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ABSTRACT Pool-based active learning (AL) aims to optimize the annotation process (i.e., labeling)
as the acquisition of annotations is often time-consuming and therefore expensive. For this purpose, an
AL strategy queries annotations intelligently from annotators to train a high-performance classification
model at a low annotation cost. Traditional AL strategies operate in an idealized framework. They assume
a single, omniscient annotator who never gets tired and charges uniformly regardless of query difficulty.
However, in real-world applications, we often face human annotators, e.g., crowd or in-house workers,
who make annotation mistakes and can be reluctant to respond if tired or faced with complex queries.
Recently, many novel AL strategies have been proposed to address these issues. They differ in at least one
of the following three central aspects from traditional AL: 1) modeling of (multiple) human annotators
whose performances can be affected by various factors, such as missing expertise; 2) generalization of
the interaction with human annotators through different query and annotation types, such as asking an
annotator for feedback on an inferred classification rule; 3) consideration of complex cost schemes regarding
annotations and misclassifications. This survey provides an overview of these AL strategies and refers to
them as real-world AL. Therefore, we introduce a general real-world AL strategy as part of a learning cycle
and use its elements, e.g., the query and annotator selection algorithm, to categorize about 60 real-world AL
strategies. Finally, we outline possible directions for future research in the field of AL.

INDEX TERMS Active learning, classification, error-prone annotators, human-in-the-loop learning, inter-
active learning, machine learning.

I. INTRODUCTION
Information and communication technology has become an
integral part of humans’ lives and supports us embedded
in our surroundings [1]. In particular, improving computa-
tional power and the ease of collecting a plethora of data
has promoted machine learning (ML) [2], [3]. Nowadays,
ML models are employed in various fields [4], ranging from
recommender systems [5], text classification [6], and speech
recognition [7] to object detection in videos [8]. In this survey,
we consider ML for building classification models. They
learn from data sets consisting of instances and their corre-
sponding annotations (e.g., class labels, class membership
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probabilities, etc.). However, annotating instances may be
costly and time-consuming since it is often manually exe-
cuted by annotators.

In general, an annotator is an information or knowledge
source, such as a human, the Internet, or a simulation sys-
tem [9], and can annotate various types of queries. In this
survey, we focus on human annotators. Other commonly used
terms are oracle [10], expert [11], worker [12], teacher [13],
and labeler [14]. A large group of (human) annotators who do
not necessarily know each other is also named a crowd [15].
The exact characteristics of a crowd, e.g., the number and
heterogeneity of the annotators, depend on the requirements
of the crowdsourcing initiative at hand.
Active learning (AL) is a subfield of human-in-the-loop

learning [16] and interactive ML [17], [18], which directly
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and iteratively interacts with human annotators. It aims at
reducing annotation and misclassification cost [19]. Thus,
an AL strategy queries annotations for instances from
which the classification model is expected to learn the
most [20]. As a result, the classification model trained on
an actively selected subset of annotated instances reaches in
average a superior performance to a model trained on
a randomly selected subset. AL strategies have been
successfully employed in several applications, e.g., malware
detection [21], waste classification [22], classification of
medical images [23], and training of robots [24]. However,
many of these AL strategies make three central assumptions
that limit their practical use [25], and we refer to them as
traditional AL:
(1) There is a single omnipresent and omniscient annota-

tor providing the correct annotation for each query at
any time. This assumption conflicts with the available
options of annotation acquisitions. In particular, crowd-
sourcing represents a popular way to obtain data annota-
tions [26]. However, on crowdsourcing platforms, e.g.,
Amazon’s Mechanical Turk [27], [28], CloudResearch
(formerly TurkPrime) [29], and Prolific Academic [30],
multiple error-prone annotators have to be consid-
ered [31]. Otherwise, annotation mistakes (e.g., noisy
class labels) will degrade the classification model’s
performance [32], [33].

(2) The cost of an annotation is constant across the queries.
This assumption is violated in cases such as biomed-
ical citation screening [11], in which articles are to
be classified as relevant or irrelevant for a particular
research topic. The time to annotate an article depends
on its length, complexity, and the queried annotator [34].
Hence, the cost varies across pairs of articles and
annotators.

(3) Each query requests the class label of a specific instance.
This assumption ignores the possibility of designing
more general and effective queries [25], [35]. Some
of these queries also require annotations to be more
complex than simple class labels. We avoid confusion
regarding the terms label and annotation by defining
an annotation as the most general reply to a query,
e.g., an annotator could answer a query with ‘‘I have
no idea!’’. Correspondingly, a class label is a specific
example of an annotation.

Various concepts have been proposed to overcome the
limitations above. These include collaborative interactive
learning [36], [37] and proactive learning [38], [39]. We sum-
marize their main differences to traditional AL through the
three following aspects:
(1) Instead of assuming a single omniscient and omnipresent

annotator, they consider (multiple) human, error-prone
annotators whose performances can be affected by var-
ious factors, e.g., missing expertise, fatigue, and mali-
cious behavior.

(2) Instead of repeatedly querying class labels of instances,
they generalize the interaction with human annotators by

considering different types of queries and annotations,
such as asking an annotator for feedback on an inferred
classification rule.

(3) Instead of assuming uniform cost, they take more com-
plex cost schemes regarding annotations and misclassi-
fications into account.

In this survey, we provide an overview of existing AL strate-
gies taking at least one of the three aspects into account
and refer to them as real-world AL. We limit the scope by
including only strategies for classification in the pool-based
AL setting [19] because it is the most researched AL field.
However, many implications of this survey go beyond this
scope and are emphasized in the outlook. Based on these
prerequisites, this survey makes the following contributions:
• We formalize the objective of a real-world AL strategy
as the optimal annotation sequence to a cost-sensitive
classification problem.

• We propose a taxonomy of existing cost types,
interaction schemes, annotator performance mod-
els, and selection algorithms to compare different
real-world AL strategies.

• We give a comprehensive comparison of about
60 real-world AL strategies and analyze them regarding
their handling of error-prone annotators, usage of query
and annotation types, consideration of imbalanced mis-
classification and annotation cost, and query-annotator
selection.

• We identify five unsolved challenges in the real-world
AL setting and formulate them as future research
directions.

