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ABSTRACT The Ethereum blockchain generates a significant amount of data due to its intrinsic transparency
and decentralized nature. It is also referred to as on-chain data and is openly accessible to the world.
Moreover, the on-chain data is timestamped, integrated, and validated into an open ledger. This important
blockchain feature enables us to assess the network’s health and usage. It serves as a massive data warehouse
for complex prediction algorithms that can effectively detect systemic trends and forecast future behavior.
We adopt a quantitative approach using a subset of these metrics to determine the network’s true monetary
value by developing a Long Short-TermMemory Recurrent Neural Network (LSTM-RNN) with the metrics
most closely associated with the price as inputs. Since several hyperparameters regulate the learning process
in an RNN, they are highly sensitive to their values. It is thus critical, to select optimal hyperparameters so
that the training is quick and effective. Determining the optimal parameters of an RNNmodel is a tedious and
complex process. Hence, previous studies have developed several self-adaptive approaches to determine the
optimal values for various parameters effectively. However, none of the prior studies explore self-adaptive
algorithms in deep learningmodels in conjunction with on-chain data to predict cryptocurrency prices. In this
paper, we propose three self-adaptive techniques, each of which converges on a set of optimal parameters to
predict the price of Ethereum accurately. We compare our results to a traditional LSTMmodel. Our approach
exhibits 86.94% accuracy while maintaining a minimum error rate.

INDEX TERMS Blockchain, deep neural network, differential evolution, Ethereum, evolutionary
algorithms, jSO, LSTM.

I. INTRODUCTION
Blockchain is proving to be one of the most significant
technological advancements in the public and private sectors.
According to Australia’s National Blockchain Roadmap
proposed by the Department of Industry, Science, Energy and
Resources, by 2025, blockchain technology is expected to
generate over US 175 billion in annual business value and
further grow to over US 3 trillion in 2030 [1]. To this end,
the concept of blockchain technology has emerged to address
the limitations of a centralized architecture, primarily the
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single point of failure alongside addressing security issues.
The ability of blockchain to securely store and transfer digital
assets in a decentralized, distributed, and tamper-proof way
is a quality that many researchers attribute to it as a means
of conducting transactions. Beyond cryptocurrencies, several
applications use blockchain technology, such as electronic
health care and identity management systems. [2].

Bitcoin [3], the most well-known use of blockchain
technology to date, was introduced in 2008 through a
paper written under the pseudonym, Satoshi Nakamoto.
Bitcoin’s success stems from the fact that it was the first
digital currency to overcome the double-spending and the
‘‘Byzantine General’’ problems, allowing for a secure way
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of transferring value online without relying on a trusted third
party. The advent of other cryptocurrencies has given rise to
a new asset class. Bitcoin provided a safe and inexpensive
way to move currency across a decentralized, peer-to-peer
network.

Though Bitcoin was the first currency to gain traction,
the concept of digital currency has been around for decades.
Since the 1990’s Cypher-punks have been experimenting
with the notion of using an alternative digital currency
entirely independent of any financial institutions and gov-
ernment organisations issuing it. Some of the initial projects
that solved cryptographic puzzles to create a concept for
cryptocurrencies were b-money [4], bit gold [5] and reusable
proof of works [6]. Nonetheless, these projects failed
primarily as a result of their reliance on a centralized
intermediary [7].

Bitcoin is the world’s first decentralized cryptocurrency,
established in 2009 with the creation of the genesis block.
Alternative cryptocurrencies (also known as altcoins) were
developed since 2011, with several of them continuing in use
today. The majority of cryptocurrencies are forks of Bitcoin,
meaning they were developed using the same codebase as
Bitcoin, hence the name ‘‘alternative coin’’. Ethereum is the
secondmost popular blockchain platform after Bitcoin, with a
market cap of 267 billion dollars [8]. It permits decentralized
money transmission and the design and participation in
rule-based smart contracts (code) that run on a decentralized
infrastructure comparable to Bitcoin. In 2013, virtually every
week saw the birth of new altcoins, resulting in the growth of
an extensive, highly speculative trading market [9].

Investors often use one of three approaches to evaluate
a crypto asset: a technical, fundamental, or quantitative
analysis. Technical analysis is the most frequently utilized
method as a directional hypothesis in bitcoin trading. How-
ever, despite claims that profits from the technical analysis
have declined over time, research reveals that profits in the
foreign currencymarkets have grown considerably [10]. Even
today, several investors still base their investing decisions
on technical indicators since they focus on profitability via
statistics and data volume. It is difficult to anticipate the price
of a crypto asset using technical analysis since the indicators
change rapidly in the cryptocurrency market. Researchers
have used machine learning algorithms combined with
technical indications to predict the price of crypto assets,
particularly Bitcoin, to solve these difficulties [11]. A recent
study discovered a link between the price of Bitcoin, Google,
and Wikipedia [12]. Several studies used blockchain data
such as transaction volume, hash rate, and difficulty to
forecast bitcoin prices [13]–[15].

The research above has focused on modelling machine
learning algorithms to predict Ethereum pricing without
fully contextualizing the characteristics of the on-chain data
and their potential impact on Ethereum prices. Furthermore,
unpredictable swings in cryptocurrency prices due to various
factors such as supply and demand, inflation, and political
factors are significant barriers to accurate price prediction.

This presents many opportunities to realise the value and
information of on-chain data related to Ethereum that has
been overlooked while utilising more advanced optimization
algorithms to better adapt to the volatility associated with
Ethereum prices.

