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ABSTRACT Although still widely used due to its robustness, reliability, and low cost, induction motor (IM)
has a disadvantage of more complicated mathematical description than permanent magnet AC machines.
In high-demanding applications, the decoupled control of the machine’s flux and torque along with the
proper function of selected efficiency-improving and flux-weakening algorithms can be achieved only if the
IM parameters are known with sufficient accuracy. For parameter estimation, many algorithms have been
proposed in the literature so far. Due to its simple and straightforward implementation, one of the popular
estimation strategies is the model reference adaptive system (MRAS). However, MRAS-based algorithms
for a specific parameter estimation tend to be sensitive to other machine parameters. For instance, most of
the proposed MRAS algorithms do not consider the influence of the phenomena such as iron losses and
load-dependent saturation. Since one of the most performance-decisive parameters of the popular rotor flux-
oriented control (RFOC) are the magnetizing inductance and the rotor resistance, this paper aims to present
a novel MRAS-based magnetizing inductance estimator (Lm-MRAS) with the included effect of iron losses.
Furthermore, to enable the identification of the load-dependent saturation, another MRASwith included iron
losses based on reactive power is proposed to work parallelly with Lm-MRAS, since under load conditions,
the rotor resistance mismatch causes RFOC detuning. The adaptation law of the Lm-MRAS is obtained using
the Lyapunov function approach and further examined using small-signal analysis. The proposed algorithms
are verified on a 3.6 kW IM drive both in simulations and experiments.

INDEX TERMS Induction motor drives, iron losses, magnetizing flux saturation, model reference adaptive
systems, parameter estimation, stability analysis.

I. INTRODUCTION
Real-time identification of induction machine (IM) param-
eters in the rotor flux-oriented control (RFOC) is still an
ongoing topic amongst researchers in the field of electric
drives and power electronics. For example, in the Euro-
pean Union, due to the emerging legislation and the grow-
ing societal demands, the requirements for the efficiency
of electrical equipment are constantly increasing. Follow-
ing this trend, the task of software engineers dealing with
the control of electric drives is to design the most effi-
cient software. Within the scope of the machine control, this
essentially includes the compensation of various IM drive
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nonlinearities and deployment of control algorithms such as
maximum torque per ampere (MTPA). However, many of
the proposed efficiency-improving strategies are parameter-
dependent [1], [2].

The traditional and widely used circuit is the so-called
T-equivalent circuit which can be obtained using the space-
vector theory of electrical machines. Furthermore, the equiva-
lent circuit can be augmented to include the specific nonlinear
phenomena such as magnetizing flux or rotor leakage flux
saturation [4]–[7], iron losses [7], [8], or stray-load losses [9]
that are difficult to capture at the stage of the mathemat-
ical derivation of machine’s fundamental flux and voltage
equations.

To ensure an effective operation of IM drives in high-
demanding applications such as electric traction vehicles,
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precise decoupled control of the machine’s flux and torque
is needed. This demand goes hand in hand with the accurate
knowledge of the IM parameters [10]. Also, an appropri-
ate equivalent circuit that captures the most performance-
decisive phenomena must be selected to obtain relevant
results through the estimation algorithms.

For instance, although omitted in many papers, iron losses
undoubtedly affect the IM RFOC [8], [10]. One way to
respect the influence of iron losses is to add a fictitious
resistance either in parallel or in series with the magnetizing
branch [8]. Another phenomenon that is overlooked in many
papers is load-dependent saturation. Due to the complicated
distribution of the electromagnetic field inside the machine,
the magnetizing flux can also saturate as a consequence of
the load [11], especially if the rotor slots are skewed or
closed [4]–[6]. Since the accurate knowledge of the magne-
tizing inductance has a decisive influence on the performance
of the RFOC strategies, this nonlinear phenomenon should be
respected in high-efficiency drives.

So far, many methods for the online identification of
IM parameters have been proposed. These include recur-
sive least-square algorithms (RLS) [12]–[14], model refer-
ence adaptive systems (MRAS) [15]–[21], signal injection
(SI) techniques [22]–[24], state observers (SO) [25]–[27],
and artificial intelligence (ANN) [28]–[30]. Typically, the
greater the estimation accuracy and independence from other
machine parameters, the greater the algorithm complexity,
which demands sufficient computational power of the used
hardware and the knowledge and experience of the imple-
mentation engineer. For example, methods based on MRAS
that are quite popular within electric drives offer the comfort
of ease of implementation but at the price of dependency on
other machine parameters.

This paper aims to present a novel MRAS-type estimator
for identifying both the no-load and load-dependent satura-
tion of IM that can respect the effect of the machine’s iron
losses. The main disadvantage of the MRAS schemes, i.e.,
the dependence on other machine’s parameters, can manifest
itself during the load operation because, at load conditions,
the rotor flux estimation depends on the rotor resistance [30].
This disadvantage is solved by utilizing a second, paral-
lelly operating MRAS estimator based on the machine’s
reactive power that is also augmented to respect the iron
losses.

The adaptation law of the magnetizing inductance MRAS
estimator is designed using the Lyapunov function approach.
Furthermore, a small-signal analysis is also presented to
assess the stability of the estimator with respect to the con-
troller gain selection. Simulations and experiments conducted
on a 3.6 kW IM drive are presented to verify the proposed
concept of magnetizing inductance identification.

II. INDUCTION MACHINE EQUIVALENT CIRCUIT
In this paper, the so-called T-equivalent circuit with
included magnetizing flux saturation and equivalent iron loss

resistance placed in parallel with the magnetizing induc-
tance [31] depicted in Fig. 1 is utilized for the mathematical
description of IM. In the figure, the symbols ψ

1
, ψ

2
and

ψ
m
represent the stator, rotor, and magnetizing flux linkage

space vectors, respectively, u1 represents the stator voltage
space vector, i1, i2, im and iFe represent the stator, rotor,
magnetizing, and equivalent iron loss current space vectors,
respectively, R1, R2, and RFe denote the stator, rotor, and
equivalent iron loss resistance, respectively, ωk is the electri-
cal angular speed of the general reference frame,ω is the rotor
electrical angular speed, Lm is the magnetizing inductance
and the symbol j represents an imaginary unit (j2 = −1).
A short-circuited rotor is considered; therefore, the rotor
voltage equals zero. The stator inductance L1 is defined as
L1 = Lm + L1σ , where L1σ is the stator leakage inductance
and the rotor inductance L2 is defined as L2 = Lm + L2σ ,
where L2σ is the rotor leakage inductance.