We structure this survey’s main body according to Fig. 1 that
gives an overview of the main topics reviewed in this survey.
The four sections III–VI are accompanied by a respective tab-
ular literature overview of real-world AL strategies, including
detailed analyses in this survey’s appendices as supplemen-
tary material. Based on these literature overviews, we formu-
late challenges in the setting of real-world AL and beyond
in Section VII. We conclude this survey in Section VIII.

II. REAL-WORLD ACTIVE LEARNING
In this section, we introduce the problem setting of real-world
AL. A real-world application illustrates a possible scenario
violating the assumptions of traditional AL and thus indicat-
ing the need for real-world AL strategies. In the context of this
application, we also explain the notation used throughout this
survey. Moreover, we formalize the objective of real-world
AL as the optimal solution to a cost-sensitive classification
problem and present learning cycles finding greedy approxi-
mations of this solution.

A. MOTIVATING APPLICATION
An example of a practical use case requiring the employment
of a real-world AL strategy is the classification of low-voltage
grids described in [40], [41]. They connect most consumers,
e.g., households, to the electrical power system, and an illus-
tration of such a grid is given in Fig. 2.
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FIGURE 1. Overview of real-world AL and structure of this survey’s main body: The nodes of the tree name the different topics of real-world
AL identified in this survey. Additionally, they provide a brief summary of each topic and reference the specific section with more details.

FIGURE 2. Example of a real-world AL use-case with four annotators.

Formerly, the power system was designed to transport
energy from a few central generators (plants) to the con-
sumers. However, recent developments are characterized by
an increasing number of installed distributed generators, par-
ticularly photovoltaic generators, in low-voltage grids [42].
These distributed generators may provoke, e.g., an overload
of electrical components, and violate critical voltage values
within a grid. Assessing the hosting capacity of low-voltage
grids for distributed generation supports the responsible dis-
tribution system operator in deciding for which low-voltage

grid an investment in the infrastructure could be most ben-
eficial such that its sustainable operational reliability is
guaranteed [40].

In this context, a significant challenge is the high com-
plexity of low-voltage grids. Therefore, multiple annotators
with heterogeneous background knowledge are requested to
provide annotations, such as strong, weak, etc., classifying
the hosting capacities of low-voltage grids (cf. Fig. 2). To do
so, the annotators have access to a grid diagram and corre-
sponding tabular information. The provided annotations, i.e.,
ordered classes and confidence assessments in this case, are
prone to error because of missing expertise, for example.
Moreover, the annotations are expensive because the anno-
tators have to investigate the grids to generate an annotation
regarding the hosting capacity. A real-world AL strategy can
save time and money by training a classification model to
categorize each possible low-voltage grid’s hosting capacity
automatically.

As a result, a representative question of this survey would
be: ‘‘How to design a real-world AL strategy for solving
problems such as the classification of low-voltage grids?’’.

B. FORMALIZATION OF PROBLEM SETTING
An instance is described by a D-dimensional feature vector
x = (x1, . . . , xD)T,D ∈ N. It is drawn from the distribu-
tion Pr(X ) = Pr(X1, . . . ,XD) defined over a D-dimensional
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feature (input) space �X , where Xd denotes the random
variable of the feature d ∈ {1, . . . ,D} and X is used
as short-cut for the D dimensional random variable rep-
resenting all features. The observed multi-set of identi-
cally and independently distributed instances is given by
X = {x1, . . . , xN } ⊆ �X . For example, the instance of the
low-voltage grid illustrated in Fig. 2 may take the form

xn=


xn1
xn2
...

xnD

=


# transformer stations
# cable distribution boxes

...

# households

 .
(1)

Each instance xn belongs to a true class yn ∈ �Y sampled
from the categorical distribution Pr(Y | X = xn) with
Y denoting the random variable of the true class labels.
In total, there are |�Y | = C ∈ N≥2 classes. The multi-set
of true class labels for the observed instances in X is denoted
as Y = {y1, . . . , yN }. Regarding the classification of low-
voltage grids, the class labels would have an ordinal structure
ranging from a very weak (Y = 1 ∈ �Y ) to a very
strong (Y = 5 ∈ �Y ) hosting capacity.

As pointed out, there is no omniscient and omnipresent
annotator in most applications. In the context of real-world
AL, we work with (multiple) error-prone annotators who we
summarize in the set A = {a1, . . . , aM }. Each annotator
can be queried to provide annotations. An annotation is not
restricted to be a specific class label y ∈ �Y , but all kinds of
annotations are allowed, e.g., confidence scores [43], proba-
bilistic labels [44], or rejecting to answer a query [45]. The
space of possible annotations is summarized by the set �Z ,
e.g., �Z = [0, 1] if probabilistic class labels are expected for
a binary classification problem. The (multivariate) random
variable for the annotations of annotator am is denoted as Zm.
A query cannot only ask for the class label of a specific

instance xn, but more general queries such as ‘‘Do instance xn
and instance xm belong to the same class?’’ can be formu-
lated [46]. To learn from queries and annotations, a classifica-
tion model requires appropriate mathematical representations
of them. An exemplary representation of the query given
above would be q = {xn, xm}. The mathematical represen-
tations of all possible queries are summarized in a set QX ,
which depends on the underlying classification problem and
the set of observed instances X [47]. Due to this dependency,
we can interpret the queries as random events, and Q denotes
the associated random variable. In most cases, a query asks
for the class label of a specific instance such that we can
define QX = X as query set.

