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ABSTRACT Series arc faults are becoming more dangerous in DC systems. Without detecting in time
and separation correctly, these fault events can cause electrical fires or explosions, creating a massive
threat to people’s safety and properties. This paper presents an analysis and comparison of DC series arc
fault detection using various artificial intelligence (AI) algorithms in DC systems. The combinations of six
feature parameters in both time and frequency domains with various AI techniques are recommended to
detect DC series arc fault effectively. The performance and effectiveness of different combinations between
feature parameters and learning techniques are summarized and discussed. Finally, practical challenges are
identified, and suitable combinations of feature parameters and learning techniques are recommended for
different operation conditions.

INDEX TERMS Fault diagnosis, DC series arc, machine learning, different domains.

I. INTRODUCTION
Recently, with the rising of pollution concerns on the
global environment, green energies have become a potential
candidate to replace traditional energies that come from
fossil fuels. One of the most popular green energies is solar
power. Photovoltaic (PV) generation on the rooftop or a
solar power farm could be essential in supplying power
and supporting different loads and micro-grids. However,
the operation of PV systems can create DC arc fault [1].
An arc fault is a dangerous event that must be detected
quickly. The arc fault can lead to fire or explosion and harm
human safety and properties [2]. There are three types of
DC arc fault, and they are grounding arc, serial arc, and
parallel arc. Generally, a fracture of wiring or a loosening
connection at the join junction could cause the serial arc
fault. On the other hand, the parallel arc happens among
the electrical lines, whereas the grounding arc is a short-
circuit event among the line and the ground. The damage
of wire insulation mainly causes these two arcs (parallel
and grounding). Then, the magnitude of current will level
up significantly when the parallel or grounding arcs happen.
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Conventional protective devices could be helpful to maintain
the stability and safety of DC systems. However, the current
will decrease when the serial arc occurs. Then, conventional
protective devices will not be triggered, and the network is
in a great dangerous situation [3]. Therefore, detecting serial
arc fault correctly and timely is a vital task in maintaining the
stable operation of DC systems. Several abnormal behaviors
could be usedwhen the serial arc is initial, such as the increase
of heat, arc light, fluctuations of current, and electromagnetic
interference to detect an arc fault. These visible behaviors
can be adopted to judgment the serial arc [4]–[8]. Although
specific physical behaviors could detect DC arc faults, some
of these techniques are challenging to detect arc faults in
practical applications because of the installation location of
the sensors at unknown points.

The development of information technology is drawnmore
and more attention from researchers owing to their flexible
capability in different applications. Advanced algorithms,
such as Artificial intelligence (AI) techniques, have been
successfully applied in different fields. They offer helpful
methodologies for detecting faults in different fields, such
as fault diagnosis in medium voltage networks based high
impedance [9], failure detection in electrical machines [10],
and fault diagnosis of track circuits in railway systems [11].
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Researchers have successfully applied these advanced tech-
niques for DC arc fault diagnosis and achieved several
positive results, such as the combination of the wavelet
packet decomposition and support vector machine (SVM)
algorithm for DC arc fault diagnosis [12], the hidden Markov
model (HMM) was adopted for correctly detecting series
arc faults using the maximum likelihood [13]. Several
characteristics, such as the variations of current and high-
frequency components, are obtained and used for training
models centered on weighted least squares SVM techniques
to detect series arc [14]. In addition, constructing an attractor
matrix from current signals and singular value decomposition
is adopted to extract features in [15], the combination of
sparse coding characteristics and an artificial neural network
for arc fault diagnosis was proposed in [16], and the
domain adaptation combining with a deep convolutional
generative adversarial network was presented in [17]. A study
illustrates a comparison between different AI methods in
DC systems [18]. In general, mentioned researchers mainly
concentrate on one specific working condition, such as
one control technique, one input type, or a particular
switching rate. In contrast, the effectiveness of learning
techniques is critically dependent on the working conditions.
Different operation conditions that could lead to inaccuracy
on arc detection are not thoroughly investigated. There
is a necessity for summary research with different loads,
modulation algorithms, feature parameters, switching rates.
In this paper, six feature parameters and eight learning
techniques have been joined into different combinations;
they are used for detecting arc faults and the performances
are compared between different combinations. Two types of
feature parameters, which are belonged to time and frequency
domains, such as the peak-to-peak value, average value, RMS
value, variance value, median value [19], and the fast Fourier
transform (FFT). There are three groups of inputs, and they
are time-domain input (average, variance, median, rms, and
peak-to-peak values), frequency-domain input (FFT), and
combined input (all features). These features are adopted as
inputs of AI algorithms. Three types of loads were used for
arc experiments: resistor, single-phase inverter, and three-
phase inverter loads. The space vector modulation and model
predictive control were adopted to control the three-phase
converter, whereas sinusoidal pulse width modulation was
employed to regulate the single-phase inverter. The switching
frequencies and current amplitudes vary from 5 to 20 kHz
and from 3 to 8 A, respectively. The performance of different
combinations between AI algorithms and input types is
compared and discussed in different working conditions.
The rest of this study is structured as follows. Section 2
details the arc-generation hardware and the characteristics
of current in normal and arcing states when an arc happens,
and feature extractions are analyzed for arc diagnosis in this
study. Section 3 presents the learning techniques used for arc
fault diagnosis. Section 4 discusses diagnosis performances
using different combination from eight learning techniques
and six features parameters when an arc fault happens in