This article is organised as follows. Section II provides an
overview of relevant work, emphasising current research on
Ethereum price prediction. Section III covers the research’s
proposed methodology and is divided into four subsections,
including subsection A, B, C and D. Subsection A describes
data collection methods, data characteristics, and analysis
measures. We study on-chain events and their effects on
price, correlation analysis with the price to understand price
patterns better. Subsection B describes the architecture of
an LSTM model, while subsection C introduces differential
evolution algorithms, covers the three self-adaptive tech-
niques and justifies their use. Subsection D describes the
proposed system model. Section IV describes the experi-
mental setup, whereas Section V presents the results and
their interpretation. Finally, in Section VI, we summarise
our findings, conclusions and outline areas for further
research.

II. RELATED WORK
Technical Analysis is a topic that has been extensively
explored in academic literature. Although simple to imple-
ment and interpret, traditional statistical methods require
many statistical assumptions that could be unrealistic, leaving
machine learning as the best technology capable of predicting
price based on historical data, among others [16]. Numerous
studies have examined the effectiveness of various machine
learning techniques and technical indicators in predicting
bitcoin values [11], [17]. The problem with cryptocurrencies
is that their value is dependent on unpredictable market
movements and social sentiment. Moreover, cryptocurren-
cies, primarily Bitcoin, have a low correlation with major
financial assets as seen in [18], [19], indicating that
conventional economic theories and models are insufficient
for forecasting the volatility connected with the price of
cryptocurrencies.

There has been much research interest in Bitcoin in
the last decade, whereas only a few studies have inves-
tigated Ethereum. Ethereum is one of the most popular
blockchain platforms after Bitcoin. It enables users to use
blockchain-based applications with a smart contract to be
easily deployed in a completely decentralized way. In 2016,
a Decentralized Autonomous Organization (DAO) attack
on Ethereum resulted in a loss of millions of dollars,
more here [20]. Smart contract analysis can help detect
the similarity of codes and calls, vulnerability, and fraud
detection in contracts. Securify [21] was released publicly
and has analyzed over eighteen thousand contracts for
vulnerabilities to address this issue. Recent studies such
as [22], [23] have proposed classification methods to detect
frauds on smart contracts by analysing the data available on
Ethereum, primarily Ponzi schemes.
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TABLE 1. Correlation coefficient values between Bitcoin and other major
financial assets between 2016 to 2020 [18].

Since Ethereum is a permission-less blockchain, it uses
an open data structure. Therefore, data analysis of the
data on the blockchain can provide tools that can further
enable understanding of the underlying network and its
usage, providing valuable information on the user, miner
behavior and other activities on the blockchain [24]. A few
studies explored the blockchain information to understand
the characteristics and inherent usage of the network for
Ethereum. For example, authors in [25] investigate the
transactions data on the blockchain to understand the
behavioral traits of addresses on the Ethereum Network.
A study into the statistical characteristics of Ethereum
pricing utilising blockchain information, mainly using
Ethereum network features, determined that hash rate,
difficulty, and transaction cost are strongly associated with
price [14]. Nevertheless, the public Ethereum blockchain
data is vast and has expanded exponentially over time,
reaching 248.93GB in 2021 [26]. Parsing this large volume
of data is time-consuming. To address this issue, several
researchers have proposed open-source frameworks to extract
crucial information from popular permissionless blockchain
platforms such as Bitcoin and Ethereum [27]–[29].
A recent study proposed a framework that focuses on
collecting and analysing datasets from Ethereum and
released a series of datasets for developers and researchers
to analyze user behavior and other blockchain system
operations [30].

Smuts [31] adopted a LSTM model to predict short-term
trends in cryptocurrency prices by investigating the influence
of Telegram and Google Trends search analysis on the price
of Ethereum. The above study achieved an accuracy rate
of 56% for Ethereum and 63% for Bitcoin and concluded
that Telegram proved to be a better indicator of the price of
bitcoin and Ethereum. The machine learning model trained
using historical data from non-blockchain sources, such as
social media feeds and publicly accessible websites, may
cause the model to make incorrect assumptions due to the
datasets inherent bias [32], [33], particularly when the model
is converged with a blockchain system. Since the data on
the blockchain is timestamped, embedded, and vetted into
an open ledger, this creates a massive data warehouse for
advanced predictive models to identify trends and fraud in
the system accurately. This is possible as the data on the
blockchain is immutable. This important characteristic of

blockchain has gained tremendous interest among researchers
in using advanced predictive models with blockchain
(on-chain) data.

Conversely, only a few studies have adopted various
machine learning approaches using blockchain information
to predict the price trends for Ethereum. Authors in [14]
adopted a multivariate regression model using features of
the Ethereum network to explain the Ethereum dynamics
further, achieving a mean absolute error (MAE) of 0.0563 for
Ethereum with 50% test data. A recent study proposed
a stochastic neural network model utilising a perturbation
factor (gamma) to introduce randomness into the model
to simulate market volatility [15]. It achieved an aver-
age improvement of 4.15% on mean absolute percentage
error (MAPE) for Ethereum compared to Multi-Layer
Perceptron (MLP) and LSTM models.

Evolutionary Algorithms (EA) have been widely used
to solve optimization problems in several fields and real-
world applications. The term ‘‘optimization’’ refers to the
process of identifying the most appropriate solution to a
problem given some constraints. Portfolio optimization has
traditionally relied on metaheuristics. The utilisation of
EA for Multi-Objective Portfolio Management is reviewed
in [34]. Evolutionary optimisers for continuous parameter
spaces, such as Differential Evolution (DE) [35]–[38], [39],
developed by Storn and Price, are becoming increasingly
powerful and flexible. As a result, DE and its variations
have established themselves as one of the most competitive
and flexible groups of evolutionary computing algorithms.
They have been effectively used to address a wide range of
real-world issues in science and industry [40], [41]. However,
none of the above studies investigates the application of
DE algorithms for hyperparameter optimization in deep
learning models in conjunction with on-chain data to predict
cryptocurrency prices.