The task of a real-world AL strategy is to generate a
sequence scheduling the execution of the annotation process,
which we assume to consist of countable distinct (time)
steps. In other words, a sequence answers the question:
‘‘Which annotator has to answer which query at which
time step?’’. Accordingly, we define a sequence as a func-
tion S : N→ P(QX ×A), such that (ql, am) ∈ S(t) induces

an annotation of query ql by annotator am at time step t ∈ N.
The annotation behavior of an annotator can be modeled
through a conditional distribution Pr(Zm | Q = ql, t) from
which z(t)lm ∈ �Z is drawn as annotation of annotator am
for query ql , i.e., z

(t)
lm ∼ Pr(Zm | Q = ql, t). As a result, anno-

tators are not compulsorily deterministic in their decisions.
Still, decisions might also change throughout the annotation
process, e.g., if an annotator gets tired during the annotation
process [48]. An annotation process executed until the begin-
ning of the time step t according to a sequence S leads to a
data set

D(t) =
{
(ql, am, z

(t ′)
lm )

∣∣∣ t ′ ∈ N ∧ t ′ < t ∧ (ql, am) ∈ S(t ′)

∧ z(t
′)

lm ∼ Pr(Zm | Q = ql, t ′)
}
(2)

consisting of triplets of a query, an annotator, and an annota-
tion. We define the end of a sequence S as the last time step
at which an annotation has been performed, i.e., where the
selection is not empty:

tS = max({t | S(t) 6= ∅ ∧ t ∈ N}). (3)

On a data set D(t), a classification model described by its
parameters θ can be trained. We denote the resulting param-
eters of the classification model by θD(t). For example, these
parameters would correspond to weights in the case of a neu-
ral network [49] taken as a classification model. The trained
classification model predicts class labels for given instances,
where the prediction for an instance x ∈ �X is denoted by
ŷ(x | θD(t)) ∈ �Y . In many cases, the classification model
can predict the class label of an instance and estimate the
probabilities of class memberships. In this case, we denote
the estimated class membership probability that a given
instance x belongs to class y by Pr(Y = y | X = x, θD(t)).

C. OBJECTIVE
Given the formalized problem setting and generalizing the
objective definitions in [38], [50] toward all query and
annotation types including complex cost schemes, we formu-
late the objective of real-world AL as determining the opti-
mal annotation sequence for a cost-sensitive classification
problem:

S∗ = argmin
S∈�S

[
MC(θD(tS+1) | κ)+ AC(D(tS + 1) | ν)

]
subject to the constraints C, (4)

where �S denotes the set of all potential sequences. MC and
AC are themisclassification and annotation cost, respectively.
We expect them to be on the same scale. Otherwise, extra
normalization might be necessary. The optimal annotation
sequence S∗ minimizes the total cost while satisfying all
constraints C. A common constraint is a maximum annotation
budget B ∈ R>0, i.e., C = {AC(D(tS + 1) | ν) ≤ B}. The
total cost is decomposed into MC and AC, where the vector κ
encodes given hyperparameters for computing the MC, e.g,
a cost matrix, and the vector ν represents the hyperparameters
for computing AC, e.g., wages of the annotators. We provide
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a more detailed discussion on different cost schemes in the
setting of real-world AL in Section III.

Since it is difficult to find the optimal annotation
sequence S∗ given by Eq. 4 in advance [38], an AL strategy
aims to approximate the optimal sequence through a greedy
approach. Therefore, the annotation sequence S is defined
iteratively at run time by executing a cycle where one iter-
ation corresponds to a single time step. We start with the
description of such a cycle for traditional AL. Subsequently,
we restructure it to fit the setting of real-world AL.

D. TRADITIONAL ACTIVE LEARNING CYCLE
In traditional AL, an omniscient and omnipresent annota-
tor A = {a1} is assumed to be available [19]. Moreover,
a query expects the class label of an instance such that the
set of queries can be represented by QX = X and the set of
annotations is given by the set of classes, i.e.,�Z = �Y . Tra-
ditional AL strategies differ between the labeled (annotated)
set L(t) = {(xn, yn) | (xn, a1, yn) ∈ D(t)} and the unlabeled
(non-annotated) set U(t) = {xn | xn ∈ X ∧ (xn, yn) /∈ L(t)}
obtained after executing the (t − 1)-th iteration cycle. The
main idea is to develop a strategy intelligently select-
ing instances from the unlabeled pool U(t) to which
the annotator a1 assigns true class labels. Due to the
omniscience of this annotator a1, the annotation distribu-
tion satisfies Pr(Z1 = y | X = xn,Y = y, t) = 1 for all iter-
ation cycles t ∈ N, classes y ∈ �Y , and observed
instances xn ∈ X .

Fig. 3 summarizes the entire selection procedure as a
cycle. (1) At the start of the iteration cycle t , the traditional
AL strategy selects an unlabeled instance xn∗ from the unla-
beled pool: U(t + 1) = U(t) \ {xn∗}. (2) Subsequently,
the instance is presented to the omniscient annotator A =
{a1} who provides its true class label yn∗ . The resulting
instance-label pair is inserted into the labeled pool:L(t+1) =
L(t) ∪ {(xn∗ , yn∗ )}, (3) on which the classification model
is retrained by updating its parameters θL(t) → θL(t+1).
(4) At the end of the cycle, the traditional AL strategy decides
whether to continue or to stop learning. This decision is made
by a so-called stopping criterion [51]–[53], which is part of
ongoing research and not within this survey’s scope.

The selection of an instance is based on a so-called utility
measure φ : X → R [54] estimating the utilities of the
observed instancesX regarding the classification model to be
trained. In general, the unlabeled instance with the maximum
utility is selected in iteration cycle t:

xn∗ = argmax
xn∈U (t)

[
φ(xn | θL(t))

]
. (5)

There are many approaches computing instances’ utili-
ties. In the following, we briefly describe two fundamental
concepts:
• The simplest concept of utility measures is uncertainty
sampling (US) [55], which usually requires an instance’s
class membership probabilities estimated by the classi-
fication model to be trained. Alternatively, distances to

FIGURE 3. Traditional AL cycle according to Settles [19].

decision boundaries [56] are used as proxies of them.
US ranks all instances in the unlabeled pool U(t) based
on an uncertainty measure and queries the label for the
instance with the maximum uncertainty regarding its
class information. A common uncertainty measure is the
entropy H [57] of the class distribution such that an
instance’s utility is computed as

φUS(xn | θL(t)) = H [Pr(Y | X = xn, θL(t))]. (6)

• The decision-theoretic framework expected error reduc-
tion (EER) [58] estimates the performance of the
classification model. Therefor, EER assumes that the
instances in the unlabeled pool U(t) form a valida-
tion set. For each unlabeled instance, the classification
model’s expected error is computed on this validation set
by retraining the classification model with each combi-
nation of the given unlabeled instance and its possible
class label. The multiple retraining procedures of the
classification model lead to high computational com-
plexity. The resulting estimate of the negative expected
error defines the utility measure. Correspondingly,
EER selects the instance leading to the minimum esti-
mated error.