FIGURE 1. Experimental hardware setup.

TABLE 1. Parameters of nonlinear loads in the arc-generation circuit.

altered operation conditions. In conclusion, the summary
of the arc fault diagnosis regarding the performance of
different combinations between learning techniques and
feature parameters is illustrated in Section 5.

II. ARC CURRENT CHARACTERISTICS AND FEATURE
EXTRACTIONS
The block diagram in Figure 1 illustrates the hardware
setup for collecting arc data. The arc circuit was built
regarding UL1699B standard [20], and [21]to obtain the
data. The experimental setup consists of a DC source,
arc generator, and loads (three- and single-phase inverters,
resistors) [22]. DC supply source model in the experiment
is N8741A (Keysight Technologies, USA). The nonlinear
load specifications are illustrated in Table 1. The inverters
(three- and single-phases) were assembled by using several
transistor modules (insulated gate bipolar transistor) [23].
The switching rate was varied when the model predictive
control (MPC) was adopted. Therefore, the switching rate
of MPC in this study was the average rate acquired from
the ratio between the turned on and off number with
the specific operating period of the switching. Different
combinations were used to compare the effectiveness of arc
diagnosis for different working conditions. Then, discussion
on which combination yields the best performance for arc
fault detection in different conditions.

Figure 2 shows the waveforms of different features for
resistor load in normal and arcing states. As shown in
the figure, the feature waveforms before and after arcing
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FIGURE 2. Feature extractions for resistor load at 5 A in normal (left) and
arc (right) states. (a) Peak-to-peak, (b) Average, (c) FFT, (d) Median,
(e) RMS, and (f) Variance.

were different. When an arc was initial, there were many
differences in the feature waveforms before and after arcing
point. These abnormal differences could be usefully used
for arc fault diagnosis. First, the arc signal was collected

FIGURE 3. Principles of machine learning algorithms.

at 250 kHz sampling rate. After that, the sampled data
were divided into 2 ms data sets for training and testing
processes. Then, the feature extraction is processed for each
data set to gain a set of features. Each set contains six
different feature parameters, and they were entered as inputs
of AI algorithms to detect the arc fault. They were average,
FFT, variance, median, rms, and peak-to-peak values. For
the frequency-domain feature, time-domain data sets with
a 2 ms period were transformed into a frequency-domain
signal using the FFT technique. The size of each FFT
signal is an array of 500 × 1. Then, these FFT signals
were used as input of AI algorithms. Obtaining features is
an essential process for learning algorithm implementation.
A feature can represent one aspect of the original data but
not fully demonstrate the original signal. Therefore, a set
of features increases the effectiveness of ML algorithms.
For example, suppose only FFT (Figure 2(c)) or variance
(Figure 2(f)) is used as an input for artificial learning
algorithms. In that case, the diagnosis performance could
be degraded cause the differences between normal and
arcing states are unclear in some sectors. Furthermore, when
different working conditions are applied, using one or some
but not all features could lead to the poor accuracy of arc fault
detection.