The superscript k denotes that the space vectors are
expressed in an arbitrary reference frame. The two specific
reference frames used in this paper are the stator-fixed (real
and imaginary axis denoted as α and β, respectively) and
rotor flux vector-attached (real and imaginary axis denoted
as d and q, respectively) reference frames.

FIGURE 1. Induction machine T-equivalent circuit with included
magnetizing inductance variation and iron losses.

A. STATE-SPACE MODEL WITH INCLUDED IRON LOSSES
AND MAIN FLUX SATURATION
The full-order state space-model in the stationary αβ refer-
ence frame with the current space vector, magnetizing space
vector, and rotor space vector components as state variables
is given by [10], [31]

ξ̇ = A′ξ+B′υ, (1)

where

A′ =



a′1 0 a′2 0 a′3 0
0 a′1 0 a′2 0 a′3
RFe 0 a′4 0 τ−1Feσ 0
0 RFe 0 a′4 0 τ−1Feσ
0 0 τ−1rσ 0 −τ−1rσ −ω

0 0 0 τ−1rσ ω −τ−1rσ

 , (2)
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B′ =



1
L1σ

0 0 0 −
1
L1σ

0
0 1

L1σ
0 0 0 −

1
L1σ

0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0



T

, (3)

ξ =
(
i1α i1β ψmα ψmβ ψ2α ψ2β

)T
, (4)

υ =
(
u1α u1β 0 0 0 0

)T
, (5)

and where τrσ = L2σ /R2, τFeσ = L2σ /RFe, a′1 =
− (R1 + RFe) /L1σ , a′2 = L2/(L1σLmτFeσ ), a′3 =

−1/(L1σ τFeσ ), a4 = −L1σa′2.
Considering Clarke’s transformation constant equal to 2/3,

the electromechanical torque can be expressed as

Te =
3
2
pp
Lm
L2

∣∣∣ψk
2
×

(
ik1 − i

k
Fe

)∣∣∣ , (6)

where pp is the number of pole-pairs, and the operator ×
denotes cross product.

B. ROTOR FLUX ESTIMATION
The two standard IM reduced-order models used within the
RFOC are the so-called current and voltagemodels. However,
conventionally, these twomodels are derived out of the equiv-
alent circuit with neglected iron losses. Therefore, in the
following subsections, improved models with included iron
losses will be presented.

1) CURRENT MODEL WITH INCLUDED IRON LOSSES
The model will be derived in an arbitrary reference frame.
According to Fig. 1, the rotor voltage equation and the rotor
flux linkage vector equation, respectively, can be expressed as

0 = R2ik2 +
dψk

2

dt
+ j(ωk − ω)ψ

k
2
, (7)

ψk
2
= L2σ ik2 + Lmi

k
m = L2ik2 + Lm

(
ik1 − i

k
Fe

)
. (8)

Substituting for the rotor current vector in (7) from (8) yields
after a few arrangements

dψk
2

dt
=
LmR2
L2

i′k1 −
R2
L2
ψk

2
− j(ωk − ω)ψ

k
2
, (9)

where i′k1 = ik1 − ikFe. Considering the stator-fixed reference
frame (ωk = 0), the model can be rewritten as

dψαβ2
dt
=
LmR2
L2

i′αβ1 −
R2
L2
ψαβ

2
+ jωψαβ

2
. (10)

Furthermore, choosing the rotor flux linkage vector-attached
reference frame, one can obtain the steady-state expression
for the rotor flux magnitude and slip frequency in the form

ψ2 = Lmi′1d , (11)

ωsl =
LmR2
L2

i′1q
ψ2d

, (12)

where ψ2 = ψ2d =

∣∣∣ψ2

∣∣∣, i′1d = i1d − iFed , and
i′1q = i1q − iFeq.

2) VOLTAGE MODEL WITH INCLUDED IRON LOSSES
The model is almost exclusively used in the αβ reference
frame. According to Fig. 1, the stator flux linkage vector can
be expressed as

ψk
1
= L1σ ik1 + Lmi

k
m = L1ik1 + Lm

(
ik2 − i

k
Fe

)
. (13)

Substituting for the rotor current vector in (8) from (13) and
considering the stator-fixed reference frame yields

ψαβ
2
=

L2
Lm

(
ψαβ

1
− L1σ i

αβ

1

)
+ L2σ i

αβ

Fe , (14)

where σ = 1−L2m/L1L2 is the leakage factor. The stator flux
linkage vector is obtained as

ψαβ
1
=

∫ t

0

(
uαβ1 − R1i

αβ

1

)
dτ . (15)

C. SENSITIVITY OF VOLTAGE MODEL TO MAGNETIZING
INDUCTANCE VARIATION
The evaluation of the stator flux linkage vector using (15)
is free of the magnetizing inductance. However, the mag-
netizing inductance appears in (14) when the stator flux
linkage vector is recalculated to the rotor flux linkage vector.
For convenience, new parameters containing the magnetizing
inductance-dependent terms are introduced as

c1 =
L2
Lm
= 1+

L2σ
Lm

, (16)

c2 = L1σ = L1σ +
L2σLm

Lm + L2σ
. (17)

The percentage change of these parameters with respect to the
percentage deviation of the magnetization inductance 1Lm
from its nominal value can be written as

1c1 =
L2σ1Lm

L2 (100+1Lm)
· 100, (18)

1c2 = −
L22σLm1Lm

(L2σLm + L1σL2) (100L2 + Lm1Lm)
· 100.