The above studies use a few metrics, such as hash
rate, difficulty, transaction count, among other metrics,
to identify price trends in Ethereum. This paper adopts a
comprehensive approach by using on-chain datasets to help
us better understand core activities related to blockchain.
In comparison, researchers have used LSTM, Random Forest
and Stochastic models, among other techniques, to predict
Ethereum price. In our previous work, we proposed a
self-adaptive technique for predicting bitcoin prices and
achieved a higher accuracy rate compared to a traditional
LSTM model [42]. This study further explores advanced
algorithms (self-adaptive techniques) in conjunction with
deep learning models that predict price trends better
and adapt to the volatility associated with the Ethereum
price.

III. PROPOSED DESIGN AND METHODOLOGY
This section explains the meaning of on-chain metrics and
their purpose in the context of blockchain in general and
Ethereum in particular. Additionally, this section discusses
the methodologies utilized to analyze the information to
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understand better the blockchain network’s activity, which
enables us to develop a prediction model.

A. ON-CHAIN ANALYSIS
1) WHAT ARE ON-CHAIN METRICS?
On-chain metrics are data points derived from information
generated by the blockchain network, such as the size of
the blockchain, the number of blocks attached to it, or the
difficulty of mining blocks. Their purpose is to inform
interested parties about the state of a blockchain network; this
data inherits the properties of these networks, such as their
inherent transparency, tamper-resistant and decentralized
nature. Since on-chain data is often recorded in a time-series
manner, each metric offers insight into the historical activity
of a blockchain. As a result, everyone involved with law
enforcement, such as agents tracking illegal activity [43] or
those in the financial industry determining the viability of
a proposed investment in enhanced decision-making, will
benefit from this knowledge.

2) ON-CHAIN METRICS AS FINANCIAL TOOLS
The financial sector has already been noted as a potential
use case for on-chain data. Comparing blockchain networks
to companies, there are various similarities to be observed
- most networks have a coin, equivalent to the stock of a
company, and both have a price and are traded on exchanges.
There are fundamental differences: blockchain networks are
not structured like companies, there is no need for executives,
and the economic parameters are written in code. The most
recent story about Bitcoin is that it is an improved version
of Gold [44] for its store of value and non-inflationary
properties, coupled with its lower friction of moving assets
around.

However, seeing as their popularity as financial instru-
ments are increasing and ever more credible investors are
adding them to their portfolios [44], we can ascertain that
cryptocurrencies have gained their category as crypto-assets.
They are traded on dedicated exchanges and are becoming
significant parts of investors’ portfolios around the world.
Hence, the need arises for tools and protocols to analyze these
crypto-assets as financial instruments and decide whether to
make them part of one’s portfolio or not. On-chain metrics
provide the best basis for such tools, as decentralized and
tamper-proof data that enables anyone access to in-depth
information about a network’s usage, with no entity having
the ability to censor it. We view this as akin to everybody
having access to insider information on any publicly traded
company. We consider this could act as a way of levelling the
financial playing field and getting us closer to the efficient
market hypothesis [45] which states that all the publicly
and privately accessible information available to market
participants is already reflected in the price.

3) DATA COLLECTION
In this paper, the data has been gathered from the
public Ethereum blockchain and application programming

interfaces (APIs) of online resources [46], [47] from
2016 through 2021. We analyze metrics with the Ethereum
price using on-chain data from these resources. This research
aims to provide a broader overview by incorporating on-chain
metrics relating to miners, users, and exchange activity and
their possible impact on Ethereum pricing. The following
metrics are obtained from the on-chain data; block size,
block height, transaction count, daily active addresses, miners
revenue, miner fees, miner to exchanges, total new addresses,
supply in smart contracts, gas price, transactions rate,
transfers count, hash rate, transactions gas limit, difficulty,
transfer rate, total gas used, wallets address > 1, >10, >100
coins, exchange deposits, exchangewithdrawals, external and
internal contract calls, total addresses.

4) DATA CHARACTERISTICS
Cryptocurrencies use more accurate valuation methods as
opposed to stocks. While some metrics are derived from data
generated within the blockchain like block size, others are
derived from external and on-chain information - such as the
market capitalisation.

Market Cap = Circulating supply × Last market price
For Bitcoin, the price changes every day as it is traded

on various exchanges, and the supply also increases as more
coins are mined in circulation. At the time of writing this,
the price of BTC is $49,027.71, and the circulating supply
is 18,792,243.00 BTC [48]. The supply of Bitcoin increases
and it is capped at 21 million. While not all coins are in
circulation (some have yet to be mined), there will never be
more than 21 million bitcoins in circulation, with the mining
reward halving roughly every four years. Considering that
one satoshi is 1 × 10−8 bitcoin, this choice seems arbitrary.
For Ethereum, on the other hand, the supply is not yet fixed.
As it stands today, there is a circulating supply of 117,189,429
ETH [47], one of which has a price of $3,254.38.

Market capitalisation is not unique to blockchains, and it
is a suboptimal method of valuing a blockchain network.
For one, it does not account for the fact that only a few
coins have been traded at the latest spot prices, and it also
ignores the significant amount of coins irrevocably lost due to
lost private keys [49]. Enter realised capitalisation, developed
by Carter et al. [50], uses the extra information provided by
blockchains (coinage) to give a more accurate valuation. The
formula for the realised cap is:

Realised Cap = 6 Coin amount × Price last transacted
In Ethereum, a block contains a block number, difficulty,

gas limit, transaction list and the most recent state. A block
also holds the answer to a unique, difficult-to-solve mathe-
matical problem; miners gather all the information included
in that block before the block is released into circulation. The
first miner to solve the puzzle created by this information
wins a block reward. Unlike Bitcoin, whose block rewards
are halved every 210,000 blocks (about four years), there is
no established number of ethers in circulation. The block
rewards were adjusted from 3 ETH to 2 ETH after the
Constantinople hard fork in 2018 [51].