III. ARTIFICIAL LEARNING TECHNIQUES
Figures 3 and 4 present the principle of five machine
learning (ML) and three deep learning (DL) algorithms used
in this study. They are support vector machine (SVM),
K-nearest neighbor (KNN), decision tree (DT), Random
Forest (RF), Naive Bayes (NB), deep neural network (DNN),
long short-term memory (LSTM), and gated recurrent unit
(GRU). The objective of the SVM algorithm is to find a
hyperplane that, to the best degree possible, separates data
points of one class from those of another class [24]. KNN
algorithm assumes that similar things exist in close proximity.
In other words, similar things are near to each other [25].
The goal of DT is to generate a model that could predict
the target value by learning simple decision rules indirectly
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FIGURE 4. Structure of deep learning algorithms.

TABLE 2. Layer configurations of deep learning algorithms for arc fault
diagnosis.

from the data features. A tree can be seen as a piecewise
constant approximation [26]. RF is a meta estimator that
fits a number of decision tree classifiers on various sub-
samples of the dataset and uses averaging to improve the
predictive accuracy and control over-fitting [27]. NBmethods
are a set of supervised learning algorithms based on applying
Bayes’ theorem with the ‘‘naive’’ assumption of conditional
independence between every pair of features given the value
of the class variable [28]. Unlike ML, DL algorithms are
based on the brain of a human, copying how biological
neurons communicate with other ones. DL techniques depend
on training models to learn and improve their accuracy over
time. The structure of DL algorithms comprises multiple
layers, containing an input layer, several hidden layers, and
an output layer. Each layer consists of several neurons; the
output of one neuron in the nth layer is the input of another
neuron in the n+1th layer [29].

FIGURE 5. Block diagram of arc fault detection.

FIGURE 6. The contribution sizes of training and test data.

The structure configurations of DL techniques (DNN,
LSTM, and GRU) are shown in Table 2. There are five
layers in the DNN, LSTM, GRU structures, and the layers in
DNN are fully connected (FC) layers. The neuron numbers
of DNN layers 1, 2, 3, 4, and 5 were 500, 412, 256, 128,
and 2, respectively. The neuron numbers of LSTM and
GRU layers 1, 2, 3, 4, and 5 were 16, 16, 8, 8, and 2,
respectively. The second and fourth layers of the LSTM
structure are the LSTM layers, whereas they are GRU layers
in the GRU structure. The trial and error method chooses
the number of layers and neurons of hidden layers. The
selected layer configurations of DL techniques offered the
best effectiveness among numerous configurations. However,
there are other layer structures, which are also suitable.

IV. ARC FAULT DIAGNOSIS BASED MACHINE LEARNING
TECHNIQUES
In this study, the accuracy metric evaluates the effectiveness
of the learning techniques. The accuracy rate is obtained by
dividing the correctly predicted data sets and the total data
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FIGURE 7. Arc diagnosis results for the three-phase inverter load with SVPWM (3PSVM) at 3 A under different input types.

sets in the test group. It is expressed as

% of Total Acc. =
# of correctly predicted data sets

total#of test data sets
. (1)

Therefore, the technique with the higher accuracy rate
is the better detection technique. Figure 5 illustrates the
block diagram of arc fault diagnosis. The current data is
sampled and processed to extract the features. There are three
types of input features: time-domain, frequency-domain, and
combined features, which is a combination of time-domain
and frequency-domain features. Then, three input types of
input are used for ML and DL algorithms to detect arc
fault. The size ratio between the training set and test set
is shown in Figure 6. There are two groups of data, the

training group and the test group. The current amplitudes
are 3, 5, and 8 A for a three-phase inverter load with SVPWM
(3PSVM); 5 and 8A for a three-phase inverter load withMPC
(3PMPC) and resistor; and 5 A for a single-phase inverter
load with SPWM (1PSPWM). The switching rates are set at
5, 10, 15, and 20 kHz, respectively. As shown in Figure 6,
there are 26,000 sets of the arcing data and normal data in
the training group, whereas 20,800 data sets of arcing and
normal states are allocated in the test group. The training
data were omitted from the test data. The number of the
normal and arcing sets is equal in both training and test
groups.