(19)

The dependencies 1c1 = f (1Lm) and 1c2 =

f (1Lm) calculated using the nominal tested motor parame-
ters (Table 1) are shown in Fig. 2. The variation of1Lm in the
range of tens of percent causes the variation of the parameter
only in the range of units of percent. Contrary to that, equa-
tion (11) states that if a steady-state is considered, then the
variation of the magnetizing inductance directly proportional
affects the output of the flux controller, i.e., d-axis current
command.

III. PROPOSED MRAS-BASED MAGNETIZING
INDUCTANCE ESTIMATOR WITH INCLUDED IRON LOSSES
The basic MRAS principle is that two mathematical mod-
els, the reference and adaptive, are evaluated parallelly. The
reference model does not depend on the estimated quan-
tity. On the contrary, the adaptive model utilizes directly or
indirectly the estimated quantity. An adaptation mechanism
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FIGURE 2. Percentage variation of the voltage model magnetizing
inductance-dependent parameters due to percentage deviation of the
magnetizing inductance from its nominal value.

(usually a simple PI controller) estimates the desired variable
by forcing the difference between the reference and adaptive
model to be zero. For theMRAS design, the Lyapunov theory
or hyperstability theory can be utilized [19]. In this paper,
the Lyapunov approach is adopted for the derivation of the
adaptation mechanism

A. ADAPTATION MECHANISM DERIVATION USING
LYAPUNOV THEORY
Let us consider a current model in the stationary reference
frame, which utilizes the estimated magnetizing inductance
L̂m, i.e.,

dψ̂
αβ

2

dt
=
L̂mR2
L̂2

i′αβ1 −
R2
L̂2
ψ̂
αβ

2
+jωψ̂

αβ

2
, (20)

where L̂2 = L̂m + L2σ . It is supposed that all the other
parameters are known.

The error vector, i.e., the difference between the estimated
and actual flux linkage space vector components, can be
defined as

ε =

(
εα
εβ

)
=

(
ψ2α − ψ̂2α

ψ2β − ψ̂2β

)
, (21)

and its time derivative as

ε̇ =
d
dt

(
εα
εβ

)
=

d
dt

(
ψ2α − ψ̂2α

ψ2β − ψ̂2β

)
. (22)

By resolving (20) and (10) into their real and imaginary parts,
respectively, and substituting the result into (22), one can
obtain the error dynamics in the form

ε̇ = Hε −W, (23)

where

H =

(
−
R2
L2

−ω

ω −
R2
L2

)
, (24)

W =

(
1LmR2
L̂2L2

0 1LmR2L2σ
L̂2L2

0

0 1LmR2
L̂2L2

0 1LmL2σR2
L̂2L2

)

×


ψ̂2α

ψ̂2β
i′1α
i′1β

 ,
(25)

and where 1Lm = Lm − L̂m.
Now, let us consider the Lyapunov function candi-

date [16], [32]

V = εTε +
1L2m
δ
, (26)

and its time derivative

V̇ = εT
(
HT
+H

)
ε− εTW−WTε −

21Lm
δ

dL̂m
dt
, (27)

where δ is a positive parameter.
By expanding the term containing the matrix H, it can be

verified that it is non-positive, i.e.,

εT
(
HT
+H

)
ε = −

2R2
L2

(
ε2α + ε

2
β

)
≤ 0. (28)

The sufficient condition for the stability is that the remaining
term at least satisfy the condition [16], [32]

−εTW−WTε −
21Lm
δ

dL̂m
dt
= 0. (29)

Substituting (24) and (25) into (29), the inductance estimate
time derivative can be expressed as

dL̂m
dt
=

δR2
L̂2L2

[
εα

(
ψ̂2α+L2σ i′1α

)
+ εβ

(
ψ̂2β + L2σ i′1β

)]
.

(30)

Out of (30), the adaptation law in the form of an I controller
directly follows. In practice, a PI controller is used for better
dynamic performance [19], [32]. The resulting magnetizing
inductance MRAS-type estimator can be written as

L̂m = KPψε
αβ
ψ + KIψ

∫ t

0
ε
αβ
ψ dτ + Lm(init), (31)

where Lm(init) is the initial magnetizing inductance value and

ε
αβ
ψ = εα

(
ψ̂2α + L2σ i′1α

)
+ εβ

(
ψ̂2β + L2σ i′1β

)
. (32)

Due to the low sensitivity to magnetizing inductance vari-
ation, the voltage model (equations (14) and (15)) is selected
as the reference model, and the current model (equation (20))
is selected as the adaptive model. The block diagram of the
proposed estimator is depicted in Fig. 3.
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FIGURE 3. MRAS for magnetizing inductance estimation with the
included effect of iron losses.

B. SMALL SIGNAL ANALYSIS
The stability with respect to the adaptive controller gain con-
stants can be investigated using the linearization approach,
which permits the system analysis via transfer functions [33].
For this purpose, a state-space model with the rotor flux link-
age space vector and stator current space vector components
is utilized. However, to obtain mathematically reasonable
expressions, several simplifications and modifications must
be adopted, namely:
• For the small-signal analysis, the equations must be
transformed to a rotor flux-attached dq reference
frame [33].

• Initially, the perfect flux orientation (zero q axis compo-
nent) is considered for both the reference and adaptive
model.

• The rotor flux linkage vector components from the adap-
tive model are considered ideal and constant.

• The analysis neglects iron losses since the state-
space models with iron losses are mathematically more
complicated.

• The influence of the dynamic inductances in the state-
space model is neglected.