One of the main challenges regarding the design of utility
measures is the exploration-exploitation trade-off. On the
one hand, we aim to select instances near the classification
model’s decision boundary to refine it (exploitation). On the
other hand, we aim to select instances in unknown regions
(exploration) [59]. More advanced AL strategies balance this
trade-off by considering distances to decision boundaries,
densities, class distribution estimates [60]–[62], or using a
Bayesian approach [63].

In batch mode AL [23], we must consider the diversity
of instances since multiple instances (batch of instances) are
selected in each learning iteration cycle. However, a detailed
analysis of instance utility measures in the traditional
AL setting is beyond the scope of this survey, and a more
detailed discussion on them is given in [19], [20], [54], [64].
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FIGURE 4. Proposed real-world AL cycle.

E. REAL-WORLD ACTIVE LEARNING CYCLE
The traditional AL cycle depicted in Fig. 3 has to be adjusted
to fit the setting of real-world AL. Our resulting cycle, includ-
ing a real-world AL strategy’s elements, i.e., query utility
measure, annotator performance measure, and selection algo-
rithm, is shown in Fig. 4. (1) At the start of the iteration
cycle t , a classification and annotator model, both trained
on the current data set D(t), provide information regard-
ing a query utility and an annotator performance measure.
(2) Based on both measures, a selection algorithm specifies
a set of query-annotator pairs S(t) ⊆ QX × A. Each pair
(ql, am) ∈ S(t) initiates an annotation of query ql by anno-
tator am. (3) The annotations are inserted into the data set:
D(t + 1) = D(t) ∪ {(ql, am, z

(t)
lm) | (ql, am) ∈ S(t) ∧ z(t)lm ∼

Pr(Zm | Q = ql, t)}. (4) Then, the classification and annotator
model are retrained on the updated data set (θD(t)→ θD(t+1)
and ωD(t) → ωD(t+1)). (5) At the end of the iteration cycle,
the real-world AL strategy decides whether to stop or to
continue learning.

A query utility measure φ : QX → Rφ is an element
being already part of the traditional AL setting. However,
in the real-world AL setting, not only the class labels of non-
annotated (unlabeled) instances can be queried, but more gen-
eral queries can be selected for annotation. This also includes
a re-annotation of instances, known as repeated labeling [65],
re-labeling [66], or backward instance labeling [67]. Hence,
the strict distinction into a non-annotated (unlabeled) set U(t)
and an annotated (labeled) set L(t) is often not adequate any-
more. As a result, the utility measure φ needs to be adapted to
quantify the utility of more general queries. Another adaption
concerns the form of the output of the utility measure. Instead
of computing a single score per query, i.e.,Rφ ⊆ R, a utility
measure may provide a more general description for each
query, e.g., a distribution, which can then be combined with
annotator performance estimates [68], [69]. We provide an
overview of real-world AL strategies with query utility mea-
sures for specific query and annotation types in Section IV.

A annotator performance measureψ : QX ×A→ Rψ

represents a novel element compared to traditional AL strate-
gies and is defined through an annotator model. Similar to a

classification model, an annotator model has parame-
ters ωD(t) learned from a data set D(t). Its main task con-
cerns the estimation of the performance ψ(ql, am | ωD(t)) ∈
Rψ of an annotator am regarding a query ql [68], e.g., the
probability for providing a correct annotation. In most cases,
ψ(ql, am | ωD(t)) is a point estimate, i.e., Rψ ⊆ R, but there
are also annotator models estimating probability distributions
over annotator performances [68], [69]. Moreover, an annota-
tor model may account for improvements and deteriorations
of annotators’ performances, e.g., when an annotator learns
or gets exhausted. The annotator performance may also be
affected by collaboration mechanisms between the annota-
tors, e.g., the best annotator is asked to teach the worst anno-
tator [70]. We provide an overview of annotator performance
measures in Section V.

A real-world AL strategy is completed by a selection
algorithm as the final element. It updates the annota-
tion sequence S by selecting query-annotator pairs in each
iteration cycle t . This selection is specified by choosing
a subset of query-annotator pairs S(t) ⊆ QX ×A. There-
for, it assesses potential query-annotator pairs through the
query utility and annotator performance measure. If the
set S(t) contains multiple queries, we face similar chal-
lenges as in batch mode AL, e.g., selecting diverse
queries. We provide an overview of selection algorithms
in Section VI.
AC and MC are modeled in AL literature by designing

cost-sensitive variants of query utility measures, annotator
performance measures, or selection algorithms. We provide
an overview in Section III.

III. COST TYPES
MC and AC are the most crucial cost types in the real-world
AL setting, andwewill summarize typical schemes of them in
this section. There exist several additional types of cost when
solving a classification problem, e.g., cost of computation
(e.g., renting a graphics processing unit) and cost of test
(e.g., getting the results of a blood test). They are described
as a taxonomy in [71]. At the end of this section, we present
a literature overview of real-world AL strategies explicitly
modeling MC and/or AC.

A. MISCLASSIFICATION COST
Mistakes of the classification model induce MC (the first
summand in Eq. 4). In the literature, we identified three cost
schemes and describe them in increasing order of complexity
in the following:

Uniform MC: Each classification error is charged at
an equal cost. The classification model’s performance is
inversely proportional to the misclassification rate [72], i.e.,
the proportion of misclassified instances. This cost scheme is
the simplest one and is assumed by traditional AL strategies.

Class-dependent MC: This cost scheme is probably the
most common one in cost-sensitive classification [73], [74].
The cost of a classification error is defined by means of a
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cost matrix/table C ∈ RC×C
≥0 , where an entry C[y, y′] in

row y and column y′ denotes the cost of predicting the class
label ŷ(xn | θD(t)) = y′, when the instance xn actually belongs
to class yn = y. Our grid classification example could use
the mean absolute error on class numbers as a typical cost
measure for ordinal classes [75]. It would be implemented
through C[y, y′] = |y − y′|. In some applications, the cost
matrix is extended by adding an extra column representing
cases where the classification model is too uncertain and
rejects predicting a class label (known as reject option [76]).