Figure 7 presents accuracy rates for 3PSVM at 3 A current
amplitude when different input types were employed. In the
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FIGURE 8. Arc diagnosis results for 3PSVM at 5 A under different input types.

first case, in which the time-domain feature was adopted as
input of AI algorithms, DT achieved the best accuracy rate
at switching frequencies 5 and 15 kHz. The performance
of NB was the best at 10 kHz. GRU performed the lowest
diagnosis rate at switching frequencies 5, 10, and 15 kHz. At
20 kHz, the best detection technique was DT with 96.38%
accuracy, and the technique with the lowest accuracy was
NB. The overall accuracy of DT was highest in all switching
bands, and the performance of SVM had the lowest accuracy
compared with other ML techniques. The best performance
between DL techniques was DNN, and GRU was the lowest
diagnosis rate. The ML algorithms’ detection rates increased
when the switching rates rose from 5 to 15 kHz, and the
best performance was achieved at switching rate of 15 kHz.

In contrast, the performance of DL techniques was highest
at 20 kHz. When the frequency-domain feature was used,
the accuracy rate of LSTM was highest at 5 kHz. On the
other hand, RF and GRU techniques offered the highest
diagnosis rate at 10 kHz. In addition, the accuracy of GRU
was higher than the other techniques at switching frequency
15 kHz and 20 kHz with LSTM. The performances of SVM
and KNN were poor or mediocre in all switching bands.
Other learning techniques achieved high performance with
minor differences in all frequency ranges. When time- and
frequency-domains inputs were combined, GRU, LSTM, DT,
NB, and RF displayed high performance (above 95%) in all
switching rates, whereas KNN and DNN displayed mediocre
performance. The diagnosis results for 3PSVM at 5 A current
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FIGURE 9. Arc diagnosis results for 3PSVM at 8 A under different input types.

amplitude are illustrated in Figure 8. NB, RF, DT, and KNN
shared first place in accuracy at 5 kHz when time-domain
input was employed. On the other hand, RF, DT, and KNN
achieved the best performance at switching rates 10, 15, and
20 kHz, respectively. In contrast, the accuracy of GRU was
the lowest in the switching rates 5, 10, and 15 kHz, and
DNN was the lowest diagnosis rate at 20 kHz. The best
average accuracy between ML techniques was RF, whereas
the accuracy of SVM was the lowest in all frequency bands;
however, the accuracy differences of DT, NB, RF, and KNN
were pretty slight. The overall performance of LSTM was
the best, whereas GRU had the lowest rate compared with
DNN and LSTM techniques. All learning techniques showed

similarities in accuracy and achieved high performance at
20 kHz. In the case of frequency-domain input, GRU offered
the highest performance at 5, 10, and 15 kHz switching rates,
whereas LSTM took first place at 20 kHz. SVM showed poor
performance. Other learning algorithms showed mediocre
diagnosis results at low switching rates (5 and 10 kHz), and
the accuracy was improved at high switching frequencies
(15 and 20 kHz) except SVM.When the time- and frequency-
domain inputs were combined, the performance of KNN, RF,
NB, DT was improved compared with that of frequency-
domain input, whereas the accuracy of GRU and LSTM was
increased with that of time-domain input. SVM and DNN
performances decreased compared with that of time-domain
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FIGURE 10. Arc diagnosis results for the three-phase inverter load with MPC (3PMPC) at 5 A under different input types.

and frequency-domain inputs, respectively. The accuracies of
GRU, LSTM, DT, NB, RF, and KNN were similar with time-
or frequency-domain inputs at the high switching frequency.
The diagnosis results at 8 A current amplitude are presented
in Figure 9. NB showed the best detection rates at 5, 10,
and 15 kHz switching rates; and at 20 kHz, GRU and LSTM
shared first place in terms of accuracy when the time-domain
input was applied. In contrast, the performance of GRU and
LSTM was poor at 5, 10, and 15 kHz; and the diagnosis
rate of NB was the lowest at 20 kHz. NB showed the best
average accuracy, and the diagnosis performance of SVMwas
lowest compared with other ML techniques in all frequency
bands. However, the performance differences between DT,