The full-order IM state-space model is considered in the
form [18]

ẋ = Ax+ Bu, (33)

y = Cx, (34)

where

A =


a1 ωs a2 a3ω
−ωsl a1 −a3ω a2
a4 0 a5 ωsl
0 a4 −ωsl a5

 , (35)

B =

(
0 1

L1σ
0 0

1
L1σ

0 0 0

)T

, (36)

C =
(
1 0 0 0
0 1 0 0

)
, (37)

x =
(
i1d i1q ψ2d ψ2q

)T
, (38)

u =
(
u1d u1q

)T
, (39)

y =
(
i1d i1q

)T
, (40)

and where a1 = −
(
R1L22 + L

2
mR2

)
/(σL1L22 ), a2 =

(LmR2) /(σL1L22 ), a3 = Lm/(σL1L2), a4 = (LmR2) /L2,
a5 = −R2/L2, and ωs is the synchronous speed.
Linearizing (33) and (34) around the operating point x0 =(
i1d0 i1q0 ψ2d0 ψ2q0

)T and Lm0 yields

1ẋ = 1ALx0 + A1x+1BLu, (41)

1y = C1x, (42)

where 1x = x − x0 and

1AL =

(
∂

∂Lm
A
)
1Lm, (43)

1BL =

(
∂

∂Lm
B
)
1Lm, (44)

where 1Lm = Lm − Lm0. After performing Laplace trans-
form, (42) can be rewritten with the help of (41) as

1y =
(
1i1d
1i1q

)
= C (sI− A)−1 (1ALx0 +1BLu) , (45)

where s is the Laplace operator, 1i1d = i1d − i1d0, 1i1q =
i1q − i1q0, and I is the identity matrix. Equation (45) can be
utilized to obtain the expressions for 1i1d and 1i1q (used
further in the section).

The error equation (32) with neglected iron losses trans-
formed into dq reference frame takes the form

ε
dq
ψ = εd

(
ψ̂2d + L2σ i1d

)
+ εq

(
ψ̂2q + L2σ i1q

)
. (46)

Now, (46) must be linearized around an operating point ψ̂2d0,
ψ̂2q0, ψ2d0, ψ2q0, i1d0, i1q0. Under the above assumptions it
follows that ψ̂2d0 = ψ2d0 = ψ2d , ψ̂2q0 = ψ2q0 = ψ2q = 0.
The linearized error equation can be then expressed as

1ε
dq
ψ = −

(
L2σ i1d0 + ψ̂2d0

)
1ψ̂2d , (47)

where 1ψ̂2d = ψ̂2d − ψ̂2d0.
Transforming the current model (9) into the dq reference

frame, neglecting the iron losses, and using the slip speed
equation (12), the model now becomes

dψdq
2

dt
=
LmR2
L2

idq1 −
R2
L2
ψdq

2
− j

LmR2
L2

i1q
ψ2d

ψdq
2
. (48)

Linearizing (48) around the operating point ψ̂2d0, ψ̂2q0, i1d0,
i1q0, and Lm0, separating the result into the real and imaginary
part, respectively, and performing the Laplace transform, (48)
can be rewritten as

1ψ̂2d s =
R2Lm0

L20
1i1d −

R2
L20

1ψ̂2d +
Lm0R2i1q0
L20ψ2d0

1ψ̂2q

+

R2
(
L2σ i1d0 + ψ̂2d0

)
L220

1Lm, (49)

1ψ̂2qs = −
R2
L20

1ψ̂2q, (50)
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FIGURE 4. A block diagram of the linearized Lm-MRAS.

where L20 = Lm0 + L2σ . The error transfer function can be
written as

Gε (s) = −
1ε

dq
ψ

1Lm
=

(
L2σ i1d0 + ψ̂2d0

) 1ψ̂2d

1Lm
. (51)

Resolving 1ψ̂2d out of (49) and (50), substituting the result
into (51) and also using (45) to substitute for the newly
formed expression 1i1d/1Lm, the final error transfer func-
tion can be obtained. Due to its complexity, this equation is
not explicitly stated in the paper.

The adaptive PI controller transfer function is considered
in the form

GPI (s) = KPψ +
KIψ

s
. (52)

Therefore, the closed-loop transfer function of the whole
estimator can be written as

GC (s) =
GPI (s)Gε (s)

1+ GPI (s)Gε (s)
. (53)

The block diagram of the linearized estimator is depicted
in Fig. 4. Fig. 5 and Fig. 6 show the root locus of (53)
for nominal parameters, nominal excitation, and a nominal
load of the IM utilized in the simulations and experiments
(nameplate values and model parameters given in Table 1).
Fig. 5 for the case when KPψ = 1 and KIψ changes within
〈0, 300〉, and Fig. 6 for the case when KP = 0 and KI changes
again within 〈0, 300〉. In all these cases, the estimator remains
stable.

Furthermore, (53) can also be used for the design of the
adaptive controller gain constants. However, given the num-
ber of adopted simplifications and the fact that linearization
is valid only around a specific operating point, the obtained
results should be considered only as starting values that must
be carefully adjusted.

C. SENSITIVITY TO ROTOR RESISTANCE VARIATION
Unfortunately, the proposed Lm-MRAS is sensitive to the
rotor resistance variation. The sensitivity function can be
obtained using a similar procedure to the one described in
the previous section.

According to Fig. 4, the expression for 1Lm can be
obtained as

1Lm = −
(
KPψ +

KIψ

s

)
1ε

dq
ψ . (54)

The sensitivity function can be then expressed as

1Lm
1R2

=

(
KPψ +

KIψ

s

)(
L2σ i1d0 + ψ̂2d0

) 1ψ̂2d

1R2
. (55)

FIGURE 5. Root locus of the linearized Lm MRAS-type estimator,
KPψ = 1 and KIψ changes from 0 to 300; nominal excitation and speed,
half of the nominal load torque. Crosses, dots, and circles represent the
roots for the starting value, value in the middle of the interval, and value
in infinity, respectively.

FIGURE 6. Root locus of the linearized Lm MRAS-type estimator,
KPψ = 0 and KIψ changes from 0 to 300; nominal excitation and speed,
half of the nominal load torque. Crosses, dots, and circles represent the
roots for the starting value, value in the middle of the interval, and value
in infinity, respectively.