Instance-dependent MC: Costs of classification errors
depend on specific characteristics of instances. An example
is fraud detection, where the amount of money involved in
a particular case has an essential impact on MC [77]. For
our grid classification example, it would be more expensive
if many households were affected by overloading a low-
voltage grid. Consequently, the feature # households in
Eq. 1 is to play a central role when computing the cost of
misclassifying a low-voltage grid.

MC can be computed as the expectation regarding the
true (but unknown) joint distribution Pr(X ,Y ) of instances
and class labels [76]. For example, class-dependent MC with
a cost matrix as hyperparameter, i.e., κ = C, is computed
according to

MC(θD(t) | C) = E
Pr(X=x,Y=y)

[
C[y, ŷ(x | θD(t)]

]
. (7)

In practice, the exact computation of MC is often infeasible
due to the limited size of test data. Furthermore, in the real-
world AL setting, its estimation based on a separate set of
instances is challenging because of a sampling bias (arising
from the active data acquisition) [78] and the lack of known
ground truth class labels (arising from the error-proneness of
the annotators). Nevertheless, some real-world AL strategies
take imbalanced, i.e., class- or instance-dependent, MC into
account.

B. ANNOTATION COST
AC (the second summand in Eq. 4) arises from the work
effort of the annotators who have to invest time to decide
on appropriate annotations for the posed queries. The exact
specification of AC depends on the underlying cost scheme.
In the literature, we identified four different schemes and
describe them in increasing order of complexity in the
following:

Uniform AC: The cost of obtaining an annotation is con-
stant for each query and independent of the queried annotator.
Correspondingly, the AC is proportional to the number of
acquired annotations. This cost scheme is the simplest one
and is frequently used. In particular, it is often employed
in crowdsourcing environments, where the requester sets a
constant pay rate per query. This means the qualification of
an annotator and the time spent on annotating a query have
no impact on the AC.

Annotator-dependent AC: In this cost scheme, the AC
explicitly depends on the queried annotator. This setting is

typical when annotators with different qualifications receive
different earnings per query, e.g., annotators with different
levels of expertise. Of course, there is typically no guaran-
tee that expensive annotators provide more accurate annota-
tions [14].

Query-dependent AC: Since there may be more or less
difficult queries, the cost of annotating a query may depend
on the query itself. For example, assessing the hosting capac-
ity of a large and complex low-voltage grid may require more
time than assessing a small and simple grid. Another example
is the annotation of voice mails, where the duration of a voice
mail is used as a proxy of the AC, e.g., 0.01 US dollar per
second [50]. For the classification of documents, the number
of words or characters in a document is often correlated to
the AC [34]. Additionally, the query type affects the AC. For
example, comparing two instances and deciding whether both
belong to the same class is often easier than assigning an
instance to one of many classes [79], [80].

Query- and Annotator-dependent AC: If the query and
annotator-dependent cost schemes are considered, the AC
varies across the pairs of query and annotator [81]. This cost
scheme fits scenarios in which annotators are paid according
to their individual hourly wages and the annotation time
depends on the query [11].

The exact computation of AC depends on the underlying
scheme. If we exemplary assume annotator-dependent AC
with ν = (ν1, . . . , νM ) and νm ∈ R>0 representing the
payment of querying annotator am, we would obtain

AC(D(t) | ν) =
M∑
m=1

νm · N (t)
m , (8)

N (t)
m =

∑
(q,a,z)∈D(t)

δ(a .= am), (9)

where .
= denotes a Boolean comparison and the indicator

function δ : {false, true} → {0, 1} returns one if the argument
is true and zero otherwise. Correspondingly, N (t)

m ∈ N is the
number of annotations provided by annotator am until the start
of step t . In certain scenarios, such an exact specification
of the AC in advance of querying is difficult. This is when
the annotation time is the major cost factor. Therefore, an
AL strategy is required to estimate the AC before querying
an annotator.

C. LITERATURE OVERVIEW
Table 1 gives a literature overview of real-world AL
strategies explicitly modeling imbalanced MC or AC. The
first part of this table lists strategies being MC-sensitive,
i.e., class-dependent or instance-dependent. The second part
summarizes strategies taking imbalanced AC into account,
i.e., annotator- and/or query-dependent. Each strategy is cat-
egorized according to its cost scheme, the type of classifica-
tion (binary vs. multi-class), and its predefined or estimated
required cost information (cost matrix, annotation time, etc.).
Additionally, we provide a brief description of each strategy’s
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TABLE 1. Part 1: Literature overview of cost-sensitive real-world AL strategies.
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TABLE 1. (Continued.) Part 2: Literature overview of cost-sensitive real-world AL strategies.

FIGURE 5. Illustration of query types within the feature space: For a binary classification problem, the two-dimensional instances of an artificially
generated set X ⊂ R2 are plotted according to their feature values. Probabilistic annotations are depicted by using the corresponding proportions of
the red and blue colors.

main idea. Amore in-depth analysis of them is provided in the
appendices of this survey as supplementary material.

IV. INTERACTION SCHEMES
Interaction with human annotators forms an essential part
of AL. In this survey, we focus on the AL typical query-
annotation-based interaction. For this purpose, we provide
an overview of different query types and annotation types
based on the literature. At the end of this section, we present
a literature overview of existing real-world AL strategies
using different combinations of queries and annotations as
interaction schemes.

A. QUERY TYPES
The set of possible queries QX specifies how a real-world
AL strategy can interact with the available annotators A.
Depending on the underlying classification problem, there are
different possibilities to design these queries. In the literature,
we identified the following three most common query types:

Instance queries ask for information on a specific
instance xn∗ and are the most common query type. Next to
class labels, a querymay request additional information. Con-
crete examples are presented in [44], [101], where annotators
are asked for confidence scores interpreted as proxies of an
instance’s class membership probabilities. An illustration is
given in Fig. 5(a) by marking the selected instance xn∗ for

which the class membership probability for the blue class is
expected as an annotation.

Region queries do not query information regarding a spe-
cific instance, but ask annotators to provide information about
an entire region in the feature space [102]. For this purpose,
the query is to be formulated in an appropriate and human-
readable representation [103]. A common way to achieve
this requirement involves formulating premises of sharp or
possibilistic classification rules by defining conditions on
the value ranges of features [104]. An example of such a
region query is depicted by the gray rectangle in Fig. 5(b).
Although a region query provides class information about
many instances, this type of query differs from batch mode
AL, where each instance of a selected batch is annotated
individually [23].