NB, RF, and KNN were expressively minor. The detection
rate of DNN was the best at 5, 10, and 15 kHz compared
with other DL algorithms, and GRU and LSTM achieved the
highest performance at 20 kHz. The detection rates of three
DL algorithms and SVM increased, and those of DT, NB, RF,
andKNNdecreasedwith the increase of switching rate.When
the frequency-domain feature was used, three DL algorithms
(GRU, DNN, and LSTM) offered the best diagnosis at 5,
10, and 15 kHz, respectively. In addition, NB and LSTM
shared first place in terms of performance at 20 kHz. The
performance of SVM was poor in all switching bands. In the
case of combined input, RF and GRU shared first place at
5 kHz. GRU, NB, and RF offered the best diagnosis results at
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FIGURE 11. Arc diagnosis results for 3PMPC at 8 A under different input types.

10, 15, and 20 kHz, respectively. The performances of SVM
and DNN were poor in all switching rates.

For the nonlinear load 3PMPC, Figure 10 presents
diagnosis performances at 5 A current amplitude. When the
inputs in the time domain were adopted, all advanced learning
algorithms, except for DNN, achieved superior performance
(above 99%) in all frequency bands. The accuracy rate of
SVM was the lowest among them; however, the difference in
accuracy rates between all learning techniques was minimal.
When the frequency feature was in use, the diagnosis rates
of GRU, LSTM, DNN, DT, NB, and RF were high in
all frequency bands with slight differences. In contrast,
KNN and SVM showed mediocre and poor performances.

When the combined input was employed, there was a similar
trend as time-domain and frequency-domain inputs. The
accuracy differences between GRU, LSTM, DT, NB, and RF
were significantly slight. In contrast, the performances of
DNN and SVM were poor in all frequency bands. Similar
to Figure 10 for 3PMPC load, Figure 11 shows accuracy
rates at 8 A. In the case of time-domain input, the accuracy
of GRU was highest at the switching rate of 5 kHz; and
at 10, 15, and 20 kHz switching frequencies, DT took first
place in terms of accuracy. The performance of DNN was
lowest in all switching rates. LSTM, NB, RF, and KNN’s
diagnosis rates were superior (upper 91%) in all switching
bands. The performance of SVM was mediocre compared
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FIGURE 12. Arc diagnosis results for the single-phase inverter with SPWM at 5 A under different input types.

with those of other learning algorithms at switching rates
of 5 and 10 kHz. NB, RF, KNN, and SVM showed
improvements in accuracy with the increase of switching
rates. In contrast, GRU, LSTM, DNN, and DT accuracies
increased when the switching rate increased from 5 to 15 kHz
and marginally declined at 20 kHz. DNN offered the most
optimal diagnosis rates at 5 and 10 kHz when the frequency
input was implemented, whereas RF took first place at 15 and
20 kHz. The performance of SVM was poor in all switching
rates.When combined input was in service, DT hit the highest
rate at 5 kHz, whereas the performance of RF was the best at
10, 15, and 20 kHz switching frequencies. SVM and DNN
presented poor detection rates in all switching rates.

Figure 12 illustrates diagnosis results for 1PSPWM at 5 A
current amplitude. When the time features were examined,
all techniques achieved superior performance (upper 97%)
in all ranges. The performance of DNN was the best,
and the detection rate of NB was the lowest among all
learning techniques. However, the difference in detection
rates of all learning algorithms was insignificant. In the
case of frequency-domain input, all learning techniques
showed high performance with slight differences in accuracy
except SVM. KNN and RF shared first place in all
frequency range with maximum detection rates. A similar
trend was observed with the combined input in use. The
difference was that DNN showed great diagnosis results

166258 VOLUME 9, 2021



H.-L. Dang et al.: Different Domains Based Machine and Deep Learning Diagnosis for DC Series Arc Failure

FIGURE 13. Arc diagnosis results for the resistor load at 5 and 8 A under different input types.

at 5 and 20 kHz, whereas the detection rates were lower
at 10 and 15 kHz.

