
Received October 18, 2021, accepted December 11, 2021, date of publication December 15, 2021,
date of current version December 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3135870

Joint State Estimation Under Attack
of Discrete Event Systems
QI ZHANG 1,2, CARLA SEATZU 2, (Senior Member, IEEE), ZHIWU LI 1,3, (Fellow, IEEE),
AND ALESSANDRO GIUA 2, (Fellow, IEEE)
1School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
2Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
3Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau

Corresponding author: Zhiwu Li (zhwli@xidian.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1700104; in part
by the Natural Science Foundation of China under Grants 61472295, 61673309, and 61873342; in part by the Shaanxi Huashan Scholars,
the Science and Technology Development Fund, Macau Special Administrative Region (MSAR), under Grant 122/2017/A3; and in part by
the Project RASSR05871 MOSIMA financed by Region Sardinia, FSC 2014–2020, annuity 2017, Subject area 3, Action Line 3.1.

ABSTRACT The problem of state estimation in the setting of partially-observed discrete event systems
subject to cyber attacks is considered. An operator observes a plant through a natural projection that hides
the occurrence of certain events. The objective of the operator is that of estimating the current state of the
system. The observation is corrupted by an attacker which can tamper with the readings of a set of sensors
thus inserting some fake events or erasing some observations. The aim of the attacker is that of altering
the state estimation of the operator. An automaton, called joint estimator, is defined to describe the set of
all possible attacks. In more details, an unbounded joint estimator is obtained by concurrent composition
of two state observers, the attacker observer and the operator observer. The joint estimator shows, for each
possible corrupted observation, the joint state estimation, i.e., the set of states consistent with the uncorrupted
observation and the set of states consistent with the corrupted observation. Such a structure can be used to
establish if an attack function is harmful w.r.t. a misleading relation. Our approach is also extended to the
case in which the attacker may insert at most n events between two consecutive observations.

INDEX TERMS Discrete event systems, state estimation, cyber attacks.

I. INTRODUCTION
Cyber-physical systems are intelligent interconnected
systems which are particularly exposed to network-based
malicious attacks. Their security is a topic which during the
last years has receivedmuch attention in different information
and communications technology (ICT) communities such
as automatic control [1], [2], computer science and
engineering [3], [4], and telecommunications [5].

In the domain of automatic control, the security of
dynamical systems has been addressed with two main
formalisms. The first one is that of time-driven systems,
either in continuous time [6], [7] or in discrete time [8], [9].
In [6], the issue of reliable control in cyber-physical system
under attack has been investigated. Rabehi et al. [7] design
a secure interval observer for solving the problem of state
estimation. In [8], the issue of reachability analysis in
discrete-time systems under attack has been studied. Finally,

The associate editor coordinating the review of this manuscript and

approving it for publication was Lo’ai A. Tawalbeh .

Zhang et al. [9] propose the problem of data-driven resilient
control against cyber attacks.

The second formalism is that of discrete-event systems,
where time driven dynamics are abstracted and a logical (non
numerical) approach based on formal languages is adopted.
The problem of attack detection in the framework of discrete
event systems is addressed in [10]–[12]. In [13] the focus is
on fault diagnosis of discrete event systems under attack. The
problem of opacity enforcement by insertion functions under
energy constraints has been investigated in [14]. The problem
of supervisory control of discrete event systems under attack
has been considered in [15]–[24].

Mainly inspired by some recent works [25]–[28],
we address the problem of state estimation in the setting of
partially-observed discrete event systems subject to cyber
attacks. In this paper, which is an extended version of [29],1

we consider a plant modeled as a discrete event system with

1In [29] we only provided preliminary ideas by considering a less general
problem statement. Furthermore, no algorithm was formally presented
therein.

168068 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9385-7200
https://orcid.org/0000-0003-2014-352X
https://orcid.org/0000-0003-1547-5503
https://orcid.org/0000-0002-3859-9472
https://orcid.org/0000-0002-2294-9829

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

state set X , whose evolution is observed by an operator. The
occurrence of a subset of events Eo, called observable events,
can be detected by sensors while all other events, called
silent events, produce no observation. An evolution of the
plant produces an observed word s ∈ E∗o which the operator
uses to determine the set of consistent states C(s) ⊆ X , i.e.,
the set of states in which the system may be when s has been
produced.

We assume that an attacker, which has a full knowledge
of the plant, may corrupt the sensor readings. This could
happen because either the attacker can gain direct control
of a sensor or it can corrupt messages between the plant
and the operator assuming they are connected through a
network. The particular attack model we adopt, among those
that have been presented in the literature, is based on the
one considered by Meira-Góes et al. [26]. In particular, the
attacker may insert in the word observed by the operator fake
occurrences of compromised events or, on the contrary, may
erase the occurrence of such events. In addition, we consider
the possibility that the length of a word inserted by the
attacker between the occurrence of two observable events
may be n-bounded.
The attacker aims to mislead an operator. Under attack,

an observation s ∈ E∗o produced by a plant can be changed
into a corrupted observation s′ ∈ E∗o and as a result the
operator computes a state estimate C(s′) ⊆ X , which is
in general incorrect. The attacker may have arbitrary goals.
As an example, it may want to hide the fact that the plant has
reached a critical state such that the operator does not activate
appropriate protections that are fundamental for the system
safeness. In all generality, we formalize a malicious goal by
introducing a misleading relation R ⊆ 2X × 2X and we say
that an attack is harmful if there exists some observation s
that can be changed into a corrupted observation s′ such that
(C(s), C(s′)) ∈ R.

In this paper, we first show how to construct two particular
automata, called attacker observer and operator observer,
which are defined on an augmented attack alphabet which
includes the observable events of the plant and the events
describing the action of the attacker. Based on concurrent
composition of these two observers, we design a joint
estimator, which describes all possible attacks. Finally,
by inspection of such a structure one can determine if the
attack function is harmful w.r.t. a misleading relation.

A. LITERATURE REVIEW
The problem of estimation under attack has been considered
by relatively few authors in the automatic control literature.

In [30]–[32] the state estimation problem for time-driven
models is studied.

Ding et al. [30] propose the problem of remote state
estimation under denial-of-service attacks. A sensor needs
to choose a channel to transmit the data packets, while
an attacker needs to choose a channel to attack. They
formalize such a problem as a two player stochastic game
between the sensor and the attacker, and present optimal

strategies in terms of computational complexity for both
sides, respectively.

Peng et al. [31] consider the issue of optimal attack
energy allocation against remote state estimation. An optimal
attack strategy that can result in maximal estimation error
covariances is derived. Finally, they prove that the optimal
strategy has a threshold structure.

Cheng et al. [32] develop an attack strategy that can
degrade the estimation performance by tampering with the
sensors, eavesdropping the measurements, and injecting false
feedback information. They conclude that, with the presence
of an attacker, the mean-squared stability condition of the
state estimation is weakened.

In this work we consider discrete-event models, and the
approaches developed in the above mentioned literature
cannot be adopted. The state estimation problem for discrete
event systems so far has not been studied in all generality,
but has been partially addressed in the context of supervisory
control. Here we mention a few recent publications which
have inspired our work.

Tong et al. [25] present a new finite structure called
parallel observer, which allows to simultaneously describe
the observations of the supervisor and of the attacker. Based
on the parallel observer, a maximally permissive supervisor
is developed to enforce current-state opacity.

Meira-Góes et al. [26] propose a novel bipartite transition
structure in the framework of discrete event systems, namely,
Insertion-Deletion Attack structure, and present a game-like
relationship between the supervisor and the environment (the
plant and the attacker) to determine if the attacker can lead
the plant to a forbidden state without being detected by the
supervisor.

Lima et al. [27] propose a defense policy that prevents
cyber attacks at sensor and actuator layer in supervisory
control systems. It is assumed that the attacker can alter the
observation of events in a set of events 6vs, and modify the
enabling of events in a set of events 6va. The detectable
network attack security and undetectable network attack
security are introduced to prevent the plant from reaching
forbidden states.