Comparison queries enhance the learning process by
obtaining relative information between instances [47]. For
example, the comparison query, illustrated in Fig. 5(c),
compares two instances xn∗ and xm∗ by requesting whether
they belong to the same class or not [46], [105]. Regarding
the ordinal grid classification example, another conceivable
comparison query may ask which of two grid instances has a
superior hosting capacity.

Going beyond these three query types, we will present our
own proposals for query types as future research directions
in Section VII.
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B. ANNOTATION TYPES
Usually, the type of an annotation depends on the query itself.
In this survey, we differentiate between the following three
annotation types:

Distinct annotations are the simplest form of annotations.
They represent categorical information without the scope of
interpretation. Most AL strategies use them to encode class
labels. Other AL strategies expect a simple yes or no as a
distinct annotation [46], [47]. Furthermore, they can encode
a sorting of instances in case of a comparison query [106].

Soft annotations allow for the representation of contin-
uous information. They are often inaccurate and subjective.
Many AL strategies use them to obtain information on the
confidence of a provided class label by requesting a numerical
value in a continuous confidence interval [43], [101]. Another
example is the use of probabilistic labels as gradual annota-
tions [44], [107], which enhanced the classification perfor-
mance for certain tasks, e.g., in the medical domain [108].

Explanatory annotations are the most informative type
of annotations. Instead of only communicating a distinct or
soft decision, an explanatory annotation also explains why a
certain decision has been made. An exemplary explanation
would be: ‘‘The instance xn does not belong to the positive
class because its feature value xnd is too low.’’ [109].

C. LITERATURE OVERVIEW
A query mostly requests information of a specific kind.
Accordingly, the query and annotation types are closely cou-
pled. Table 2 gives a literature overview of existing combi-
nations of queries and annotations as interaction schemes.
The query ‘‘To which class does instance xn belong?’’ known
already from the traditional AL setting is excluded. A more
in-depth analysis of the real-world AL strategies in Table 2
with a focus on their query utility measures is provided in the
appendices of this survey as supplementary material.

V. ANNOTATOR PERFORMANCE MODELS
The error-proneness of annotators poses a major challenge
in real-world AL [36]. In this section, we discuss the typical
factors influencing the performance of error-prone annota-
tors. Moreover, we identify three different types of annotator
performance. At the end of this section, we present a literature
overview of existing annotator performance models.

A. INFLUENCE FACTORS
We refer to ‘‘annotator performance’’ as a general term for
the quality of the annotations obtained from an annotator.
There is no clear definition of this term, but there exist
several concrete interpretations, e.g., label accuracy [123],
confidence [101], uncertainty [70], reliability [124], etc. Such
an interpretation is closely coupled to the annotation type and
the expected optimal annotation of a query.

The annotator performance may be affected by various
factors [125], [126], and the most prominent ones identified
in the AL literature are given in the following:

The domain knowledge of annotators has an essential
impact on their performances [127]. Insufficient knowl-
edge leads to a deterioration of the annotator performance.
In complex tasks, such as assessing the hosting capacity of
a low-voltage grid, a certain level of domain knowledge is
indispensable.

The query difficulty affects the probability of obtaining an
optimal annotation [12], [128], [129]. For example, in recog-
nition of hand-written digits, it is often more challenging to
differentiate between the digits 1 and 7 than discriminating
between the digits 1 and 8 [44]. Next to the subject of a
query, also its type can be crucial for the performance of an
annotator [80].

The ability for a reliable self-assessment of annotators
plays a central role, particularly in scenarios where queries
ask for confidence scores as annotations [101]. Although
empirical studies [11], [130] have shown that annotators
can reliably estimate their performances in some domains,
the Dunning-Kruger-effect [131] states that, in particular,
unskilled annotators provide not only erroneous annotations,
but they also cannot realize their mistakes. This effect has also
been confirmed in a large-scale crowd-sourcing study [132].

The motivation or level of interest of an annotator may
influence the elaborateness during the annotation process. For
example, in a crowdsourcing study analyzed in [127], more
interested annotators performed superiorly.

The payment of an annotator may have a significant
impact on the annotator performance, such that well-paid
annotators provide more high-quality annotations. In a
crowdsourcing environment, the improvement of the anno-
tation quality has been confirmed by increasing the pay from
0.10$ to 0.25$ per query [127].

An annotator has to be concentrated when annotating a
query [133]. Otherwise, annotation mistakes arise because of
missing mindfulness or tiredness.

A constant stream of queries of the same type may be
annoying for the annotator [134]. Therefore, the way of
interaction between the AL strategy and an annotator may
influence the annotation results and needs to be designed
appropriately. For example, different interaction schemes
can lead to different degrees of an annotator’s enjoyability,
as experimentally shown in [135].

The learning aptitudes of annotators are also crucial for
their performances. For example, one could teach the anno-
tators to provide high-quality annotations [125].

The collaboration between annotators is interlinked with
their performances. Incorporating mechanisms for collabora-
tion can strongly improve the annotation quality [136].

B. ANNOTATOR PERFORMANCE TYPES
Modeling and quantifying the influence of each of the pre-
viously listed factors on annotator performance is infeasi-
ble. Instead, existing annotator models abstract from these
factors to estimate annotator performance. In the literature,
we identified three different types of annotator performances.
Therefor, we generalize the class label noise taxonomy,
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TABLE 2. Literature overview of combinations of queries and annotations employed by real-world AL strategies.

presented by Frénay and Verleysen [137], to the setting of
real-world AL by including queries and annotations instead
of instances and classes. The resulting statistical taxonomy
of annotator performance types is presented in Fig. 6. There
are four random variables depicted as nodes: Q is the query,
Z is the optimal annotation, Zm is the annotation provided
by annotator am, and Pm is the variable indicating the per-
formance of the annotator am. In the simplest case, Pm is
a binary variable to represent whether an annotator pro-
vides the optimal annotation (Pm = 1) or not (Pm = 0).
We denote observed variables by shading the corresponding
nodes, whereas the other nodes represent latent variables.
The variable t is a deterministic parameter denoting the time.
Arrows represent statistical dependencies, e.g., the optimal
annotation always depends on the underlying query. The
dashed arrow between the annotator performance variable
Pm and the time t indicates an optional dependency. If this
dependency is considered, the annotator performance is time-
varying [48]. Otherwise, it is assumed to be persistent. In the
first case, the annotator performance is constant during the