Using (48), the expressions for 1ψ̂2d can be obtained
similarly as in the previous section. However, this time
the linearization is performed around the operating point
ψ̂2d0, ψ̂2q0, i1d0, i1q0, Lm0, and R20. To substitute for the
newly formed expression 1i1d/1R2, state-space model (33)
and (34) is linearized around the operating point x0 =(
i1d0 i1q0 ψ2d0 ψ2q0

)T andR20. The resulting expression for
VOLUME 9, 2021 166239
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the output vector is

1y =
(
1i1d
1i1q

)
= C (sI− A)−11ARx0, (56)

where

1AR =

(
∂

∂R2
A
)
1R2. (57)

After these operations, the resulting sensitivity function can
be obtained. Fig. 7 shows the step response of the sensitivity
function to the 10 % decrease in the rotor resistance. The
PI controller parameters are selected as KPψ = 0.01 and
KIψ = 1. Nominal excitation, speed, and load torque are
considered.

FIGURE 7. Step response of the rotor resistance sensitivity function to
10% decrease in the rotor resistance, KPψ = 0.01 and KIψ = 1. Nominal
excitation, speed, and load torque.

IV. MEASUREMENT, MODELLING, AND COMPENSATION
OF IRON LOSSES
Considering arbitrary reference frame, the equivalent iron
loss current can be expressed according to Fig. 1 as

ikFe =
ukm
RFe

, (58)

where ukm is the voltage across the magnetizing (parallel)
branch.

Considering Clarke’s transformation constant equal to 2/3,
the power dissipated in the iron core is given by

PFe =
3
2
<

{
ukmi

k
Fe

}
, (59)

where i
k
Fe denotes the complex conjugate of the equivalent

iron loss current. Substituting (58) into (59), the iron loss
resistance can be expressed as

RFe =
3
2
u2m
PFe

. (60)

Substituting (60) into (58) and considering the stationary
reference, the iron loss current is obtained as

iαβFe =
2
3
PFe

uαβm
u2m

. (61)

The voltage across the magnetizing branch can be
expressed in case of a steady-state operation and sinusoidal
supply as

uαβm = uαβ1 − R1i
αβ

1 − jωsL1σ i
αβ

1 . (62)

The measurement of iron losses and their implementa-
tion into the control algorithm will be discussed in the next
section.

A. MEASUREMENT AND MODEL FITTING
The iron losses can be obtained by a series of no-load tests
at various fundamental supply frequencies. The separation
procedure based on the IEC standard can then be used for
the loss calculation [34]. For the measurement, the inverter
is programmed to generate a fundamental voltage at a given
frequency and magnitude that corresponds to the reference
stator flux linkage vector magnitude (obtained from the volt-
age model).

Out of the measured input power Pin, the iron losses are
calculated as

PFe = Pc − Pfw, (63)

where Pc are the constant losses defined as

Pc = P0 − Ps,0, (64)

where P0 is the fundamental component of the input no-
load power, Ps,0 are the stator copper losses calculated from
the known value of the stator resistance and measured RMS
current, and Pfw are the friction and windage losses, i.e., the
mechanical losses.

The mechanical losses are calculated from four or more
constant loss points between 30 % and 60 % of the rated
motor stator flux by developing a curve against no-load volt-
age squared and then performing linear extrapolation to zero
voltage [34]. The intersection of the extrapolation line with
the vertical axis then corresponds to the mechanical losses.

For the iron loss modeling, the following analytical func-
tion is adopted [7]

PFe =
f 2s ψ

2
1 + κfsψ

n
1

RFe0
, (65)

where fs is the fundamental supply frequency and κ , n and
RFe0 are the model parameters. The measured iron losses
are then fitted to the model using Wolfram Mathematica’s
command NMinimize with the RandomSearch option. The
minimization is performed on a sum of squares of the error.
The fitted dependence of the iron losses on the stator flux
linkage vector magnitude and fundamental supply frequency
is depicted in Fig. 8. The found model parameters are pre-
sented in the figure caption.

The iron losses are also a function of the slip [9]. If more
precise results are required, an appropriate model considering
the slip dependence can be used.
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FIGURE 8. Iron losses as a function of fundamental supply frequency and
stator flux linkage vector amplitude. The fitted model parameters are
RFe0 = 277, κ = 460, n = 1.77.

B. REAL-TIME COMPENSATION
In the control algorithm, the iron losses are calculated based
on the estimated synchronous frequency and stator flux link-
age vector amplitude. The synchronous frequency is obtained
using the measured rotor speed and estimated slip speed
(equation (12)), and the stator flux amplitude is calculated
using the voltage model (equation (15)).

The resulting block diagram of the proposed FOC is
depicted in Fig. 9.

FIGURE 9. Block diagram of the proposed field-oriented control with the
iron losses, magnetizing inductance, and rotor resistance compensation.

V. SELECTED IMPLEMENTATION ISSUES
A few problems arise during the practical implementation
of the FOC along with the presented estimation algorithms.

The two most important ones – DC offset accumulation prob-
lem during pure integration and inverter voltage distortion
will be discussed in the following sections.

A. VOLTAGE MODEL — DC OFFSET ACCUMULATION IN
CASE OF PURE INTEGRATION
First, it is not possible to use a pure integrator for the volt-
age model (eq. (15)) evaluation because of the unknown
initial conditions and DC offset accumulation problem [35].
However, an advanced modified integrator based on the cur-
rent model depicted in Fig. 10 can be used since the current
model is also implemented in the control algorithm. Themain
drawback of this type of integrator is that it utilizes another PI
controller, for which no satisfactory gain design method has
been proposed yet. Therefore, before drive commissioning,
the controller should be tuned adequately in the simulation
model.

FIGURE 10. Current model-based modified integrator with the DC offset
elimination.

B. INVERTER OUTPUT VOLTAGE DISTORTION
Another major issue that impairs the performance of all the
advanced AC drive control strategies, if not accounted for,
is the distortion of the inverter output voltage [36]. The
primary sources of the voltage distortion are the inserted
dead-time and the delayed load current-dependent transistor
switching. It is assumed that the most common space-vector
modulation (SVM) with a constant switching period TPWM
is used. The resulting effective dead-time that needs to be
compensated is defined as [37]

Teff (ix) = Tdt + Ton (ix)− Toff (ix) x = a, b, c, (66)

where Tdt is the dead-time inserted by the microcontroller
or driver, Ton (ix) is the current-dependent turn-on delay,
Toff (ix) is the current-dependent turn-off delay and symbols
a, b, c denote the respective inverter leg.