Su [28] addresses the problem of attack-with-bounded-
sensor-reading-alteration (ABSRA), where the attacker can
intercept the sensor readings from the plant and arbitrarily
alter them but with an upper bound on the length of the
altered observation word. In this way the attacker can cheat
the supervisor, which will lead the plant to the undesirable
states. The author also develops a supervisor that is robust to
ABSRA.

We point out that significant differences exist between
the problem setting considered in this paper and the
problem setting dealt in most of the papers in the literature,
including the above mentioned ones. What we propose
is a methodology for studying how the possible choices
of the attacker can affect the estimate of the operator.
On the contrary, previous works on cyber attacks in the
DES literature, including [15], [26]–[28], consider the case

VOLUME 9, 2021 168069

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

of an operator/supervisor: in such a case the goal of the
attacker is to beguile the supervisor so that a specification is
violated, i.e., the plant reaches a forbidden state or generates
a forbidden evolution.

The proposed approach can be applied not only to the
case in which an operator-supervisor controls a plant in
closed-loop — as in the above mentioned papers — but in
more general settings, where the operator may have goals of
different nature. As an example, in our framework one may
study how cyber attacks disturb an operator-monitor which
takes decisions based on its estimation of the plant state or
an operator-diagnoser which aims to detect the occurrence
of faults. Mutatis mutandis, our approach can also be used
for addressing a problem of opacity enforcing: in such a case
the operator is an intruder that wants to infer a secret and the
attacker is the agent that corrupts the observation to thwart
the intruder.

B. CONTRIBUTIONS AND STRUCTURE OF THE PAPER
This paper contains several original contributions.
• The problem of joint state estimation under attack is
formalized; harmful attacks are characterized in general
terms by means of a misleading relation.

• Based on the notion of attack alphabet and attack words,
which describe how observations can be corrupted by
the attacker we show how to construct two different
observers: they describe the state estimates computed
by the attacker and by the operator for each corrupted
observation.

• A formal methodology to design a joint estimator
is presented. This automaton, constructed as the
concurrent composition of the two observers, describes
all possible attacks.

• The joint estimator shows, for each possible corrupted
observation, the joint state estimation, i.e., the set
of states consistent with the uncorrupted observation
and the set of states consistent with the corrupted
observation. Such a structure also indicates if a harmful
attack exists.

The rest of the paper is organized as follows. In Section II,
we recall the basic notions of finite-state automata and
of state estimation via observers. In Section III, we first
describe the adopted attack model, and then formalize the
problem considered in this paper. In Section IV, we develop
two observers: attacker observer and operator observer.
In Section V, we define the unbounded joint estimator
as the concurrent composition of such observers. Then,
we define an automaton that allows us, again via concurrent
composition, to define a bounded joint estimator, starting
from the unbounded one. Conclusions are finally drawn in
Section VI where we also discuss our future lines of research
in this framework.

II. PRELIMINARIES
Given an alphabet E , let E∗ denote the set of all words on
the alphabet. Given two words σ1, σ2 ∈ E∗, let σ1σ2 denote

their concatenation. Similarly, given two languages L1,
L2 ⊆ E∗, we denote their concatenation L1L2 and when
L1 = {σ } we also write L1L2 = σL2.
A deterministic finite-state automaton (DFA) is a four-

tuple G = (X ,E, δ, x0), where X is the set of states, E
is the set of events (alphabet), δ : X × E → X is the
transition function, and x0 is the initial state. The transition
function can be extended to δ∗ : X × E∗ → X such that
δ∗(x, ε) = x, and δ∗(x, σe) = δ(δ∗(x, σ), e) for all x ∈ X ,
e ∈ E and σ ∈ E∗. The generated language of G is defined
as L(G) = {σ ∈ E∗ | δ∗(x0, σ) is defined}.
Given two alphabets E ′ and E with E ′ ⊆ E , the natural

projection on E ′, PE ′ : E∗→ (E ′)∗ is defined as [33]:

PE ′ (ε) := ε PE ′ (σe) :=

{
PE ′ (σ)e if e ∈ E ′,
PE ′ (σ) if e ∈ E \ E ′.

(1)

Therefore, given a word σ ∈ E∗, its natural projection on E ′

is obtained by erasing events that do not belong to E ′.
The concurrent composition of two languages is defined

as L1 ‖ L2 = {σ ∈ E∗ | PE1 (σ) ∈ L1,PE2 (σ) ∈ L2},
where E1 and E2 are alphabets of L1 and L2, respectively,
and E = E1 ∪ E2. The concurrent composition operator can
also be defined for DFA. In particular, given two DFA G′ and
G′′, their concurrent composition, denoted as G = G′ ‖ G′′,
generates language L(G) = L(G′) ‖ L(G′′).
A partially-observed deterministic finite-state automaton

is denoted as G = (X ,E, δ, x0), where E = Eo ∪ Euo,
Eo is the set of observable events, and Euo is the set of
unobservable events. In the following, to keep the notation
simple, we denote as P : E∗ → E∗o the natural projection
on Eo. The inverse projection P−1 : E∗o → 2E

∗

is defined as
P−1(s) = {σ ∈ E∗ : P(σ) = s}, where σ ∈ E∗, and s ∈ E∗o .
When a partially-observed DFA generates a word σ ∈

L(G) it produces the observation s = P(σ) ∈ E∗o . However,
in general a given observation may be produced by more
than one generated word. The set of words consistent with
observation s is defined by

S(s) = P−1(s) ∩ L(G) = {σ ∈ L(G) | P(σ) = s}

and denotes the set of words generated by the DFA that
produce observation s.
Correspondingly, the set of states consistent with

observation s is defined by

C(s) = {x ∈ X | (∃σ ∈ S(s)) δ∗(x0, σ) = x}

and denotes the set of states in which the DFA can be when
observation s had been produced.
The set C(s) ⊆ X is also called the state estimate

corresponding to observation s ∈ E∗o . The problem of state
estimation of a partially-observed DFAG can be solved, in all
generality, constructing a new structure called its observer
(see [34] for details).
Let us first define, for a partially-observed DFA G, the

unobservable reach of a state x ∈ X . This set is denoted
by UR(x) and is defined as a set of states x ′ ∈ X reached

168070 VOLUME 9, 2021

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

FIGURE 1. A plant G under attack.

from state x generating an unobservable word σ ∈ E∗uo, i.e.,
UR(x) = {x ′ | ∃σ ∈ E∗uo, δ

∗(x, σ) = x ′}. This definition can
be extended to a set of states B ⊆ 2X as follows:

UR(B) =
⋃
x∈B

UR(x).

The observer Obs(G) of a partially-observed DFA
G = (X ,E, δ, x0), is a DFA:

Obs(G) = (B,Eo, δobs, b0),

where the set of states is B ⊆ 2X , the alphabet Eo is
the set of observable events of G, the transition function
δobs : B× Eo→ B is defined as:

δobs(b, eo) :=
⋃
x∈b

UR({x ′ | δ(x, eo) = x ′}),

and the initial state is b0 := UR(x0).
As shown in [34], given a partially-observed DFA G with

observer Obs(G) = (B,Eo, δobs, b0), for any observation
s ∈ E∗o produced by G it holds that C(s) = δ∗obs(b0, s).

III. THE JOINT STATE ESTIMATION PROBLEM
In this section, first, we introduce an attack model and an
original formalism to represent it. Then, we formalize the
problem considered in this paper.