FIGURE 6. Proposed statistical models of annotator performance types.

entire annotation process. In the latter case, the annotator
performance may increase due to the learning progress of an
annotator [70], [81] or may decrease because of exhaustion or
emerging boredom [135]. We provide more details regarding
the three annotator performance types in the following:

Uniform annotator performance: The annotator perfor-
mance depends only on the characteristics of the annotator.
As a result, the query itself or the query’s optimal annotation
has no influence. An example is given in Fig. 7, where an
annotator has the constant probability of 90% to recognize a
hand-written digit correctly.
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FIGURE 7. Illustration of annotator performance types.

Annotation-dependent annotator performance: The
annotator performance depends next to the annotator’s char-
acteristics on the optimal annotation for a query. An example
is given in Fig. 7, where an annotator is better at identifying
the digit 1 (constant correctness probability of 90%) than the
digit 7 (constant correctness probability of 70%) in images of
hand-written digits.

Query-dependent annotator performance: The annota-
tor performance depends on the annotator’s characteristics,
the query, and the optimal annotation. An example is given in
Fig. 7, where an annotator has a low probability to correctly
identify the third digit as 7 because it can be misinterpreted
as the digit 2.

C. LITERATURE OVERVIEW
During the AL process, the performances of the annotators
are estimated by annotator models. Table 3 provides a liter-
ature overview, including a categorization of those models.
Next to the assumptions regarding the type of annotator per-
formance, we use several other factors to categorize different
annotator models. In particular, the query and annotation
types described in Section IV are essential properties of an
annotator model. However, to the best of our knowledge,
existing annotator models focus on instance queries such that
no column for the query type is present in Table 3. As a further
category, we differentiate between the assumed relation of
the annotators. In the case of multiple annotators, they are
either independent or collaborative. If a model can work with
a single annotator, the term single is denoted for this category.
Furthermore, we indicate in Table 3 whether an annotator
model allows for the integration of prior knowledge regarding
the performances of annotators. Additionally, we provide a
brief description of each annotator model’s main idea. Amore
in-depth analysis of these annotator models is provided in the
appendices of this survey as supplementary material.

VI. SELECTION ALGORITHMS
The selection of query-annotator pairs is based on a selec-
tion algorithm. It uses the query utility measure φ and
the annotator performance measure ψ as basis to spec-
ifyS(t) ⊆ QX ×A as the set of query-annotator pairs in each
AL iteration cycle t ∈ N. In this context, we differentiate
between two types of selection algorithms, explained in the

following. At the end of this section, we present a literature
overview of existing selection algorithms.

A. SEQUENTIAL SELECTION
Sequential selection of queries and annotators is made in
two steps. In the first step, one or multiple (in the case of
batch mode AL) queries with the highest utilities are selected.
In a second step, corresponding annotators are selected and
assigned to the respective queries, e.g., a predefined number
of the annotators with the highest estimated performances
per query [139]. Ideally, the selected annotators lead to low
AC while providing high accuracy annotations. The main
motivation for a sequential selection is to emphasize useful
queries by selecting them in advance of the annotators. More-
over, the issue of annotator selection reduces to determining
a ranking of the annotators regarding a selected query. As a
result, not the exact but only the relative differences between
the performances of the annotators are crucial for the annota-
tor selection.

B. JOINT SELECTION
Selecting queries without considering the annotators’ perfor-
mances can result in low-quality annotations because there
is no guarantee that at least one annotator has a sufficient
performance regarding a selected query [45]. This problem
can be resolved by applying a selection algorithm jointly
selecting queries and annotators. For this purpose, the query
utility and the annotator performance measure are to be
combined appropriately, e.g., by taking their product [96].
Compared to the sequential selection of queries and anno-
tators, the joint selection comes with higher computational
complexity. Instead of computing the annotator performance
estimates only for the selected queries, the annotator per-
formance estimates are required for each possible query.
Moreover, exact estimates regarding the annotator perfor-
mance are more crucial since the annotator performance
estimates are directly integrated into the selection crite-
rion. If these estimates are unreliable, not only the annota-
tor selection will be negatively affected but also the query
selection.

C. LITERATURE OVERVIEW
Table 4 provides an overview of selection algorithms
employed by existing real-world AL strategies, which select
query-annotator pairs. Next to the differentiation between
a sequential and joint selection of queries and annotators,
the number of selected queries and annotators per learning
cycle is of interest. Selecting only a single query-annotator
pair is often easier than selecting a batch of query-annotator
pairs. In the latter case, the selection algorithm must ensure
that queries are diverse. Otherwise, redundant information
is queried. Moreover, multiple annotators are to be dis-
tributed across queries. To differentiate between both settings,
we denote either single or batch for the query and annotator
selection categories in Table 4. A few selection algorithms
consider criteria beyond annotator performance and query
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TABLE 3. Part I: Literature overview of annotator performance models employed by real-world AL strategies.
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TABLE 3. (Continued.) Part II: Literature overview of annotator performance models employed by real-world AL strategies.

utility, e.g., a collaboration between annotators. We denote
these criteria accordingly in Table 4. Additionally, we provide
a brief description of each selection algorithm’s main idea.
A more in-depth analysis of them is provided in the appen-
dices of this survey as supplementary material.

VII. FUTURE RESEARCH DIRECTIONS
This section proposes some future research directions result-
ing from analyzing the real-world AL strategies discussed in
the previous sections. We structure them into three categories
to distinguish between challenges that strongly relate to this

survey and those that go partially beyond it. Although we
define these addressable challenges separately, they are not
entirely solvable without taking a holistic view.