The accuracy rates for the resistor load at 5 and 8 A
amplitudes were demonstrated in Figure 13. In the case of
time-domain input in service, all AI algorithms achieved
absolute detection rates (nearly 100%), and there is no missed
diagnosis or wrong decisions, except for NB at 5 A.When the
frequency input was entered, KNN and DT offered the best
diagnosis results at 5 and 8 A. In contrast, RF only achieved
a high diagnosis rate at 5A, and other learning techniques
showedmediocre or poor performances. Similar performance
of frequency input was observed for the combined input.
Only DT, RF, and KNN offered excellent detection rates at
5 and 8 A current amplitudes.

Generally, ML techniques show high performance with
time-domain input, whereas DL algorithms detect arc fault

more accurately when using frequency-domain input. Some
useful data could have vanished during the feature mining
leading to the low performance of DL algorithms. In addition,
DL algorithms contain numerous neurons and layers, which
can increase the execution time and the computational cost.
This could be beneficial for real-world systems, which is
a priority for reliability, robustness, and cost. When the
resistor is connected, the difference in FFT analysis between
normal and arc states is unclear, as shown in Figure 2(c),
resulting in poor performance when the frequency-domain
input is applied. The advantage of ML techniques is the high
performance at small data sets and simple setup. However,
their limit is the requirement for the presence of features to
achieve high diagnosis rates. Alternatively, DL algorithms
need an extensive training set and high computational
cost owing to the deeper configurations compared with
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ML techniques. Furthermore, the configurations (number of
neurons and layers) in DL algorithms were chosen based
on the trial and error method. Numerous simulations were
performed to find the best finest configurations. However,
there is nomanner to assurance that the chosen configurations
return the best diagnosis results for all operating conditions.
For example, the finest configurations of layers could be
altered if the trial number is changed. Furthermore, the
performance of DL algorithms differs with the working
circumstances (frequency, load type, and current amplitude).
This means that the optimum configurations in one case
might not be ideal for other conditions. As shown in the above
diagnosis analysis, DL algorithms presented better diagnosis
rates compared with the other AI techniques in several
conditions, whereas their diagnosis rates were mediocre or
even poor in other conditions. The combined input offers a
balance performance between ML and DL algorithms in all
load types among three types of inputs.

V. CONCLUSION
Various possible combinations for arc fault diagnosis were
tested using eight AI techniques and various frequency-
domain and time-domain input parameters. DL techniques
are more successful when frequency-domain input is applied
thanML algorithms in all switching frequency ranges. In con-
trast, ML techniques are more accurate than DL algorithms
when time-domain input is employed. The combined input
offers a balance performance betweenML andDL algorithms
in all load types. Generally, the diagnosis results of all
learning algorithms using time-domain or frequency-domain
inputs increase with frequency increase.

Frequency-domain input is obtained from the input data
using the FFT analysis. However, this feature locates in
the frequency domain; and needs a high sampling rate and
resource to obtain. In addition, there are many neurons and
layers in deep learning structures, which could increase the
computational effort and processing time compared with ML
techniques. In actual applications, the computational time and
accuracy could be significantly affected when an arc happens.
In comparison, time-domain features could be obtained at a
lower rate, resulting in fast execution. This study provides a
specific view and helpful information for implementing arc
fault detect mechanisms for practical systems, prioritized for
various goals, such as costs, execution time, robustness, and
reliability.

It is noticed that there is no learning algorithm, which
achieved a high detection rate in all cases. Each algorithm
reached high accuracies in different working conditions;
otherwise, its effectiveness was mediocre or poor. Therefore,
several learning algorithms should be combined to optimize
the detection rate and maintain high accuracy in various
working situations for arc fault diagnosis. Depending on the
input types, the combinations of AI techniques should be
different. For the time-domain input type, the ML techniques
should be chosen; whereas, several DL techniques are
selected for the frequency-domain input. This study provides

a detailed vision of altered AI techniques. This could be
a helpful investigation for choosing AI techniques, input
types, feature extraction methods, which can contribute to
the construction of more reliable and robust systems when
executing an arc fault diagnosis system regarding altered
primacies.
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