A. ATTACK MODEL
In this paper we consider a plant modeled by a partially
observable DFA with set of observable events Eo and set of
unobservable events Euo. Referring to Fig. 1, if σ is a word
generated by the plant, the observed word is s = P(σ).
An attacker may corrupt the output signals produced by the
plant with the effect of inserting in the observation some
events that did not occur, or erasing some events that have
occurred. Such a corrupted observation is denoted as s′ (a
sequence of events in Eo), and the operator constructs its
state estimation based on s′. In our framework, we assume
the operator monitors the plant to estimate its current state:
the objective of the attacker is to corrupt the observation in
such a way that a correct estimation is not possible.
Definition 1: [26] The set of compromised events is

denoted as Ecom ⊆ Eo. It includes all the observable events
that can be corrupted by the attacker, either inserting them
in the operator observation, even if they have not actually
occurred, or erasing them in the operator observation. �

The definition of compromised events was first proposed
in [26]. However, while in [26] the authors assume that all
the compromised events can be inserted and erased by the
attacker, here we slightly generalize the definition as follows.

FIGURE 2. The relationship among the subsets of Eo.

The set of compromised events that can be inserted in the
observer evolution is denoted as Eins, and the set of events
that can be erased is denoted as Eera. To keep the presentation
general, we assume that Eins and Eera are not necessarily
disjoint.

The relationship among the different subsets of observable
events Eo is clarified in Fig. 2.
We now formally describe the action of the attacker in

terms of two new types of events that it can generate. More
precisely, even if it is possible to directly define the attacker
as a finite-state transducer that ‘‘translates’’ an observed word
s into a corrupted observation s′ (see Fig. 1), for a reason that
will appear clear in the following, we prefer to characterize
the attacker’s action in terms of a new word defined on a
so-called attack alphabet Ea.
Definition 2: The attack alphabet is defined as Ea = Eo∪

E+∪E−, and we assume that Eo, E+, and E− are disjoint sets.
The set of inserted events [26] is denoted as E+, namely

E+ = {e+ | e ∈ Eins}. The occurrence of an event e+ ∈
E+ denotes the fact that the attacker inserts in the operator
observation an event e ∈ Eins that has not occurred in reality.

The set of erased events [26] is denoted as E−, namely
E− = {e− | e ∈ Eera}. The occurrence of an event e− ∈ E−
denotes the fact that the attacker erases from the operator’s
observation event e ∈ Eera generated by plant. �

Given a bound n ∈ N ∪ {∞}, let E≤n+ = {w+ ∈ E∗+ |
|w+| ≤ n} denote the set of words on alphabet E+ whose
length does not exceed n. Note that if n = ∞ then E≤n+ = E∗+.
Definition 3: Given a plant G with a set of compromised

events Ecom = Eins ∪ Eera, let n ∈ N ∪ {∞} be a bound.
An n-bounded attacker can be defined by an attack function
fn : P(L(G)) → E∗a , where Ea is the attack alphabet
(Definition 2), satisfying the following conditions:
(a) fn(ε) ∈ E

≤n
+ ,

(b) ∀se ∈ P(L(G)) with s ∈ E∗o :{
fn(se) ∈ fn(s){e−, e}E

≤n
+ if e ∈ Eera,

fn(se) ∈ fn(s){e}E
≤n
+ if e ∈ Eo \ Eera.

(2)

�

In Definition 3, condition (a) means that the attacker can
insert a bounded word w+ ∈ E

≤n
+ at the initial state, before

any event generated by the plant is observed. Condition
(b) implies that if an event e ∈ Eera occurs, the attacker can
either erase event e or not erase it, and then insert any word
w+ ∈ E

≤n
+ . If an event e ∈ Eo\Eera occurs, then the attacker

can insert any word w+ ∈ E
≤n
+ after e.

VOLUME 9, 2021 168071

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

FIGURE 3. Internal structure of the attacker with observed word s ∈ E∗o ,
attack word w ∈ E∗a , and corrupted observation s′ ∈ E∗o .

Wenotice that imposing that the attackermay insert at most
n consecutive events between any two observed events, makes
sense in practice. Indeed, even if our model is purely logical,
a real system can produce in a finite time just a finite number
of events. If the attacker could introduce an arbitrarily large
number of events between two consecutive observed events,
this would lead to an anomalous behavior as observed by the
operator.

We denote as Fn the set of attack functions for a given
n ∈ N ∪ {∞}.
Definition 4: The language modified by an attack function

fn is called attack language. It is denoted as L(fn,G) and is
defined as L(fn,G) = fn(P(L(G))). A word w ∈ L(fn,G) is
called an attack word.

The set of all the attack languages relative to a given
n ∈ N ∪ {∞}, denoted as L(Fn,G), is defined as

L(Fn,G) =
⋃
fn∈Fn

L(fn,G) =
⋃
fn∈Fn

fn(P(L(G))). (3)

�

Given two integer numbers n and n′, Fn ⊆ Fn′ if n ≤ n′.
Furthermore, Fn ⊆ F∞ for all n <∞.
Definition 5: The operator mask P̂ : E∗a → E∗o is defined

as:

P̂(ε) = ε, P̂(we′) =


P̂(w)e if e′ = e ∈ Eo ∨

e′ = e+ ∈ E+,
P̂(w) if e′ = e− ∈ E−.

(4)

�

The internal structure of the attacker is visualized in Fig. 1
as a black box taking an observation s as an input and
producing a corrupted observation s′ as an output. Such an
internal structure is sketched in more detail in Fig. 3.
Here the observed word is s = P(σ) (a sequence of events

in Eo). The attacker corrupts the observation according to the
attack function fn, producing w ∈ L(fn,G) ⊆ E∗a . Such a
sequence is projected via P̂ on Eo, generating a word s′. The
plant operator constructs its state estimation based on s′.

B. PROBLEM STATEMENT
In this subsection we first describe the possible goals of the
attacker on which we are focusing in this paper. Then we
formalize the problem statement. To this aim we introduce
a relation R ⊆ 2X × 2X , called a misleading relation. If s
and s′ in E∗o denote, respectively, the generic uncorrupted and
corrupted observation of the operator, the goal of the attacker
is achieved whenever

(C(s), C(s′)) ∈ R,

i.e., whenever the pair (set of states consistent with
the uncorrupted observation, set of states consistent with
the corrupted observation) belongs to R. The following
definition formalizes this.
Definition 6: Let G = (X ,E, δ, x0) be a plant with

set of observable events Eo and its observer Obs(G) =
(B,Eo, δobs, b0). An attack function fn is harmful w.r.t.
a relation R ⊆ 2X × 2X if there exists an observation s ∈
P(L(G)) generated by the plant, whose set of consistent states
is C(s) = δ∗obs(b0, s), such that s can be corrupted into a word
s′ = P̂(fn(s)) whose corresponding set of consistent states is
C(s′) = δ∗obs(b0, s′), and (C(s), C(s′)) ∈ R. �

Different physical problems can be described in this setting
by suitably defining relation R. A significant example is the
following one.
Example 1: Assume that a subset of states of a system,

Xcr ⊆ X , is labeled as critical in the sense that when the
system is in one of such states, a protective action must be
taken to avoid possible damages. The operator is monitoring
the system evolution in order to establish when one of such
states is reached. Obviously, if the operator does not realize
that a critical state has been reached, no action is taken and
the system behaviour can be seriously compromised. The
effectiveness of an attacker that aims to affect the system
observation in order to prevent the operator to realize when a
critical state is reached, can be evaluated via the misleading
relation defined as R = {(X ′,X ′′) | X ′ ∩ Xcr 6= ∅ and X ′′ ∩
Xcr = ∅}. Indeed, the attack is harmful if there exists at least
one observation s such that C(s)∩ Xcr 6= ∅ (meaning that the
systemmay be in a critical state) which can be corrupted to an
observation s′ with C(s′)∩Xcr = ∅ (meaning that the operator
excludes the possibility that the system is in a critical state). �

Given a plant G = (X ,E, δ, x0) with set of observable
events Eo, and a misleading relationR ⊆ 2X × 2X , the main
contribution of this paper consists in providing a tool, called
joint estimator that contains all the possible actions (insert
and/or erase observations) that an attacker may implement
during the system evolution. On the basis of such a structure,
the attacker can establish if the attacks are harmful to the
plant.