VOLUME 9, 2021 167975



N. Jagannath et al.: On-Chain Analysis-Based Approach to Predict Ethereum Prices

FIGURE 1. State Transition Function in Ethereum.

Ethereum employs an account-based model to keep track
of the state of the transactions in the network, unlike Bitcoin,
which uses the Unspent Transactions Output (UTXO) model
to calculate the sum of the unspent transactions. The
account-based model is similar to bank accounts; the balance
is the number of coins left in the account, using which the user
can send or receive transactions. Using the UTXO model,
it is easier to extract valuable on-chain information such
as the age of the coins in circulation, and therefore there
are fewer unique on-chain metrics available for Ethereum.
However, effective ways have been developed for mapping
between the account-based and UTXO models [52] which
makes it easier to gain similar insights into the Ethereum
network.

Exchange operations must be open and transparent in
light of the numerous fraudulent activities that have been
investigated in the past [53]. Analysis of exchange on-
chain activity, such as deposits and withdrawals, provides
a verifiable and immutable data source that might help
researchers better understand the influence of exchange
operations on pricing.

5) ON-CHAIN METRICS AND THEIR EFFECT ON THE PRICE
We examine a few metrics and critical aspects connected
to pricing to illustrate the parallels we observed between
metrics and price that led us to investigate this relationship
further.

Perhaps the most prominent relationship between an
on-chain metric and the pricing can be illustrated by referring
to the daily transaction volume. On Ethereum, a transaction
is defined as any interaction with the blockchain that changes
the blockchain’s state. Ethereum uses transaction fees to
minimize network overload and a possible attack vector,
Bitcoin, and other blockchains. As a result, the transaction
count accurately represents the network’s underlying activity
and demand for Ether, which is also used to pay transaction
fees. From 2017 through 2021, we can detect similar patterns
in these graphs by plotting the normalized price against the
normalized transaction count.

The number of active addresses is another simple metric
to conceptualize and extract since all blockchain transactions
are timestamped. We can easily find all the transactions that
occurred on a specific day, out of which we count the number
of individual addresses which initiated and sent transactions.
The resulting number approximates the number of people that

transacted on the network on a specific day (some participants
have several wallets), with more active addresses indicating
increased demand for the network’s native coin. According to
supply and demand theory, periods when more addresses are
active than normal should result in a higher price, as seen in
Fig. 3. We can also observe that the normalized transaction
count graph looks very similar to the normalized active
addresses.

On-chain metrics such as active addresses, total addresses
and transaction volume indicate the usage and adoption
of the network. In comparison, the hash rate indicates the
number of computational resources dedicated to the network,
which indicates the number of miners committed to this
network. Miners are generally financially committed, having
invested in equipment, infrastructure and ongoing power
consumption, none of which have an instant return on
investment. More miners committed to a network means
that more people truly believe in the network (by having
invested in it long term), but it also means the security of the
network increases, making it more valuable. Hence, metrics
such as hash rate and mining rate can help us understand the
network’s overall security.

The above relationships are straightforward to conceptual-
ize, but they are by far the only ones. A recent article [54] out-
lined several less obvious relationships.We can determine the
age of each currency traded on the Bitcoin network by using
a UTXO-based ledger. For Ethereum, we do not have this
information directly as it has an account-based accounting
model but can estimate this information accurately enough for
our purposes [52]. The ability to extract a coin’s age allows
us to group the coins of the entire supply based on the last
time they were spent - thus creating a group of coins that
were spent less than one day ago, a group last spent between
1 day and one week, one week and one month, 1-3 months,
3-6 months.

Given the number of fraudulent activities reported in the
past, exchange operations must be transparent. Analysis of
exchange on-chain activity, such as deposits and withdrawals,
provides a verifiable and immutable data source that might
help researchers better understand the influence of exchange
operations on pricing. Supply distribution indicates the
distribution of economic resources across the network.
Amore centralized distributionmeans that fewer entities have
to gain from an increase in the coin’s value and that a small
number of people have much influence on the price, which
might decrease the overall attractiveness of the network as an
investment.

Following our exploration of the effects of on-chain
metrics on the price of Ethereum, on-chain activity adds value
to portfolio managers looking to invest in cryptocurrencies.
Nonetheless, we are interested in determining if quantitative
traders could incorporate some of these metrics into their
trading algorithms. We devise a simple method for choosing
a subset of metrics that may have a more significant influence
in forecasting price: calculate the price-metric correlations
and choose the most strongly associated metrics.
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FIGURE 2. Correlation between normalized prices and transaction count.

FIGURE 3. Correlation between normalized prices and active addresses.

FIGURE 4. Correlation between normalized prices and block size.

For selecting the metrics, we chose two correlation
methods - Pearson, which is the commonly used method for
financial markets because of the linear nature of the data, and
Spearman’s, a rank-based correlation method, to introduce
new metrics potentially. We also attempted to use Kendall’s
Tau, but our trials did not introduce any new metrics besides
what the Spearman method had already provided.

6) ANALYSIS METRICS AND APPROACH
In this study, each significant Ethereum on-chain metric’s
linear impact on the price is investigated using Pearson’s and
Spearman correlation coefficients. Pearson coefficients vary
from -1 to 1, with 1 indicating perfect positive correlation,
-1 indicating perfect negative correlation, and 0 indicating
no correlation at all. Equation (1) represents the Pearson

VOLUME 9, 2021 167977



N. Jagannath et al.: On-Chain Analysis-Based Approach to Predict Ethereum Prices

FIGURE 5. Correlation between normalized prices and total gas used.

FIGURE 6. Correlation between normalized prices and miner revenue.

FIGURE 7. Correlation between normalized prices and hash rate.

correlation coefficient.