The compensation characteristics in the form of the depen-
dence of the so-called effective dead-time on the load current
can be easily determined by direct measurement [37]. In the
control algorithm, a look-up table can be used for the effective
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dead-time compensation, or it is possible to fit the measured
data using the function

Teff (ix) =
m

k1 |ix | + k2
+ n, (67)

where k1, k2, m, n are parameters to be determined.
The most convenient way is to compensate the output

duty-cycle from the modulator [37]. Within SVM, the duty-
cycle dx for each VSI leg is defined in such a way that the
average value of the corresponding inverter line-to-neutral
voltage ux0 per modulation period with respect to given
DC-link voltage UDC equals to −UDC/2 if dx = 0 and
+UDC/2 if dx = 1. The relation between the reference d∗x
and the compensated duty cycle d ′x then takes the following
form [37]

d ′x = d∗x +
Teff(x)
TPWM

sgn(ix) x = a, b, c. (68)

VI. Q-MRAS FOR ROTOR RESISTANCE ESTIMATION,
LOAD-DEPENDENT SATURATION
As mentioned in the Introduction, the IM magnetizing induc-
tance may also depend on the load. Theoretically, the pro-
posed Lm-MRASwith included iron losses should be capable
of estimating this type of saturation. However, as shown in
section III. C., another parameter that affects the accuracy
of the current model and, consequently, the performance
of the RFOC during the load conditions is the rotor resis-
tance. Therefore, rotor resistance adaptation could improve
the identification process. For this purpose, the traditional and
widely used reactive power MRAS (Q-MRAS) can be uti-
lized. In this paper, this type of estimator will be augmented to
include the iron loss effect to improve the estimation accuracy
further.

The reference model is given by [19]

Q = =
{
udq1 i

dq
1

}
= u1qi1d − u1d i1q, (69)

where i
dq
1 denotes the conjugated current space vector. Using

(14) transformed into dq reference frame, the stator flux
linkage vector can be obtained as

ψdq
1
=
Lm
L2
ψdq

2
+ L1σ i

dq
1 −

L2σLm
L2

idqFe. (70)

The stator voltage equation in the dq reference frame can be
written as

udq1 = R1i
dq
1 +

dψdq
1

dt
+ jωsψ

dq
1
. (71)

By substituting (70) into (71) and considering the steady-state
operation, we obtain

udq1 = R1i
dq
1 + jωs

(
Lm
L2
ψdq

2
+ L1σ i

dq
1 −

L2σLm
L2

idqFe

)
.(72)

Separating (72) into the real and imaginary parts, respec-
tively, while considering that ψ2d = Lm (i1d − iFed ) and

ψ2q = 0, the adaptive model is finally obtained as

Q̂ = ωs

[
L1σ

(
i21d + i

2
1q

)
+
Lm
L2

(
Lmi21d − L2iFed i1d − L2σ iFeqi1q

) ]
. (73)

The synchronous speed is obtained as the sum of the mea-
sured speed and estimated slip speed.

The error for the rotor resistance adaptation mechanism is
calculated as

εQ = Q− Q̂. (74)

The estimated rotor resistance is then the output of the PI
controller, i.e.,

R̂2 = KpQεQ + KiQ

∫ t

0
εQdτ + R2(init), (75)

where R2(init) is the initial rotor resistance. The block diagram
of the Q-MRAS estimator with included iron loss effect is
presented in Fig. 11.

The stability analysis of the parallel operation of the
Lm-MRAS and Q-MRAS represents a complex task. Gener-
ally, no satisfactory approach to investigating multiple simul-
taneous MRAS-type estimators’ stability within FOC has
been proposed yet. The analysis is usually omitted or greatly
simplified [17].

VII. SIMULATION RESULTS
The simulation model was built in MATLAB/Simulink ver-
sion 2021a. The simulated machine nameplate values and
nominal model parameters are given in Table 1. The block
diagram of the control algorithm agrees with Fig. 9. The
selected model solver is ode4 with a fixed-step size equal
to 5 µs. The machine is modeled using the full-order
state-space model with the iron loss effect presented in
section II. A. The iron losses are calculated using (65) fitted
to the measured data.

To eliminate the effect of numerical errors and the effect
of the pulse voltage (i.e., the effect of the inverter) on the
estimator accuracy, the model of FOC is implemented using
the same solver and fixed-step size as in the case of the IM
model. The stator flux linkage vector magnitude and the slip
speed for the iron loss compensation (utilizing (65) again) are
calculated using the voltage model (15) and the slip speed
equation (12), respectively.

To assess the functionality of the proposed estimator, the
following sequence is simulated:
• The magnetizing inductance in the FOC model is set to
110 % of the nominal value. All other parameters are
exact.

• The reference flux is set to the nominal value.
• The machine is started at 0.1 s to half of the nominal
speed. The reference speed is increased to the nominal
value at 4 s.
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• Magnetizing inductance compensation is turned
on at 1 s.

• Initially, the machine is unloaded. The load is increased
to half of the nominal torque and nominal torque at 2 s
and 3 s, respectively. Furthermore, the load is decreased
to half of the nominal torque and zero torque at 5 s and
6 s, respectively.

The time sequence of the step changes of the reference
speed and torque is depicted in Fig. 12. The Lm-MRAS PI
controller proportional and integral gains are set to 0.01 and 1,
respectively. The resulting magnetizing inductance estimates
are depicted in Fig. 13 and Fig. 14. In Fig. 13, the iron losses
are compensated, and in Fig. 14, the compensation is inactive.

FIGURE 11. Modified reactive power MRAS for rotor resistance
estimation.

TABLE 1. Induction machine nameplate data and nominal model
parameters.