A. ACTIVE LEARNING FOR CLASSIFICATION
1) MULTI-CRITERIA COST FUNCTIONS
The majority of existing real-world AL strategies mini-
mizes the number of queries and misclassifications. How-
ever, in real-world applications, the ACs are often unknown
in advance and may be query- and annotator-dependent.
Furthermore, the computation of the MC is related to the
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TABLE 4. Literature overview of selection algorithms employed by real-world AL strategies.

application at hand. Therefore, an AL strategy needs to accept
a user-defined objective function as input. This function
needs to account for additional criteria, such as balancing the
workload between annotators [11].

2) NOVEL QUERY TYPES AND A COMBINATION OF THEM
Present AL strategies focus on collecting novel information
relevant to the classification model. However, a query may
not only improve the classification model but additionally
the queried annotator [157]. For example, a strategy could

ask ‘‘Are you certain that instance xn ∈ X belongs to class
y ∈ �Y ? Previously, you stated that the similar instance xm ∈
X belongs to class y′ ∈ �Y ?’’. Such a query may help the
annotator to learn from previous annotation mistakes. More-
over, most pool-based AL strategies query class information
of instances. However, recently, Liang et al. [158] proposed
the strategy active learning with contrastive natural language
explanations (ALICE). It uses queries of the form ‘‘How
would you differentiate between the class y ∈ �Y and class
y′ ∈ �Y ?’’ in combination with explanatory annotations.
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As a result, ALICE does not need a pool of non-annotated
instances but only a small initial training set. Next to novel
query types, future strategies may combine different query
types to enhance interaction with annotators further.

3) BATCH SELECTION OF DIVERSE QUERIES AND
ANNOTATORS
Deep learning model’s generalization capabilities depend on
a vast amount of data. Therefore, annotating single queries
per AL cycle may be inappropriate [159]. Instead, a batch of
diverse and useful queries is to be selected per AL cycle. Such
a batch maximizes usefulness by avoiding redundancies. In a
multi-annotator setting, assigning appropriate annotators to
these queries is an additional challenge. For example, assign-
ing all queries in a batch to a single annotator can be harmful
because it could bias the performance estimates of the other
annotators [146].

4) ADVANCED ANNOTATOR PERFORMANCE ESTIMATION
Existing annotator models are limited in their application due
to their assumptions. On the one hand, most of them assume
persistent annotator performances and thus disregard, e.g.,
learning aptitude, collaboration, or signs of fatigue. On the
other hand, they do not incorporate background knowledge
about the annotators, e.g., interests, skills, level of educa-
tion, age, etc. Such knowledge may improve the annotator
selection [160].

5) REALISTIC EVALUATION
Evaluating real-world AL strategies is more complex than
assessing traditional AL strategies. In particular, the simula-
tion of realistic experimental settings represents a challenge.
For example, there is a need to collect real-world data sets
processed by multiple annotators to verify the performance
of AL strategies in multi-annotator settings. When collecting
such data sets, it is infeasible to present each possible query to
each annotator. Therefore, a further research direction is the
simulation of annotators for different query types and with
different assumptions regarding their types of performances.
Moreover, an AL strategy may be evaluated in a real-world
system [161] in addition to simulated experiments on bench-
mark data sets to verify its effectiveness regarding real-world
applications.

B. ACTIVE LEARNING ISSUES BEYOND CLASSIFICATION
Although we focused on AL strategies for classification
in this survey, their analysis provides insights beyond
a classification setting. If we exemplify object detection in
images, similar challenges arise when employing AL strate-
gies. For example, relying on the number of annotated images
as AC is not representative. Instead, the number of objects
within an image is more appropriate [162] because annotating
images with many objects is more time-intensive. Another
example for object detection is the handling of error-prone
annotators, where the AL strategy has additionally to assess
the quality of provided bounding box annotations.

A challenge affecting pool-based AL with multiple anno-
tators is the asynchronous nature of the annotation pro-
cess [136]. This results from different working speeds of
annotators, i.e., some annotators process queries faster than
others. Due to this asynchronous nature, the selection of
query-annotator pairs must be adaptive regarding the working
states of the annotators. This is, in particular, true for stream-
based AL.

Techniques of explainable artificial intelligence may
improve the interaction between annotators and AL strate-
gies. For example, the ML model can visualize its decision-
making process such that an annotator can monitor the
model’s learning progress to correct wrong decisions [157].

C. ACTIVE LEARNING ISSUES BEYOND ARTIFICIAL
INTELLIGENCE
Deploying AL strategies into real-world applications not only
raises challenges in the scope of artificial intelligence but
also involves research beyond it. One example is graphical
user interfaces of the annotation process, which are crucial
for the efficiency of the AL process. Studies have shown that
an appropriate user interface design strongly decreases the
annotation time and thus AC [116], [163]. Another example
is the design of queries and annotations from a psychological
perspective. On the one hand, queries are to be formulated
neutral without a bias toward a specific annotation. On the
other hand, annotations are to be comparable, particularly
when asking for the annotators’ self-assessments.

Another future research direction is integrating AL into
further little to no explored application areas to exploit its full
potential. For example, it can be employed in material science
to actively design experiments in amore systematic way [164]
or for automatic program repair [165] to save cost and time.
Another example would be the review process in science,
where AL can select appropriate reviewers as annotators for
articles. Therefor, one could use feedback from authors of
past conferences and the reviewers’ background knowledge
to train annotator models.

VIII. CONCLUSION
At the start of this survey, we pointed out unrealistic assump-
tions as disadvantages of traditional AL strategies. Based
on that, we identified three crucial requirements for real-
world AL strategies, i.e., estimating costs, asking alternative
queries, and modeling annotator performances. Subse-
quently, we formalized the objective for classification tasks
as the specification of the optimal annotation sequence
leading to minimum MC and AC. Additionally, we proposed
a novel AL cycle that generalizes the settings of the major-
ity of existing real-world AL strategies. A strategy is part
of a learning system in this cycle and comprises a query
utility measure, an annotator performance measure, and a
selection algorithm. We provided tabular literature overviews
of existing real-world AL strategies regarding their cost
types, their query- and annotation-based interaction, their
handling of error-prone annotators, and their selection of
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query-annotator pairs. In addition, we analyzed real-world
AL strategies in more detail and embedded them in our
unifying mathematical notation in the appendices as supple-
mentary material. These analyses resulted in the formulation
of future research directions in the field of AL.
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