IV. ATTACKER OBSERVER AND OPERATOR OBSERVER
In this section we introduce two special structures, called
Attacker Observer and Operator Observer, which are
fundamental to derive the solution to the joint estimation
problem we are considering.

A. ATTACKER OBSERVER
The attacker observer Obsatt (G) describes all possible attack
words that can be generated by functions in F∞ and the
corresponding sets of consistent states of the system. Since
attacks are performed by the attacker, it knows which
observations originate from events that have really occurred
in the plant (Eo), which observations have been erased (E−),
and which observations have been inserted (E+). The attacker
observer Obsatt (G) can be constructed using Algorithm 1.

168072 VOLUME 9, 2021

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

Algorithm 1 Construction of the Attacker Observer
Obsatt (G)
Input: An observer Obs(G) = (B,Eo, δobs, b0), Eins, and

Eera.
Output: An attacker observerObsatt (G) = (B,Ea, δatt , b0).
1: Let Ea := Eo ∪ E+ ∪ E−;
2: Let δatt := δobs;
3: for all e ∈ Eera, do
4: for all b ∈ B, do
5: if δatt (b, e) = b′, then
6: δatt (b, e−) = b′;
7: end if
8: end for
9: end for

10: for all e ∈ Eins, do
11: for all b ∈ B, do
12: δatt (b, e+) = b;
13: end for
14: end for

According to Algorithm 1, the set Ea is initially computed
and the transition function of Obsatt (G) is initialized at
δatt = δobs. Indeed, events in Eo are events actually occurring
in the plant, thus when such events occur the attacker updates
its state estimation according to the transition function
of Obs(G).

Then, for all e ∈ Eera and for all b ∈ B, whenever δatt (b, e)
is defined, the algorithm imposes δatt (b, e−) = δatt (b, e).
Indeed, the attacker knows that e− corresponds to event e that
has been canceled, thus the way it updates its estimation is the
same in the case of e and e−.

Finally, for all events e ∈ Eins, and for all states b ∈ B,
we add self-loops δatt (b, e+) = b. Indeed, the attacker knows
that events in E+ are fake events that have not really occurred
in the plant, thus it does not update its estimation based on
them. In particular, self-loops correspond to the possibility of
inserting an arbitrarily large number of such events, which
is consistent with the fact that we are dealing with attack
functions in F∞.
Example 2: Consider a partially-observed plant G =

(X ,E, δ, x0) in Fig. 4(a), where E = Eo ∪ Euo, Eo =
{a, c, d, g}, and Euo = {b}. The corresponding observer of
G is shown in Fig. 4(b). Let Eins = {c, d}, and Eera = {c, g}.
The attacker observer constructed usingAlgorithm 1 is shown
in Fig. 5(a).

Since events c, g ∈ Eera, and there is a transition labeled
c from state {1, 2} to state {3} in the observer of the plant
Obs(G), we add transitions labeled c and c− from state {1, 2}
to state {3} in the attacker observer. Similar arguments can be
used to explain transitions labeled c and c− from state {5} to
state {6}, self-loops labeled g and g− at state {4}. Then, since
c, d ∈ Eins, we add self-loops labeled c+ and d+ at all the
states. �

The following proposition provides a characterization of
the attacker observer.

FIGURE 4. (a) A partially-observed plant G; (b) its observer Obs(G), where
Eo = {a, c, d , g}.

FIGURE 5. (a) Attacker observer in Example 2 and (b) operator observer
in Example 3 for the plant in Fig. 4.

Proposition 1: Consider a plant G with set of observable
events Eo and observer Obs(G) = (B,Eo, δobs, b0). Let f∞
be an attack function, F∞ be the set of attack functions, and
Ea = Eo ∪ E+ ∪ E− be an attack alphabet. Let Obsatt (G) be
the attacker observer constructed using Algorithm 1. It holds
that:
(a) L(Obsatt (G)) = L(F∞,G);
(b) ∀s ∈ P(L(G)), ∀f∞ ∈ F∞ with w = f∞(s) ∈ E∗a :

δ∗att (b0,w) = δ
∗
obs(b0, s).

VOLUME 9, 2021 168073

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

Proof: (a) According to Algorithm 1, Step 2 implies that
L(Obsatt (G)) contains all words that can be observed if no
attack occurs. Correspondingly, according to the definition
of attack function (Definition 3), the set of attack languages
L(F∞,G) also contains these words since the attacker does
not reduce the language of the plant.

Steps 3–9 guarantee that all attacks resulting from
the cancellation of events in Eera are considered.
Correspondingly, according to the definition of attack
function, each time the plant generates an event e ∈ Eera,
then the attacker can erase it.

Finally, Steps 10–14 guarantee that all attacks resulting
from the insertion of an arbitrarily large number of events in
Eins are taken into account. Again, according to the definition
of attack function, the attacker can insert any wordw+ ∈ E

≤n
+

whenever possible.
Thus, we can conclude that L(Obsatt (G)) = L(F∞,G).
(b) We prove this by induction on the length of s. If s = ε,

the result follows from the fact that, by definition of attack
function, it is f∞(ε) ∈ E

≤n
+ , and by Steps 10–14, events in E+

lead to self-loops in Obsatt (G).
Let us now consider a generic word s ∈ P(L(G)) with

length greater than one, written as s = se, where s ∈ P(L(G))
and e ∈ Eo. Assume the result holds for s. We prove that it
also holds for s = se considering the following two possible
cases.

If e ∈ Eera, by the definition of attack function,
w ∈

⋃
f∞∈F∞

f∞(s){e−, e}E
≤n
+ is true. According to

Steps 3–9, events e and e− are dealt with in the same manner
when defining the transition function δatt . Finally, as just
pointed out, according to Steps 10–14, events in E+ lead to
self-loops in Obsatt (G).
Finally, if e ∈ Eo\Eera, by the definition of attack function,

w ∈
⋃

f∞∈F∞
f∞(s)eE

≤n
+ is true. Thus the result follows from

the fact that, according to Steps 10–14, events in E+ lead to
self-loops in Obsatt (G) and events in Eo are dealt with in the
same manner in Obsatt (G) and Obs(G). �
Now we discuss the computational complexity of

constructing the attacker observer Obsatt (G). Given a plant
G with set of states X, the observer of the plant Obs(G)
can be constructed in 2|X | steps. According to Algorithm 1,
Obsatt (G) has the same number of states as Obs(G); thus the
complexity of building Obsatt (G) is O(2|X |).

B. OPERATOR OBSERVER
The attack model we are considering may change an
observation s into a corrupted observation s′ which cannot
be produced by the nominal plant. In this case the operator
understands that the system is under attack. This can be
formalized as follows.
Definition 7: Consider a plant G. An attack function fn is

said to be stealthy if P̂(L(fn,G)) ⊆ P(L(G)), where P̂ is the
operator mask. �

In words, stealthiness requires that the set of words that
an operator observes when the system is under attack is
contained in the set of words the operator may observe when
no attack occurs.

The operator observer Obsopr (G) generates two different
sets of words. The first set includes all words on E∗a that may
either result from an uncorrupted observation of the plant
or from a corrupted observation which keeps the attacker
stealthy. The second set of words includes all the previous
words continued with a symbol in Ea so that the resulting
word is not consistent with an uncorrupted observation.
While the words in the first set lead to a set of states that
according to the operator are consistent with the perceived
observation, those in the second set lead to a dummy state
denoted as b∅. The operator observer Obsopr (G) can be
constructed using Algorithm 2, as shown below.

Algorithm 2 Construction of the Operator Observer
Obsopr (G)
Input: An observer Obs(G) = (B,Eo, δobs, b0), Eins, and

Eera.
Output: An operator observer Obsopr (G) =(

Bopr ,Ea, δopr , b0
)
.