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(1)

The Spearman rank correlation coefficient [55] is a
nonparametric measurement correlation used to evaluate the

monotonic relationship between two variables.

ρ = 1−
6

∑
di2

n(n2 − 1)
(2)

Pearson correlation coefficients are used to quantify the
linear connection between variables. In contrast, Spearman
correlation coefficients are only applicable to monotonic
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FIGURE 8. Correlation between normalized prices and supply in smart contracts.

TABLE 2. Mean correlation value for every on-chain metric between
2016 and 2021.

connections, in which variables tend to move in the same or
opposite direction but not necessarily at the same rate. In a
linear relationship, the rate is constant.

FIGURE 9. LSTM Memory Cell.

Correlated data cannot be displayed linearly to represent
the scaling of negative to positive values accurately. We use
the normalisation value to re-scale the data between 0 and 1.
The normalising value is determined by using (3).

z =
xi −min(x)

max(x)−min(x)
(3)

This research aims to examine a wide range of on-chain
metrics to determine the metrics that can be used in advanced
prediction algorithms and those that should be excluded.
Although a highly correlated metric seems significant,
it cannot be used as a sophisticated measure to determine
whether it is favourable. Hence, it is crucial to understand the
characteristics and the effects of on-chain metrics on price
and perform correlation analysis to determine if a metric
requires further investigation.

B. LONG SHORT-TERM MEMORY MODEL
Long short-term memory (LSTM) is a specific type of
recurrent neural network (RNN) capable of solving both
long-term and short-term dependence issues in a resilient
and efficient manner. The memory cell is the backbone of
the LSTM network, which takes the role of the traditional
neuron’s hidden layers. It contains three gates (input, output,
and forget); it can add or remove information from the cell’s
state.
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Updating the cell state and computing the LSTM model’s
output is done by:

it = σ (Wixxt +Wimmt−1 +WicCt−1 + bi) (4)

ft = σ (Wfxxt +Wfmmt−1 +WfcCt−1 + bf ) (5)

ct = f � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc) (6)

Ot = σ (Woxxt +Wommt−1 +WocCt−1 + bo) (7)

mt = Ot � h(ct ) (8)

yt = Wymmt + by (9)

where xt represents the input data, yt denotes the output data
at time t . it denotes the input, ot the output, and ft forget gates
at time t . mt refers to the activation vector for each memory
block, and ct the activation vector for each cell, respectively.
σ , g, and h are activation functions for gates, inputs,
and outputs, respectively. Weight coefficients are denoted
by W .

C. EVOLUTIONARY ALGORITHMS
Evolutionary Algorithms (EAs) have been around since the
early 1950s. It is comprised of Genetic Algorithms (GA),
Evolutionary programming (EP), Evolution Strategies (EP).
For many years, EAs have been widely used to solve
optimization problems in diverse fields and the real world.
Applications began to arise to the optimization issues that
stem from various research and engineering fields in the
late 1990s. The Differential Evolution (DE) was developed
by Price and Storn [35]–[38], [39] as a highly competitive
optimization algorithm. Compared to other EA’s, DE is an
appealing optimization algorithm as it is easy to code and
implement, and it uses minimal control settings (crossover
rate (Cr), scaling parameter (F), and population size (NP)).
The performance of DE has been extensively examined with
regard to these factors [56]–[58].

DIFFERENTIAL EVOLUTION ALGORITHMS (DE)
Differential Evolution is a real-parameter optimization algo-
rithm. Its operation process consists of four basic steps:
initialisation, mutation, crossover and selection operations.
It also contains three main parameters: population size (NP),
scaling factor (F) and crossover rate (Cr). It is complex
and time-consuming to determine the optimal combination
of NP, F and Cr by trial and error. However, various
self-adaptive approaches have evolved over the years to
aid in finding suitable parameter values. Three of these
self-adaptive techniques will be employed in this study [56],
[59]–[61]. An in-depth explanation of the DE algorithm
follows in the next subsections.

a: INITIALIZATION PHASE
In this phase, a random initial population of size NP, p0 =
(x1,0, x2,0, . . . xNP,0) dis generated using (10).

xi,j = xmin
i,j + rand× (xmax

i,j − x
min
i,j )

i = 1, 2, . . . ,NP and j = 1, 2, . . . , D (10)

whereD refers to the problem dimension (number of decision
variables), and xmax

i,j , xmin
i,j the upper and lower bounds of jth

decision variable, NP is the population size or the number of
solutions evolved by the DE algorithm.

b: MUTATION OPERATOR
Mutation operators are employed after the initialisation phase
to create a mutant solution. According to the literature,
mutations may be categorised into a variety of methods
with varying capacities and features [59]. While some are
useful for investigation, others are capable of being exploited.
The following techniques are the most often used mutation
approaches.
• DE/best/1

vgi = xgbest + F(x
g
r1 − wxgr2 ) (11)

• DE/best/2

vgi = xgbest + F(x
g
r1 − xgr2 )+ F(wx

g
r3 − xgr4 ) (12)

• DE/rand/1

vgi = xgr1 + F(x
g
r2 − xgr3 ) (13)

• DE/rand/2

vgi = xgr1 + F(x
g
r2 − xgr3 )+ F(x

g
r4 − xgr5 ) (14)

• DE/current-to-pbest/1

vgi = xgi + F(x
g
best − xgi )+ F(x

g
r1 − xgr2 ) (15)

• DE/current-to-best/1

vgi = xgi + F(x
g
best − xgi )+ F(x

g
r1 − xgr2 ) (16)

where the indexes r1 6= r2 6= r3 6= r4 6= r5 6= i and
r1, r2, r3, r4, r5 are randomly generated integers in [1, NP].
The current individual or solution is represented using i. The
current generation g, the best solution xbest in the current
iteration and xpbest is an individual that is randomly chosen
from the top p% solutions.

c: CROSSOVER OPERATOR
After mutating, every mutant vector vi is converted to a
trial/offspring vector ui using a crossover operator. Exponen-
tial and binomial crossover operators [56], [60] are the two
primary crossover operators.

