, 10}MHz respectively which
are computed by (ki−cotα)si, so hemaximum bandwidth and
the minimum bandwidth are Bα,max = 40MHz and Bα,min =

10MHz. The specific values of the parameters are as table 2.
From the foregoing analysis, we can see the choice of the

generators is the basis of the proposedmethod, which directly
decides the implementation structure of the hardware. In our
proposed method, the generators are chosen to average the
total sampling region in the FrFD, as a result the number of
the generators is the most important factor. In the following,
we use simulations to find how the different numbers of
generators decide the performance of the proposed method.
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FIGURE 11. The recovery probability of the proposed method with
different number of generators.

The simulation is evaluated by the recovery probability, accu-
racy and compressed ratio where the compressed ratio is
computed by mus/uNYQ, us is the width of the sperate grid,
m is the number of channels.
Considering the maximum and minimum bandwidth of the

sampled signals are 40MHz and 10MHz respectively, we use
three representative number of generators {235, 463, 711},
as a result, the bandwidth of the three different types gen-
erators are {42.55, 21.6, 14.06}MHz. The three simulations
can be used to simulate two situations, which shows the basic
change trend of the performance with different bandwidth of
the generators.{

us = up > Bα,max , L = 243
Bα,min < us = up < Bα,max , L = 427,L = 711.

(62)

Fig. 11 and Fig. 12 show the recovery probability and the
recovery NMSE for three types of generators. We think the
proposed method can be put into practice when the recovery
probability is greater than 0.9. The conditions of simulation
are as follows: SNR is 20dB, the number of bands is 4, the
number of channels varies from 4 to 60 with a step 2.

In Fig. 11, the recovery probability increases as the number
of channels increasing for three curves. When the number
of channels are 16, 20, 26 respectively, the recovery prob-
ability of three curves is the first time more than 0.9, as a
result, the total sampling rates are 658.42MHz, 468.38MHz,
365.68MHz, the compressed ratio are 0.066, 0.047 and 0.036.
Although the decrease of up and us results in the decrease of
the total sampling rate, the system needs to increase number
of channels to guarantee the successful recovery probability,
also the increasing of the channels would increase the com-
plexity of the design of the system.

Fig. 12 shows the recovery NMSE with three conditions of
different numbers of generators, it is obvious the proposed
method has higher precision when us = up > Bα,max .
According to simulation, the choice of the number of genera-
tors decides the performance of the proposed system, mostly,
the number of generators is chosen to satisfy us = up >

Bα,max to get better performance and easier implement with
the expense of higher total sampling rate.

FIGURE 12. The recovery NMSE of the proposed method with different
number of generators.

FIGURE 13. The recovery probability of the proposed method with
different SNRs and sparsity.

FIGURE 14. The recovery NMSE of the proposed method with different
SNRs and sparsity.

The robustness and recovery accuracy are analyzed with
different SNR, sparsity and number of channels. From previ-
ous simulation, the proposed method would get better perfor-
mance when us = up > Bα,max . We choose the number of
the generators is 235. Fig. 13 and Fig. 14 show the recovery
probability and recovery accuracy. The number of bands is
{4, 6}. SNR is {10, 20}dB. The number of channels changes
from 4 to 60 with a step 2. From Fig. 13 we can see the bigger
SNR is, the better the proposed method is. The more sparsity
needs more channels to get stable recovery. The curves are
tend to be stable reconstructionwhen the numbers of channels
reach to {16, 20, 22, 34}. From Fig. 14, the bigger SNR
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FIGURE 15. The robustness of the proposed system.

FIGURE 16. The accuracy of the proposed system.

is, the higher recovery accuracy is. The recovery accuracy
tends to be stable as the increasing of the number of channels.
From Fig. 13 and Fig. 14, the proposed system is useful for
multiband signal in the FrFD.

Fig. 15 uses a 3D figure to depict the robustness of the
proposed system, which is more detailed visual to see how
the number of channels and SNR influence the performance
of the proposed system. The colorbar stands for the recovery
probability. The number of bands is 6. The number of chan-
nels varies from 4 to 50 with a step 2. The range of SNR is
from 1 to 35 with a step 2. The probability of the successful
recovery increases dramatically when the number of channels
reaches the theoretical value which can be computed by
ExRIP [26]. The recovery probability approached to 0.9 when
the number of bands is 6 and the number of channels is 12, and
experimental results is in good agreement with the theoretical
value of number of channels. The number of channels is a
decisive factor for the probability of the successful recovery.

The performance of recovery accuracy is shown in Fig. 16.
The conditions are the same with Fig. 15. The colorbar
stands for the NMSE. The range of the NMSE colorbar is
from 0 to 1. The area of deep color represents a low NMSE
and high recovery accuracy. The possible wrong indices in
the recovered support and noise are the main error sources.
The white region are zeros due to the recovery probability is
zero.

V. CONCLUSION
This paper introduces a compressed sampling method of ana-
log sparse signals, which combines the SI sampling space and
compressed sensing in the FrFD. The SI sampling subspaces
are extended from single generator model to a multiple gen-
erators model associated with the FrFT. The extended model
derived a necessary and sufficient condition for transform
fractional bandlimited signals to form an orthogonal basis
or a Riesz basis for SI subspaces. Considering some specific
sampled signals can be expressed by multiple generators, the
sampled signals are sparse in the subspaces when taking the
generators as sparse bases, as a result, some generators are
not necessary. The compressed sampling methods make full
use of the sparsity of the signals in the extended general-
ized subspaces. Considering the choices of generators are
difficult, we average the whole sampled domain into many
equal intervals, and all the intervals construct the sampling
subspace. The simulations validate the correctness of theory
in two aspects, first, the proposed sampling method based on
the theorem of the generalized sampling spaces has higher
recovery accuracy for multiband signals in the FrFD, second,
the proposed compressed sampling method can sample and
recover the multiband signals in the FrFD with a relatively
low sampling rate.
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