1: Let Bopr := B ∪ b∅;
2: Let Ea := Eo ∪ E+ ∪ E−;
3: Let δopr := δobs;
4: for all e ∈ Eins, do
5: for all b ∈ B, do
6: if δopr (b, e) = b′, then
7: δopr (b, e+) = b′;
8: end if
9: end for
10: end for
11: for all e ∈ Eera, do
12: for all b ∈ B, do
13: δopr (b, e−) = b;
14: end for
15: end for
16: for all ea ∈ Ea, do
17: for all b ∈ B, do
18: if δopr (b, ea) is not defined, then
19: δopr (b, ea) = b∅;
20: end if
21: end for
22: end for

According to Algorithm 2, the set of states
Bopr = B ∪ b∅ and the set of events Ea are initially
computed. Then, the transition function of Obsopr (G) is
initialized at δopr = δobs. Indeed, events in Eo are events
actually occurring on the plant; when such events occur,
the operator updates its state estimation according to the
transition function of Obs(G).
Furthermore, for all e ∈ Eins and for all b ∈ B,

we impose δopr (b, e+) = δopr (b, e). Indeed, the operator does
not distinguish between events in E+ and the corresponding

168074 VOLUME 9, 2021

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

events in Eins. For all e ∈ Eera and for all b ∈ B, we add self-
loops δopr (b, e−) = b. Indeed, events in E− correspond to no
observation by the operator.

Finally, for all the events ea ∈ Ea that are not enabled at
the generic state b ∈ B, let δopr (b, ea) = b∅. As a result, for
all b ∈ B and for all ea ∈ Ea, function δopr (b, ea) is defined.
On the contrary, δopr (b∅, ea) is undefined for all ea ∈ Ea.
Example 3: Consider again the plant G in Fig. 4. Let

Eins = {c, d} and Eera = {c, g}. The operator observer
constructed using Algorithm 2 is visualized in Fig. 5(b).

Since c, d ∈ Eins and there is a transition labeled c from
state {1, 2} to state {3} in Obs(G), we add transitions labeled
c and c+ from state {1, 2} to state {3} in the operator observer.
Similar arguments can be used to explain the transitions
labeled c and c+ from state {5} to state {6}, the transitions
labeled d and d+ from state {7, 8} to state {8}, and the self-
loops labeled d and d+ at state {8}. Then, since c, g ∈ Eera,
we add self-loops labeled c− and g− at all the states. Finally,
we add all the missing transitions to the new state b∅, which
has no output arc. �

To better characterize the properties of the operator
observer, let us define two sets of words associated to an
attack model as described in Subsection III-A.
Definition 8: The set of stealthy words on attack alphabet

Ea is

Ws = {w ∈ E∗a | P̂(w) ∈ P(L(G))},

while the set of exposing words on Ea is

We = {wea ∈ E∗a | w ∈ Ws, ea ∈ Ea,w ea 6∈ Ws}.

�

In plain words, a stealthy word w produces an observed
word s′ = P̂(w) which does not reveal the presence of
the attacker because such an observation may have been
produced by the plant. An exposing word is a non-stealthy
word on Ea whose strict prefixes are all stealthy: hence it
reveals the presence of the attacker but only at the last step.

The following proposition provides a characterization of
the operator observer.
Proposition 2: Let G be a plant with set of observable

events Eo and observer Obs(G) = (B,Eo, δobs, b0). Given
an attack alphabet Ea = Eo ∪ E+ ∪ E− with set of stealthy
wordsWs and set of exposing wordsWe, letObsopr (G) be the
operator observer constructed by Algorithm 2. It holds that:
(a) L(Obsopr (G)) = Ws ∪We;
(b) ∀w ∈ L(Obsopr (G)): if w ∈ Ws, then δ∗opr (b0,w) =

δ∗obs(b0, P̂(w)); if w ∈ We, then δ∗opr (b0,w) = b∅.
Proof: (a) Follows from Algorithm 2, and from the

definitions of stealthy words, exposing words, and operator
mask.

In more detail, Step 3 guarantees that all uncorrupted
words belong to L(Obsopr (G)). Steps 4–10 guarantee that,
in Obsopr (G), events in E+ lead to the same states of the
corresponding events in Eins. Steps 11–15 guarantee that,
in Obsopr (G), events in E− lead to self-loops. The above

steps guarantee that all the stealthy words w ∈ Ws belong
to L(Obsopr (G)).

Finally, Steps 16–22 impose that, if after executing
Steps 1–15, a certain event in Ea is not already enabled at
a certain state of Obsopr (G), then such an event is enabled at
such a state and leads to state b∅, where no other event may
be executed. These steps ensure that all the exposing words
w ∈ We belong to L(Obsopr (G)).

(b) We prove this by induction on the length ofw. Ifw = ε,
the result holds being P̂(w) = ε.

Consider now a word w ∈ L(Obsopr (G)) with length
greater than one. Assume w ∈ Ws, and let w = w′ea. Assume
that the result holds for a generic w′ ∈ Ws. By definition
of operator mask, if ea ∈ Eo ∪ E+, then P̂(w) = P̂(w′)e ∈
P̂(w′){e, ε}; otherwise P̂(w) = P̂(w′) ∈ P̂(w′){e, ε}. Thus
δ∗opr (b0,w) = δopr (δ∗opr (b0,w

′), ea). Then, δ∗obs(b0, P̂(w)) =
δobs(δ∗obs(b0, P̂(w

′)), e) if ea ∈ Eo ∪E+, and δ∗obs(b0, P̂(w)) =
δobs(δ∗obs(b0, P̂(w

′)), ε) if ea ∈ E−.
According to Algorithm 2 the transition function of

Obsopr (G) starting for a generic state b ∈ B is defined
in the same way in case of e and e+ (Steps 6 and 7),
while it corresponds to a self-loop in the case of e− ∈ E−
(Step 13). As a result, we can conclude that δ∗opr (b0,w) =
δ∗obs(b0, P̂(w)).

Finally, the last claim in (b) follows from the fact
that, if w ∈ We, according to Algorithm 2, all the
missing transitions end up in the new state b∅, thus
δ∗opr (b0,w) = b∅. �

Given a plant G with set of states X, the observer of the
plant Obs(G) can be constructed in 2|X | steps. According to
Algorithm 2, the operator observer Obsopr (G) has at most
2|X |+1 states; thus the complexity of constructing Obsatt (G)
is O(2|X |).

V. UNBOUNDED AND n-BOUNDED JOINT ESTIMATORS
In this section we define a particular DFA, called joint
estimator, which is defined on alphabet Ea and contains all
attack words that can be generated by the plant.

Here we distinguish two different cases. In the first case,
the attack function belongs to F∞. We call unbounded joint
estimator the corresponding DFA, denoted as A∞. In the
second case, the attack function belongs to Fn for a given
n ∈ N. We call n-bounded joint estimator the corresponding
DFA and denote it as An.