In the iron loss compensation case, the estimated induc-
tance converges to the actual value and is almost unaffected
by the speed and torque change. However, if the iron losses
are not compensated, the estimated inductance differs from
the actual value. The difference is the lowest during the no-
load conditions and further increases with the load. This
confirms the results of earlier works where it was found that
the error in rotor flux can have an increasing tendency with
respect to the load then reach amaximumvalue to start further
descending with increasing load [10].

Another simulation sequence was designed to test the abil-
ity of the estimator to track the change of the magnetizing
inductance with the load:

• The magnetizing inductance in the FOC model is set to
110 % of the nominal value to simulate the parameter
detuning. All other parameters are exact.

• The reference flux is set to the nominal value.
• The machine is started at 0.1 s to the nominal speed.
• Magnetizing inductance compensation is turned on
at 1 s.

• At 2 s, the load torque starts to increase from zero to half
of the nominal value linearly.

• The magnetizing inductance inside the IM model is
modeled to decrease with the torque (also linearly).

The integral gain of the estimator is increased five times for
better tracking performance which causes an overshoot at the
beginning of the estimation process. The results are depicted
in Fig. 14 and Fig. 16. In Fig. 15, the iron losses are compen-
sated, and in Fig. 16, the compensation is inactive. In the case
of the compensated iron losses, the estimator can track the
change of the magnetizing inductance with the load almost
perfectly. However, if the iron losses are not compensated,
the estimator is able to monitor the monotonically decreasing
trend, but the estimated value differs from the actual one. The
difference is then increasing as the function of the increased
torque.

The third simulation sequence tested the performance of
the parallel operation of Q-MRAS and Lm-MRAS.

• The FOC model’s magnetizing inductance and rotor
resistance are set to 110 % and 120 %, respectively,
of their nominal values to simulate the parameter detun-
ing. All other parameters are exact.

• The reference flux is set to the nominal value.
• The machine is started at 0.1 s to the nominal speed.
• Half of the nominal load torque is applied at 1 s.
• Magnetizing inductance compensation is turned
on at 2 s.

• Rotor resistance compensation is turned on at 4 s.

The Q-MRAS PI controller proportional and integral gains
are set to 0.0001 and 0.03, respectively. The resulting magne-
tizing inductance and rotor resistance estimates are presented
in Fig. 17 and Fig. 18. In Fig. 17, the iron losses are com-
pensated, and in Fig. 18, the compensation is inactive. The
results show that the rotor resistance detuning significantly
influences the Lm-MRAS under load conditions. However,
parallel operation with the Q-MRAS ensures that both the
magnetizing inductance and rotor resistance are compensated
correctly if the improved version with the iron losses is
used. Again, the estimates are incorrect if the iron loss com-
pensation is inactive, although both estimators successfully
converge.

The last simulation sequence tested Lm-MRAS perfor-
mance in a regenerative mode and during speed reversal.

• The magnetizing inductance in the FOC model is set to
110 % of the nominal value. All other parameters are
exact.

• The reference flux is set to the nominal value.
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FIGURE 12. The simulated sequence of reference torque (solid) and
speed (dashed).

• The machine is started at 0.1 s to the nominal speed. The
sign of the reference speed is inverted, i.e., the drive is
reversed at 4 s.

• Magnetizing inductance compensation is turned
on at 1 s.

• Initially, the machine is unloaded. The load is increased
to half of the nominal torque in a regenerative mode
at 2 s. The machine is then unloaded at 3 s. At 5 s,
the load increases to half of the nominal torque in a
regenerative mode and decreases to zero at 5 s. Then, the
machine is unloaded, and the load torque is increased to
half of the nominal torque in a motoring mode at 7 s.

The time sequence of the step changes of the reference
speed and torque is depicted in Fig. 19. The resulting mag-
netizing inductance estimates are depicted in Fig. 20 and
Fig. 21. In Fig. 20, the iron losses are compensated, and in
Fig. 21, the compensation is inactive. Overall, the simulation
sequence confirms the ability of Lm-MRAS to estimate the
magnetizing inductance in a four-quadrant operation of the
drive.When the iron losses are compensated, slight variations
in the estimated inductance value appear during the speed
reversal. The variations during the change of the load are
negligible. However, if the iron losses are not accounted for,
the variation of the inductance increases, and the estimator
operates with an error that depends on the loading of the
machine.

VIII. EXPERIMENTAL RESULTS
The proposed Lm-MRAS estimator was also tested experi-
mentally. The whole control algorithm was programmed in
C language into Texas Instruments TMS320F28335 digital
signal processor with the CPU clock set to 150 MHz. The
calculation loop of the FOC is tied to the PWM frequency,
which is selected to be 8 kHz. The data were sampled with
a 400 µs period. The IM drive was loaded by an 8 kW DC
motor supplied from a Siemens SINAMICS DCM converter.
The experimental machine setup is depicted in Fig. 22.

For the motor current and DC-link voltage measurements,
LEM LF 205-S with four conductor turns and LEM LV25-P,

FIGURE 13. Estimated (blue) and actual (orange) magnetizing inductance
during the step changes of speed and load; iron losses compensated.

FIGURE 14. Estimated (blue) and actual (orange) magnetizing inductance
during the step changes of speed and load; iron losses not compensated.

FIGURE 15. Estimated (blue) and actual (orange) magnetizing inductance.
The magnetizing inductance in the motor model decreases as a function
of torque; iron losses compensated.

respectively, were used along with our custom signal adjust-
ment board. The board performs LEM output scaling via op-
amp circuitry. All ADC conversions are synchronized with
PWM and regularly triggered with a modulation period of
125 µs. As the machine supply converter, a standard three-
phase two-level voltage-source inverter was utilized. The
inverter is supplied from a diode rectifier that is connected
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FIGURE 16. Estimated (blue) and actual (orange) magnetizing inductance.
The magnetizing inductance in the motor model decreases as a function
of torque; iron losses not compensated.

FIGURE 17. Parallel operation of Q-MRAS and Lm-MRAS. Estimated
values (blue) and actual values (orange) of the magnetizing inductance
(solid) and rotor resistance (dashed). Iron losses compensated. The load
is applied at 1 s, Lm-MRAS is started at 2 s, and Q-MRAS is started at 4 s.