The first crossover is the binomial crossover operator,
which is performed using (17).

ugi,j =

{
vgi,j, if rand(0, 1) ≤ Cr or j = jrand,

xgi,j, Otherwise.
(17)

where jrand ∈ [1, 2, . . . ,D] and rand is a random number
belongs to [0, 1]. The values of jrand and rand are chosen
randomly to ensure that at least one variable from the
trial vector is picked. The crossover rate (Cr) is used to
determine how many variables are inherited from the donor
vector.
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FIGURE 10. Taxonomy of parameter setting.

As per the literature review, the performance of the
DE algorithm is mainly dependent on its parameter
values [56], [60]. The balance between exploration and
exploitation is achieved by using F . Smaller values of F
indicate an increase in the convergence rate, while larger
values indicate maintaining population diversity. The rate of
change in an individual of the population is determined using
Cr. Setting the control parameter values in DE can be split
into two processes, parameter tuning and parameter control,
as is shown in Fig. 10.

In parameter tuning, good parameter values can be
determined before an algorithm is executed, and then these
values are not changed during the optimization process;
that is, all the parameter values are static during the search
process. However, the main disadvantage of parameter tuning
is its lack of flexibility during this process. While in the
parameter control based method, the values of different
parameters can be changed during the evolutionary process,
and as per Fig. 10, it can be classified as deterministic,
adaptive and self-adaptive. As per the literature [60]–[62],
DE algorithms with adaptive and self-adaptive techniques
have often been more successful than classical ones. Thus, all
selected algorithms applied in this study used a self-adaptive
technique to set the parameters [56], [61].

d: SELECTION OPERATOR
The parent (xgi ) and trial (ugi ) populations are subjected to
a greedy selection to determine which solution from each
group (xgi ) and (u

g
i ) enters the next generation. As long as the

trial solution f(ugi ) has a greater fitness function value than
the parent solution f(xgi ), the trial solution is included in the
new population; else, the parent solution will be included.
This procedure is performed mathematically in the following
way:

xg+1i =

{
ugi , if f (ugi ) ≤ f (x

g
i ),

xgi , Otherwise.
(18)

1) L-SHADE OPTIMIZATION ALGORITHM
Researchers in [59] recently proposed a DE-based evolu-
tionary algorithm known as L-SHADE. It is an improved
variant of the SHADE algorithm that was developed by [63].
In L-SHADE, the DE/current-to-pbest/1 mutation operator
described in the following equation has been used to generate

new solutions.

vgi = xgi + F(x
g
best − xgi )+ F(x

g
r1 − xgr2 ) (19)

Algorithm 1 L-SHADE Algorithm

1: g = 1,Ng = N init, Archive A = ∅;
2: Randomly, generate an initial population P0 =

(xg1, . . . , x
g
N );

3: initializeMCr,MF , and set their values to 0.5;
4: while The termination condition is not satisfied do
5: SCr = {}, SF = {};
6: for i = 1 to N do
7: ri = Select from [1, H] randomly;
8: IfMCr,ri =⊥,Cri,g = 0. Otherwise
9: Cri,g = randni(MCr,ri , 0.1);

10: Fi,g = randci(MF,ri , 0.1);
11: Generate trial vector ugi according to current-to-

pbest/1/bin;
12: end for
13: for i = 1 : N do
14: if f (ugi ) ≤ f (x

g
i ) then

15: xg+1i ← ugi ;
16: else
17: xg+1i ← xgi ;
18: end if
19: if f (ugi ) < f (xgi ) then
20: xgi → A;
21: Cri,g→ SCr,Fi,g→ SF ;
22: end if
23: end for
24: If necessary, delete randomly selected individuals

from the archive such that the archive size is |A|.
25: Update memoriesMCr and MF (Algorithm 1);
26: Calculate Ng+1 according to (10);
27: if Ng < Ng+1 then
28: Sort individuals in P based on their fitness values

and delete lowest Ng − Ng+1 members;
29: Resize archive size |A| according to new |P|;
30: end if
31: g++;
32: end while

Instead of using fixed population size, a linear population
size mechanism is used, in which the population size is
linearly reduced from a high value to a small value [59].
For each generation, the population size is set to one Ninit,
and the population after the run is set to one Nmin. After
each generation, the next generation’s population number is
calculated as follows:

NPg+1 = round[(
NPmin

− NPinit

maxfes
)× fes+ NPinit] (20)

where NPmin is the minimum number of individuals the
algorithm can use, fes the current number of function
evaluations (fes), maxfes the largest number of fes.
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Algorithm 2 jSO Algorithm
1: Define g← 0, A← {};
2: Generate an initial random population (P0) of size NP,

that represents the initial structure of the LSTM;
3: Evaluate f (P0).
4: Update fes; fes← fes+ NP;
5: while fes ≤ maxfes do
6: g← g+ 1;
7: for i = 1 : NP do
8: Use (21) to produce mutant vector (vgi );
9: Use (17) (crossover operation) to produce new

solution (ugi ), which represents a newly generated
LSTM structure;

10: Evaluate f (ugi )
11: end for
12: for i = 1 : NP do
13: if f (ugi ) ≤ f (x

g
i ) then

14: xg+1i ← ugi ;
15: else
16: xg+1i ← xgi ;
17: end if
18: if f (ugi ) < f (xgi ) then
19: xgi → A;
20: Update F and Cr as in [59], and Fw as in (22);
21: end if
22: If needed, update the archive A;
23: Use (20) to linearly update the population size;
24: end for
25: end while

2) jSO OPTIMIZATION ALGORITHM
As mentioned in the above section, the L-SHADE

algorithm is an enhanced variant of a DE-based algorithm that
employs a technique to reduce the population linearly. Later,
an enhancement to the L-SHADE algorithm was proposed,
named iL-SHADE, to solve optimization problems [64].
Brest et al. [56] introduced a more powerful version of
iL-SHADE, named jSO, that employs a novel weightedmuta-
tion operator that is a modified version of the DE/current-to-
pbest/1 mutation operator as

vgi = xgi + Fw(x
g
pbest − xgi )+ F(x

g
r1 − xgr2 ) (21)

where Fw is a weighted version of the scaling factor F
calculated by:

Fw =


0.7× F, nfes < 0.2×maxfes,
0.8× F, nfes < 0.4×maxfes,
1.2× F, otherwise.