A. UNBOUNDED JOINT ESTIMATOR
Let us first formalize the definition of A∞.
Definition 9: The unbounded joint estimator A∞ =

(R,Ea, δa, r0) w.r.t. G and Ecom is defined as A∞ =

Obsatt (G) ‖ Obsopr (G). �

Example 4: Consider again the plant G in Fig. 4 whose
attacker observer and operator observer are visualized
in Figs. 5(a) and (b), respectively. The unbounded joint
estimator A∞ built according to Definition 9 is shown in
Fig. 6.
By inspecting the unbounded joint estimator A∞ in Fig. 6,

once event a occurs on the plant, the attacker executes event

VOLUME 9, 2021 168075

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

FIGURE 6. Unbounded joint estimator A∞ in Example 4.

a on A∞ starting from the initial state ({0}, {0}). Thus state
({1, 2}, {1, 2}) is reached. Now, the attacker may wait for
a new event occurring on the plant, a or c in this case.
Alternatively, the attacker may insert an event c or d in the
operator observation, which correspond to execute c+ or d+,
respectively, in A∞. Then, the attacker may erase event c in
the operator observation, which corresponds to execute c− in
A∞, and so on.
We notice that, any word w ∈ E∗a generated by the

unbounded joint estimator allows us to argue the following
three information: (1) which is the observation s ∈ E∗o
actually produced by the system; (2) how the attacker
corrupted it (which events it has inserted and/or erased); (3)
which is the word s′ ∈ E∗o observed by the operator. Consider
as an example, the word w = ac−ac+ ∈ E∗a that leads to
state ({4}, {6}). This corresponds to the observation s = aca
produced by the system. The attacker erases the observation
c after the first a and inserts the dummy observation c after
the second a, resulting in the word s′ = P̂(w) = aac observed
by the operator. �

The following theorem provides a characterization of the
unbounded joint estimator.
Theorem 1: Let G be a plant with set of observable events

Eo and observer Obs(G) = (B,Eo, δobs, b0). Given attack
alphabet Ea, with set of stealthy wordsWs and set of exposing
words We, let A∞ = (R,Ea, δa, r0) be its unbounded joint
estimator. It holds that:
(a) L(A∞) = L(F∞,G) ∩ (Ws ∪We);
(b) ∀s ∈ P(L(G)), ∀f∞ ∈ F∞ with w = f∞(s) ∈ E∗a :

(i) if w ∈ Ws then δ∗a (r0,w) = (ba, ba)⇐⇒
δ∗obs(b0, s) = ba, δ∗obs(b0, P̂(w)) = ba;

(ii) if w ∈ We then δ∗a (r0,w) = (ba, b∅)⇐⇒
δ∗obs(b0, s) = ba, δ∗obs(b0, P̂(w)) is not defined.

Proof: (a) Follows from Propositions 1 and 2 and
Definition 9. Indeed, by Proposition 1, it holds that
L(Obsatt (G)) = L(F∞,G) and by Proposition 2, it holds

that L(Obsopr (G)) = Ws ∪ We. Since A∞ is defined as the
concurrent composition of Obsatt (G) and Obsopr (G), having
the same alphabet, its language is equal to the intersection of
the languages of the two DFA.

(b) We first consider the case: w ∈ Ws.
(If) Assume that δ∗obs(b0, s) = ba, δ∗obs(b0, P̂(w)) = ba.

By Propositions 1 and 2, it holds that δ∗obs(b0, s) = δ
∗
att (b0,w)

and δ∗obs(b0, P̂(w)) = δ∗opr (b0,w), namely, δ∗att (b0,w) = ba
and δ∗opr (b0,w) = ba. Since A∞ = Obsatt (G) ‖ Obsopr (G),
by definition of concurrent composition, it is δ∗a (r0,w) =
(ba, ba).
(Only if) Assume that δ∗a (r0,w) = (ba, ba). Since

A∞ = Obsatt (G) ‖ Obsopr (G), by definition of concurrent
composition, it holds that δ∗att (b0,w) = ba and δ∗opr (b0,w) =
ba. By Propositions 1 and 2, it is δ∗obs(b0, s) = δ

∗
att (b0,w) and

δ∗obs(b0, P̂(w)) = δ∗opr (b0,w), namely, δ∗obs(b0, s) = ba and
δ∗obs(b0, P̂(w)) = ba.
Let us finally consider the case w ∈ We. The proof follows

from the definition of concurrent composition and the fact
that a word w in the operator observer yields state b∅ if and
only if P̂(w) 6∈ P(L(G)), i.e., δ∗obs(b0, P̂(w)) is not defined. �

In plain words, Theorem 1 implies that the language of
the joint estimator contains all words on alphabet Ea that
can be generated under attack and that are either stealthy or
exposing. In addition the state (ba, ba) reached in the joint
estimator by a stealthy word w = f∞(s) describes the joint
estimation composed by the correct observation ba = C(s)
that would have been computed by the operator without
attack, and the corrupted observation ba = C(s′) = C (̂P(w))
due to the attack. An exposing word w = f∞(s) reaches a
state (ba, b∅) where ba = C(s) is the correct observation that
would have been computed by the operator without attack.

Let us show how to select a harmful attack function on the
basis of the unbounded joint estimator A∞.
Proposition 3: Given a plant G = (X ,E, δ, x0) with set of

compromised eventsEcom, letR ⊆ 2X×2X be themisleading
relation, and A∞ = (R,Ea, δa, r0) be the unbounded joint
estimator. An attack function fn is harmful iff R ∩R 6= ∅.
Proof: (If) Assume that there exists a state r = (ba, ba) of
the joint estimator A such that r ∈ R ∩R. Since r ∈ R, then
there exists an attack word w with δa(r0,w) = r . According
to the definition of attack function (Definition 3), there exists
an observation s ∈ P(L(G)) such that w = fn(s), where P is
the natural projection.

According to Theorem 1, if w ∈ Ws (Ws is the set of
stealthy words), we have r = (ba, ba) such that δ∗obs(b0, s) =
ba, and δ∗obs(b0, P̂(w)) = ba, where P̂ is the operator mask.
Note that, if w ∈ We (We is the set of exposing words), then
δa(r0,w) = r = (ba, b∅) /∈ R, which leads to a contradiction.
For this reason, we exclude such a case.

Since r = (ba, ba) ∈ R, then the observation s can be
corrupted into a word s′ = P̂(w) such that (C(s), C(s′)) ∈ R,
where C(s) = δ∗obs(b0, s), and C(s′) = δ

∗
obs(b0, s

′) (C(s) (resp.,
C(s′)) is the set of states consistent with observation s (resp.,
s′)). According to Definition 6, we can conclude that fn is
harmful.

168076 VOLUME 9, 2021

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

FIGURE 7. n-bounded attack automaton Gn.

(Only if) Assume that an attack function fn is harmful.
According to Definition 6, there exists an observation s that
can be corrupted into an observation s′ = P̂(w) such that
(C(s), C (̂P(w))) ∈ R, where C(s) = δ∗obs(b0, s), C (̂P(w)) =
δ∗obs(b0, P̂(w)), and w = fn(s) ∈ Ws (we exclude the case
that w ∈ We for the same reason that discussed in the above
proof).

Since the joint estimator A contains all the possible attacks,
and according to Theorem 1, then there must exist a state
r = δa(r0,w) = (ba, ba) such that δ∗obs(b0, s) = ba, and
δ∗obs(b0, P̂(w)) = ba. Namely, R ∩R 6= ∅. �
Example 5: Recall the plant G in Fig. 4 with the

unbounded joint estimatorA∞ depicted in Fig. 6. Assume that
the misleading relation isR = {({5},X) | X ⊆ {6, 7, 8}}.
Looking at A∞, if the plant generates the word aa, A∞ is

in state ({5}, {5}), then the attacker can insert a fake event
c+ such that state ({5}, {6}) ∈ R is reached. If such a state is
reached, the plant is in the critical state {5}, while the operator
thinks that the plant is in the non-critical state {6}. Thus no
protective actions are activated, and damages are caused. �

We conclude this subsection discussing the complexity of
computing the unbounded joint estimator A∞.

Given a plantGwith set of statesX, both the attack observer
and the operator observer are computed in 2|X | steps. The
unbounded joint estimator is defined as A∞ = Obsatt (G) ‖
Obsopr (G); thus the complexity of constructing A∞ isO(2|X | ·
2|X |).