FIGURE 18. Parallel operation of Q-MRAS and Lm-MRAS. Estimated
values (blue) and actual values (orange) of the magnetizing inductance
(solid) and rotor resistance (dashed). Iron losses are not compensated.
The load is applied at 1 s, Lm-MRAS is started at 2 s, and Q-MRAS is
started at 4 s.

to a 400 V, 50 Hz AC grid. The rotor speed was measured
using a LARM incremental encoder with 2500 pulses per
revolution. The encoder output is scaled using the same signal

FIGURE 19. The simulated sequence of reference torque (solid) and
speed (dashed) for a regenerative mode and speed reversal.

FIGURE 20. Estimated (blue) and actual (orange) magnetizing inductance
for a regenerative mode and speed reversal; iron losses compensated.

FIGURE 21. Estimated (blue) and actual (orange) magnetizing inductance
for a regenerative mode and speed reversal; iron losses not compensated.

adjustment board and processed by the eQEP module of the
TMS320F28335 DSP.

First, the no-loadmagnetizing characteristics in the form of
the dependence of the magnetizing flux on the magnetizing
current (i.e.,ψm = f (im)) wasmeasured during a no-load test
from a 50Hz supplywith variable voltage amplitude. Because
the utilized IM is a slip-ring type, the rotor winding was left
open to rule out the influence of the rotor branch entirely.
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FIGURE 22. The tested induction motor and loading DC motor.

FIGURE 23. No-load magnetizing characteristics in the form ψm = f
(
im

)
obtained from the modified no-load test (blue) and Lm-MRAS (orange).

FIGURE 24. Measured α (blue) and β (orange) components of the stator
current and estimated α (green) and β (red) components of the stator
current. Nominal speed and rotor flux, half of the nominal load torque,
iron loss compensation only.

To compare the no-load test results with the proposed Lm-
MRAS, the unloaded drive was then connected to the inverter.
To ensure a similar fundamental voltage frequency as during
the no-load test, the reference speed was set to 104 rad·s−1.
Under the no-load conditions, the rotor current is close to
zero, i.e., i2 ≈ 0 which, according to (8), means that the
magnetizing flux is almost identical with the rotor flux, i.e.,
ψm ≈ ψ2. Under these assumptions it is easy to obtain the

FIGURE 25. Measured α (blue) and β (orange) components of the stator
current and estimated α (green) and β (red) components of the stator
current. Nominal speed and rotor flux, half of the nominal load torque,
iron loss and rotor resistance compensation.

FIGURE 26. Measured α (blue) and β (orange) components of the stator
current and estimated α (green) and β (red) components of the stator
current. Nominal speed and rotor flux, half of the nominal load torque,
iron loss, rotor resistance, and magnetizing inductance compensation.

magnetizing characteristics in the form ψm = f (im). The
resulting comparison is depicted in Fig. 23. Out of the figure,
it is evident that both the magnetizing characteristics are in
excellent agreement.

To validate the performance of the parallel estimation of
themagnetizing inductance and rotor resistance, the reference
flux and speed were set to their nominal values and the load
torque to half of the nominal value. Then, the actual and esti-
mated αβ current components were measured and calculated,
respectively. The estimated currents were obtained using the
current equation of the state-space model (33) transformed
into αβ. The rotor flux vector components for the current
estimator were obtained using (10).

The data were recorded for multiple cases. In all of
them, the iron loss compensation was active. Also, between
the measurements, the machine was stopped to cool back
to ambient temperature. Fig. 24 shows the case when the
Lm-MRAS was turned on at the beginning during the no-
load operation to obtain the no-load value of the magne-
tizing inductance. Then the Lm-MRAS was deactivated,
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and the drive was loaded with half of the nominal torque.
Fig. 25 shows a similar case with the difference that
only the rotor resistance compensation was active. Finally,
Fig. 26 shows the case when both the magnetizing inductance
and rotor resistance estimation were active.

Interestingly, the worst case is obtained when only the
rotor resistance compensation is active. The incorrect value
of the magnetizing inductance influences the Q-MRAS per-
formance, leading to incorrectly estimated rotor resistance.
If neither the magnetizing inductance nor the rotor resistance
compensation is active, the results are better. However, it is
expected that the resulting estimates would be worse after
a long-time loading when the rotor temperature would be
increased. The best match between the current components
is obtained if all the compensations are active, indicating the
correct estimation of the parameters.

IX. CONCLUSION
This paper presented a novel MRAS-type estimator with the
included effect of iron losses and load. Despite the drawback
that the referencemodel is not entirely free of themagnetizing
inductance, the simulation and experimental results proved
its ability to estimate the conventional and load-dependent
magnetizing inductance saturation correctly. Furthermore,
the estimator operation during load conditions was improved
by introducing a simultaneously working reactive power
MRAS with the included iron losses for the rotor resistance
adaptation. It was found out that the influence of the iron
losses on the accuracy of both parameters estimation becomes
significant at higher loads.

Still, a few issues connected with the proposed estimation
schemes should be acknowledged. First, it is assumed that the
stator resistance and stator and rotor leakage inductance are
known accurately. The stator resistance can be easily mea-
sured and corrected during the drive operation, but the leak-
age inductances cannot be measured directly. Furthermore,
the rotor leakage inductance can also saturate as the function
of the rotor current. One possibility of overcoming these
problems would be adding a leakage inductance estimation
through signal injection or recursive least-square methods.

Secondly, the iron losses were measured during the no-
load operation. However, the iron losses are also dependent
on the slip due to the different mutual speeds of the rotating
magnetic field (fundamental component) and rotor. Further-
more, additional losses are present in the machine during load
conditions. Therefore, the models and the estimates could
be improved using a more sophisticated induction motor
equivalent circuit.

Lastly, as mentioned in the beginning, the reference model
is not free ofmagnetizing inductance. At this time, the authors
are working on an improved estimator that eliminates this
problem.
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