(22)

where nfes is the current number of function evaluations
and maxfes is the maximum number of function evaluations.
The F values are computed using the same approach as
Tanabe et al. [59]. These strategies employ a lower factor
Fw to multiply the difference of vectors which appears
early in the optimization process, while a larger factor F

Algorithm 3MPEDE Algorithm
1: Set µCrj = 0.5, µFj = 0.5,4fj = 0 and 4fesj = 0 for

each j = 1, . . . ., 4;
2: Initialize, NP, ng for each j = 1,. . . .4;
3: Initialize the pop randomly distributed in the solution

space;
4: Initial λj and set NPj = λj × NP;
5: Randomly partition pop into pop1, pop2, pop3 and

pop4 with respect to their sizes;
6: Randomly select a subpopulation popj(j = 1, 2, 3) and

combine popj with pop4. Let popj = popj ∪ pop4 and
NPj = NPj + NP4;

7: Set g = 0;
8: while g ≤ maxg do
9: g = g+ 1;

10: for j = 1→ 3 do
11: Calculate µCrj and µFj;
12: Calculate Cri,j andFi,j for each individual xi in popj;

13: Perform the jth mutation strategy and related
crossover operators over subpopulation popj;

14: Set SCr,j = ∅ and SF,j = ∅;
15: end for
16: for i = 1→ NP do
17: if f (xgi ) ≤ f (u

g
i ) then

18: xgi+1 = xgi ;
19: else
20: xgi+1 = ugi ;4fj = 4fj + f (x

g
i )− f (u

g
i );

21: Cri,j→ SCr,j;Fi,j→ SF,j
22: end if
23: end for
24: pop = ∪j=1,....3popj
25: if mod(g, ng) == 0 then
26: k = arg(max1≤j≤3 = ( 4fjng.NPj

))
27: 4fj = 0;
28: end if
29: Randomly partition pop into pop1, pop2, pop3 and

pop4;
30: Let popk = popk ∪ pop4 and NPk = NPk + NP4;
31: end while

is used later in the process. The main steps of the jSO
algorithm are presented in Algorithm 2. The jSO method,
like the L-SHADE algorithm, employs a linear population
size mechanism to update the total number of individuals in
a population every generation [59].

3) MPEDE OPTIMIZATION ALGORITHM
The multi-population based ensemble of mutation strate-
gies (MPEDE) is a multi-population based-DE algo-
rithm [65], in which the whole population is dynamically
divided into several indicator subpopulations (equal and
relatively lesser sized) and one relatively large reward
subpopulation for each generation to materialize the effective
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ensemble of various mutation methods into one DE variant.
A mutation strategy is allocated to each indicator subpopula-
tion. The reward subpopulation is allocated to the mutation
approach that performs best in the most recent generations
based on the objective function values.

In MPEDE, the following mutation strategies have been
utilized.
• DE/current-to-pbest/1

vgi = xgi + F(x
g
pbest − xgi )+ F(x

g
r1 − xgr2 ) (23)

• DE/current-to-rand/1

vgi = xgi + F(x
g
i − xgi )+ F(x

g
r1 − xgr2 ) (24)

• DE/pbad-to-pbest/1

vgi = xgi + F(x
g
pbest − xgpbad) (25)

where xgpbad is a solution selected randomly from the bad top
100 p% of solutions in the current population with p ∈ (0, 1]
As a result, the top-performing mutation method can acquire
additional computing resources.

D. PROPOSED SYSTEM MODEL
The proposed system model is represented in Fig. 11,
where we discuss the two modules employed in this study,
namely on-chain analysis and deep learning framework.
In the on-chain analysis module, we collect on-chain
metrics derived from data provided by the blockchain
network, such as the size of the blockchain, the number
of blocks linked to it, or the difficulty of mining blocks
from the Ethereum public blockchain and API of online
resources [46], [47]. We normalise the on-chain metrics to
appropriately display data in graph form and analyze the
data features of the obtained on-chain metrics. The effects
of on-chain metrics on price are analyzed by plotting a
graph of each normalised on-chain metric against the price.
Correlation analysis enables us to choose a subset of metrics
that may significantly affect price forecasting: we analyze
the price-metric correlations and select the most strongly
linked metrics. Pearson’s correlation coefficient determines
the linear relationship between two variables, while the
Spearman Correlation coefficient determines the monotonic
relationship between two variables. The highly correlated
datasets are split into train and test datasets.

In the deep learning framework module, self-adaptive
algorithm-based deep learning models use differential evo-
lution algorithms to assist us in determining the optimal
values for the deep-learning model’s hyperparameters since
determining the optimal values for hyperparameters is a
time-consuming process. We use three distinct self-adaptive
methods, namely L-SHADE, jSO, and MPEDE, to ensure
effective and efficient training. Each self-adaptive approach
returns the optimal values for the hyperparameters deter-
mined after the deep learning model’s training. We develop
a deep-learning model using the optimal hyperparameter
values acquired from each self-adaptive method. We utilize

TABLE 3. Lower and upper bounds of Hyperparameters.

test datasets to test self-adaptive algorithms-based deep learn-
ing models and conduct MAE, mean squared error (MSE)
and MAPE analysis to assess the accuracy of self-adaptive
algorithms.