B. BOUNDED JOINT ESTIMATOR
The n-bounded joint estimator An that describes attack
functions in Fn, can be easily obtained starting from A∞.
To this aim, a particular DFA, called n-bounded attack
automaton, denoted asGn, is introduced. Then An is obtained
as the concurrent composition of A∞ and Gn.
Definition 10: The n-bounded attack automaton is a DFA:

Gn = (X ,Ea, δ, 0), where X = {0, 1, . . . , n} (n ∈ N), and the
transition function is defined as follows:{
∀i ∈ X , δ(i, ea) := 0 if ea ∈ Ea \ E+,
∀i ∈ (X\{n}), δ(i, ea) := i+ 1 if ea ∈ E+.

(5)

�

Fig. 7 shows the n-bounded attack automatonGn. As it can
be seen, events in Ea \ E+ are enabled at any state. On the
contrary, events in E+ are enabled provided that they have
not been already executed n times consecutively.
Theorem 2: Let G be a plant with attack alphabet Ea

and unbounded joint estimator A∞ = (R,Ea, δa, r0). Let
An = A∞ ‖ Gn, whereGn is the n-bounded attack automaton.

FIGURE 8. 1-bounded attack automaton G1 in Example 6.

FIGURE 9. 1-bounded joint estimator A1 in Example 6.

It holds that L(An) = L(A∞)\{w ∈ L(A∞) | consE+ (w) > n},
where consE+ (w) denotes the maximum number of
consecutive events in E+ contained in the word w.
Proof: Follows from the fact that An is defined as An =

A∞ ‖ Gn and Gn limits to n the maximum number of
consecutive events that the attacker can add to the operator
observation. �
Example 6: Consider the unbounded joint estimator A∞

in Example 4. The 1-bounded attack automaton G1 and the
1-bounded joint estimator A1 = A∞ ‖ G1 are depicted in
Figs. 8 and 9, respectively.

The 1-bounded joint estimator forces the attacker to insert
at most one fake event between the occurrence of two
observable events of the system. �

A result equivalent to Theorem 1 holds for an n-bounded
joint estimator.

Now we discuss the computational complexity of building
the n-bounded joint estimator An. Given an integer value
n, the n-bounded joint estimator is obtained by computing
An = A∞ ‖ Gn where Gn is the n-bounded attack automaton.
Therefore, the complexity of computing An isO(2|X | ·2|X | ·n).

VI. CONCLUSION AND FUTURE WORK
In this paper we investigate the problem of state estimation
under attack, for partially-observed discrete event systems.
Inmore detail, an operator observes the system evolutionwith
a natural projection, which depends on the sensors available
on the system. The operator observation may be corrupted
by an attacker. The corruption may be done by erasing some
events that have occurred and/or inserting some events that

VOLUME 9, 2021 168077

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

have not actually occurred. It is possible to impose an upper
bound on the number n of consecutive observations that
can be added by the attacker within the occurrence of two
observable events in the plant. We show how to construct a
joint estimator that contains all the possible attacks that can
be implemented during the system evolution and that allows
to establish if an attack function is harmful w.r.t. a given
misleading relation.

Our future lines of research in this framework will follow
several directions. On the one hand, we will look for a way
to select stealthy and harmful attacks on the basis of the joint
estimator or establish if such attacks can be thwarted. On the
other hand, we will try to characterize and solve the same
problem using Petri nets to understand if some advantages
in terms of computational complexity can be obtained and
if efficient solutions can also be computed for unbounded
systems.

REFERENCES
[1] D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, ‘‘Physical safety and cyber

security analysis of multi-agent systems: A survey of recent advances,’’
IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319–333, Feb. 2021.

[2] A. Rashidinejad, B. Wetzels, M. Reniers, L. Lin, Y. Zhu, and R. Su,
‘‘Supervisory control of discrete-event systems under attacks: An overview
and outlook,’’ in Proc. 18th Eur. Control Conf. (ECC), Napoli, Italy,
Jun. 2019, pp. 1732–1739.

[3] M. Uma and G. Padmavathi, ‘‘A survey on various cyber attacks and their
classification,’’ Int. J. Netw. Secur., vol. 15, no. 5, pp. 390–396, Sep. 2013.

[4] F. Salahdine and N. Kaabouch, ‘‘Social engineering attacks: A survey,’’
Future Internet, vol. 11, no. 4, p. 89, Apr. 2019.

[5] A. Basit, M. Zafar, X. Liu, A. R. Javed, Z. Jalil, and K. Kifayat,
‘‘A comprehensive survey of AI-enabled phishing attacks detection
techniques,’’ Telecommun. Syst., vol. 76, no. 1, pp. 139–154, Jan. 2021.

[6] X. Huang and J. Dong, ‘‘Reliable control policy of cyber-physical systems
against a class of frequency-constrained sensor and actuator attacks,’’ IEEE
Trans. Cybern., vol. 48, no. 12, pp. 3432–3439, Dec. 2018.

[7] D. Rabehi, N. Meslem, and N. Ramdani, ‘‘Secure interval observer for
linear continuous-time systems with discrete measurements subject to
cyber-attacks,’’ in Proc. 4th Conf. Control Fault Tolerant Syst. (SysTol),
Casablanca, Morocco, Sep. 2019, pp. 336–341.

[8] H. Liu, B. Niu, and J. Qin, ‘‘Reachability analysis for linear discrete-
time systems under stealthy cyber attacks,’’ IEEE Trans. Autom. Control,
vol. 66, no. 9, pp. 4444–4451, Sep. 2021.

[9] W. Zhang, S. Mao, J. Huang, L. Kocarev, and Y. Tang, ‘‘Data-driven
resilient control for linear discrete-time multi-agent networks under
unconfined cyber-attacks,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 2, pp. 776–785, Feb. 2021.

[10] D. Thorsley and D. Teneketzis, ‘‘Intrusion detection in controlled discrete
event systems,’’ in Proc. 45th IEEE Conf. Decis. Control, San Diego, CA,
USA, Dec. 2006, pp. 6047–6054.

[11] F. A. Barbhuiya, M. Agarwal, S. Purwar, S. Biswas, and S. Nandi,
‘‘Application of stochastic discrete event system framework for detection
of induced low rate TCP attack,’’ ISA Trans., vol. 58, pp. 474–492,
Sep. 2015.

[12] R. Fritz and P. Zhang, ‘‘Modeling and detection of cyber attacks on discrete
event systems,’’ in Proc. 14th Int. Workshop Discrete Event Syst., Sorrento,
Italy, 2018, pp. 285–290.

[13] M. Agarwal, S. Biswas, and S. Nandi, ‘‘Discrete event system framework
for fault diagnosis with measurement inconsistency: Case study of rogue
DHCP attack,’’ IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 789–806,
May 2019.

[14] Y. Ji, X. Yin, and S. Lafortune, ‘‘Enforcing opacity by insertion functions
under multiple energy constraints,’’ Automatica, vol. 108, Oct. 2019,
Art. no. 108476.

[15] L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, ‘‘Detection
and mitigation of classes of attacks in supervisory control systems,’’
Automatica, vol. 97, pp. 121–133, Nov. 2018.

[16] P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira, ‘‘Security
against network attacks in supervisory control systems,’’ in Proc. 20th
IFAC World Congr., Toulouse, France, vol. 50, 2017, pp. 12333–12338.

[17] M. Wakaiki, P. Tabuada, and J. P. Hespanha, ‘‘Supervisory control of
discrete-event systems under attacks,’’ Dyn. Games Appl., vol. 9, no. 4,
pp. 965–983, Dec. 2019.

[18] L. Lin and R. Su, ‘‘Synthesis of covert actuator and sensor attackers,’’
Automatica, vol. 130, Aug. 2021, Art. no. 109714.

[19] R. Meira-Goes, S. Lafortune, and H. Marchand, ‘‘Synthesis of
supervisors robust against sensor deception attacks,’’ IEEE Trans. Autom.
Control, vol. 66, no. 10, pp. 4990–4997, Oct. 2021, doi: 10.1109/TAC.
2021.3051459.