IV. EXPERIMENTAL SETUP
The proposed optimization methods were implemented
in Python 3.7.6 and TensorFlow (TF-API). The training
was done on Google Colab using the Tensor Processing
Unit (TPU). We used three unique self-adaptive techniques
to adjust the 17 hyperparameters involved in the RNN
architecture. The proposed algorithms produced 150 distinct
models, each with its own set of parameters. The optimal
parameter combination with the most negligible loss is
selected to develop a prediction model for Ethereum. The
hyperparameters are listed in the Table 3.

V. RESULTS AND ANALYSIS
This section summarises and discusses the findings of our
research. The correlation analysis results were used to
develop a deep learning model based on the data character-
istics of on-chain data and their influence on the Ethereum
price. The deep learning model’s hyperparameters were opti-
mised using three self-adaptive techniques: L-SHADE, jSO,
and MPEDE. We used optimization algorithms due to their
unparalleled speed in generating ideal model parameters to
precisely calculate and closely monitor the current Ethereum
price. The proposed algorithms time performance is evaluated
based on optimization, training, and testing times. It is worth
emphasising that optimization time refers to the time it
takes for algorithms that use the optimization operator to
determine the best parameter combination for each algorithm
with the most negligible loss, as shown in Table 4. The
optimization time of the proposed algorithms L-SHADE-
LSTM, jSO-LSTM and MPEDE-LSTM to achieve the
optimal parameters are 23077.59s, 24547.86s and 23872.21s,
respectively. As shown in Table 5, our proposed approach
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FIGURE 11. Proposed System Model.

FIGURE 12. Real Price vs Predicted Price using LSTM.
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FIGURE 13. Real Price vs Predicted Price using L-SHADE-LSTM optimization algorithm.

FIGURE 14. Real Price vs Predicted Price using jSO-LSTM optimization algorithm.

FIGURE 15. Real Price vs Predicted Price using MPEDE-LSTM optimization algorithm.

also takes the least training and testing time compared to a
traditional LSTM model.

In Fig. 12 -15, a plot of the predicted price for Ethereum
was obtained by using the traditional LSTM model and
self-adaptive techniques- L-SHADE, jSO and MPEDE for
60% training size compared to the actual Ethereum price is
depicted. Our model adopts a holistic approach by analysing

the influence of core components of Ethereum, including
miners, nodes, and exchanges activities, that helps us identify
price trends better. Comparing Fig. 12-15, it is evident
that the predicted price obtained using the L-SHADE, jSO,
and MPEDE algorithms is relatively closer to the actual
price of Ethereum when compared to the traditional LSTM
model.
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TABLE 4. The best Hyperparameters values obtained by L-SHADE, jSO &
MPEDE algorithms.

TABLE 5. Comparison of computational overhead times for training and
testing between LSTM and different optimization algorithms.

TABLE 6. MAE, MSE & MAPE values for LSTM and different optimization
algorithms at 60% training size.

We conducted a mean absolute error (MAE), mean square
error (MSE) and mean absolute percentage error (MAPE)
comparison between the different self-adaptive techniques
and the traditional LSTM model to validate this finding.
The MAE, MSE and MAPE values are calculated using the
following formula:

MAE =
1
n

n∑
k=1

|yk − ŷk | (26)

MSE =
1
n

n∑
k=1

(yk − ŷk )2 (27)

MAPE =
1
n

n∑
k=1

|yk − ŷk |
|yk |

× 100 (28)

where n is the number of data points and yk and ŷk are the
real and predicted prices of sth point.

The results of the MAE, MSE and MAPE analysis
are presented in Table 6 and Table 7. It is observed
that for training sizes of 60% and 90%, the self-adaptive

TABLE 7. MAE, MSE & MAPE values for LSTM and different optimization
algorithms at 90% training size.

algorithm-based LSTM models, namely L-SHADE-LSTM,
jSO-LSTM, and MPEDE-LSTM, yield lower MAE, MSE
and MAPE values. Correspondingly, our proposed model
achieved the following improvements, 33.79%, 20.93% and
24.99% improvement forMAE, 45.91%, 28.49% and 35.67%
improvement for MSE and 17.70%, 12.02% and 14.45% for
MAPE over its LSTM model counterpart. The L-SHADE-
LSTM model performed the best, yielding the lowest error
rate compared to jSO and MPEDE algorithms. These results
suggest that self-adaptive algorithm-based LSTM models
provide a quicker and more accurate prediction of Ethereum
prices.

VI. CONCLUSION AND FUTURE WORKS
In this article, we analyze factors that impact the price of
Ethereum using a profusion of on-chain metrics relating to
the user, miner, and exchange activity. Using these findings,
we develop an LSTM model that employs three distinct
self-adaptive methods to identify the best hyperparameter
values for predicting the price of Ethereum. We compare
each self-adaptive technique to one another as well as to
a traditional LSTM model. In comparison, self-adaptive
algorithm based LSTM models provide a quick and more
accurate price prediction for Ethereum.

As demonstrated in this article, on-chain metrics can
be utilized as a supplementary tool in combination with
existing techniques to predict prices more accurately. They
provide important insights into the blockchain network’s
utilisation and health. In future work, we aim to extend
this research by including the attention mechanism into
LSTM framework [66] and applying it for on-chain data
for predicting cryptocurrency prices. In addition, it will
be interesting to explore on-chain and off-chain variables
such as Reddit, Twitter, and Google Trends, among others,
in conjunction with a self-adaptive algorithm-based LSTM
model to attain near-perfect price prediction accuracy.
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