[20] Z. Jakovljevic, V. Lesi, and M. Pajic, ‘‘Attacks on distributed sequential
control in manufacturing automation,’’ IEEE Trans. Ind. Informat., vol. 17,
no. 2, pp. 775–786, Feb. 2021.

[21] J. Yao, X. Yin, and S. Li, ‘‘On attack mitigation in supervisory control
systems: A tolerant control approach,’’ in Proc. 59th IEEE Conf. Decis.
Control (CDC), Jeju, South Korea, Dec. 2020, pp. 4504–4510.

[22] Y.Wang andM. Pajic, ‘‘Supervisory control of discrete event systems in the
presence of sensor and actuator attacks,’’ in Proc. IEEE 58th Conf. Decis.
Control (CDC), Nice, France, Dec. 2019, pp. 5350–5355.

[23] D. You, S. Wang, M. Zhou, and C. Seatzu, ‘‘Supervisory control of Petri
nets in the presence of replacement attacks,’’ IEEE Trans. Autom. Control,
early access, Mar. 3, 2021, doi: 10.1109/TAC.2021.3063699.

[24] S. Zheng, S. Shu, and F. Lin, ‘‘Modeling and control of discrete event
systems under joint sensor-actuator cyber attacks,’’ in Proc. 6th Int.
Conf. Automat., Control Robot. Eng. (CACRE), Dalian, China, Jul. 2021,
pp. 216–220.

[25] Y. Tong, Z. Ma, Z. Li, C. Seatzu, and A. Giua, ‘‘Supervisory enforcement
of current-state opacity with uncomparable observations,’’ in Proc. 13th
Int. Workshop Discrete Event Syst. (WODES), Xi’an, China, May 2016,
pp. 313–318.

[26] R. Meira-Góes, E. Kang, R. H. Kwong, and S. Lafortune, ‘‘Synthesis
of sensor deception attacks at the supervisory layer of cyber-physical
systems,’’ Automatica, vol. 121, Nov. 2020, Art. no. 109172.

[27] P. M. Lima, L. K. Carvalho, and M. V. Moreira, ‘‘Detectable and
undetectable network attack security of cyber-physical systems,’’ in
Proc. 14th Int. Workshop Discrete Event Syst., Sorrento, Italy, 2018,
pp. 179–185.

[28] R. Su, ‘‘Supervisor synthesis to thwart cyber attack with bounded sensor
reading alterations,’’ Automatica, vol. 94, pp. 35–44, Aug. 2018.

[29] Q. Zhang, Z. Li, C. Seatzu, and A. Giua, ‘‘Stealthy attacks for partially-
observed discrete event systems,’’ in Proc. IEEE 23rd Int. Conf. Emerg.
Technol. Factory Automat. (ETFA), Turin, Italy, Sep. 2018, pp. 1161–1164.

[30] K. Ding, Y. Li, D. E. Quevedo, S. Dey, and L. Shi, ‘‘A multi-channel
transmission schedule for remote state estimation under DoS attacks,’’
Automatica, vol. 78, pp. 194–201, Apr. 2017.

[31] L. Peng, L. Shi, X. Cao, and C. Sun, ‘‘Optimal attack energy allocation
against remote state estimation,’’ IEEE Trans. Autom. Control, vol. 63,
no. 7, pp. 2199–2205, Jul. 2018.

[32] P. Cheng, Z. Yang, J. Chen, Y. Qi, and L. Shi, ‘‘An event-based stealthy
attack on remote state estimation,’’ IEEE Trans. Autom. Control, vol. 65,
no. 10, pp. 4348–4355, Oct. 2020.

[33] P. J. G. Ramadge and W. M. Wonham, ‘‘The control of discrete event
systems,’’ Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[34] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. New York, NY, USA: Springer, 2008.

QI ZHANG is currently pursuing the Ph.D. degree
in control theory and control engineering with
Xidian University, Xi’an, China, in co-tutorship
with the Department of Electrical and Electronic
Engineering, University of Cagliari, Italy.

His current research interests include automata
theory, Petri nets theory, supervisory control of
discrete event systems, and cyber security.

168078 VOLUME 9, 2021

http://dx.doi.org/10.1109/TAC.2021.3051459
http://dx.doi.org/10.1109/TAC.2021.3051459
http://dx.doi.org/10.1109/TAC.2021.3063699

Q. Zhang et al.: Joint State Estimation Under Attack of Discrete Event Systems

CARLA SEATZU (Senior Member, IEEE)
received the master’s degree in electrical
engineering and the Ph.D. degree in electronic
and computer engineering from the University
of Cagliari, Cagliari, Italy, in 1996 and 2000,
respectively.

She was a Visiting Professor in the universities
at Zaragoza, Spain; Atlanta, GA, USA;
Guadalajara, Mexico; Xi’an, China; and
Hangzhou, China. She is currently a Full

Professor in automatic control with the University of Cagliari. She is also
a Coordinator of the B.Sc. degree in electrical, electronic, and computer
engineering. She is the author of over 250 publications, including over
80 articles in international journals and one textbook. She is the editor
of two international books. Her H-index in Scopus is equal to 33. Her
research interests include discrete-event systems, Petri nets, hybrid systems,
networked control systems, manufacturing, and transportation systems.

Dr. Seatzu was the Program Chair of the 23rd IEEE International
Conference on Emerging Technologies and Factory Automation, in 2018,
the Workshop Chair of the 55th IEEE Conference on Decision and
Control, in 2016, and the General Co-Chair of the 18th IEEE International
Conference on Emerging Technologies and Factory Automation, in 2013.
She is an Editor of the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND

ENGINEERING, an Associate Editor of the Discrete Event Dynamic Systems
journal, and a Senior Editor of the IEEE CONTROL SYSTEMS LETTERS.

ZHIWU LI (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees in mechanical
engineering, automatic control, andmanufacturing
engineering, respectively, from Xidian University,
Xi’an, China, in 1989, 1992, and 1995,
respectively.

He joined Xidian University, in 1992, and
he is currently with the Institute of Systems
Engineering, Macau University of Science and
Technology, Taipa, Macau. Over the past decade,

he was a Visiting Professor with the University of Toronto, Technion-Israel
Institute of Technology, Martin-Luther University of Halle-Wittenberg,
Conservatoire National des Arts et Métiers, Meliksah Universitesi, and
King Saud University. His current research interests include Petri net theory
and application, supervisory control of discrete event systems, workflow
modeling and analysis, system reconfiguration, game theory, and data and
process mining.

ALESSANDRO GIUA (Fellow, IEEE) received
the Laurea degree from the University of Cagliari,
Italy, in 1988, and the master’s and Ph.D. degrees
in computer and systems engineering from the
Rensselaer Polytechnic Institute, Troy, NY,
USA, in 1990 and 1992, respectively. He is
currently a Professor in automatic control with
the Department of Electrical and Electronic
Engineering (DIEE), University of Cagliari.
He has also held faculty or visiting positions in

several institutions worldwide, including Aix-Marseille University, France
and Xidian University, Xian, China. His research interests include discrete
event systems, hybrid systems, networked control systems, Petri nets, and
failure diagnosis.

He is a member of the IEEE Control Systems Society, where he has
served as the Vice President for Conference Activities (2020–2021), the
General Chair of the 55th Conference on Decision and Control, in 2016,
and a member of the Board of Governors (2013–2015). He is an affiliate
of the International Federation of Automatic Control (IFAC), where he
has served as the Chair of the IFAC Technical Committee 1.3 on Discrete
Event and Hybrid Systems (2008–2014) and a member of the Publications
Committee, since 2014. He is a fellow of the IFAC for contributions to
Discrete Event and Hybrid Systems, and a recipient of the IFAC Outstanding
Service Award. He received the People’s Republic of China Friendship
Award, in 2017. He is currently the Editor-in-Chief of the Nonlinear
Analysis: Hybrid Systems IFAC journal and as a Senior Editor of the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL.

VOLUME 9, 2021 168079

