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ABSTRACT Advancements in storage prognosis tend to be limited by the inherent challenge to collect
sufficient significant degradation data over an extensive period. Using only sparse fleet data, multi-output
Gaussian process regression (MOGPR) is one of the few techniques that offers a practical data driven
approach to model non-monotonic degradation profiles with low mean absolute percentage error (MAPE).
This accuracy in the storage prognosis context is, however, sensitive to the choice of the detrending mean.
Working with light emitting diodes (LED) sparse lumen degradation data under storage conditions in this
study, the MAPE is observed to be highly correlated to the detrending bias – the difference between the
detrending mean and the test mean. We explore various approaches to suppress this bias and advocate a
generic framework for fleet storage prognosis. The approaches include detrending using (A) static training
data mean, (B) dynamic observed test data mean, (C) static bounded training data set pairs, (D) dynamic
weighted mean of unbounded training data set pairs and (E) moving average of weighted mean of unbounded
training data set pairs. Our analysis shows that the moving average approach (Method E) of computing
weighted mean of unbounded training data set pairs results in the most stable detrending mean to suppress
detrending bias and helps achieve an MAPE lower than 1%.

INDEX TERMS Storage prognosis, light emitting diodes (LED), multi-output Gaussian process regression
(MOGPR), detrending mean, detrending bias, moving average (MA).

I. INTRODUCTION
Storage has been a conventional approach to buffer the uncer-
tainty in supply chain, be it to fulfill surge in demand or to
address surplus in supply [1], [2]. The equipment or com-
modity in storage does not perform its designated functional
roles, hence, contributes the least value in the system life-
cycle. As such, it is also intuitive that the designers prior-
itize design requirements for operational use over storage.
With in-transit inventory optimization, manufacturers can
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minimize inventory holding and storage duration which fur-
ther reduces the manufacturers’ vested interest in storage.

More disruptive ‘‘Black Swan’’ events have recently been
observed, be it a pandemic like COVID-19 or environmental
disasters like earthquakes, fires, floods, and super typhoons.
These have introduced disruptive demands for emergency
response equipment on one hand and led to long-term storage
of high value assets like aircrafts in aviation industries during
the pandemic on the other hand [3], [4]. Due to the lack
of degradation models for such storage condition profiles,
the affected industries have to suffer the uncertainty in the
reliability of equipment or commodity placed under long-
term storage or commit costly resources to inspect and
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service these unused equipment or commodities in
order to preserve their reliability till activation [5]–[7].
Sabouri et al. [8] propose an algorithm to develop the inspec-
tion policy that minimizes the infinite horizon discounted
expected penalty, replacement, and inspection costs.

In addition to the lack of financial motivation for the
manufacturers to develop these degradation models for stor-
age profile conditions, the manufacturers are in general not
positioned within the equipment life cycle to collect appro-
priate storage data as well [9]. The relevant data can only be
collected by the user or by an assigned warehousing operator,
who often does not possess the technical knowledge, toolkits
and infrastructure to collect data, analyze it appropriately and
develop useful degradation models for storage life progno-
sis [9]. Furthermore, meaningful data has to be collected over
an extensive period of time, due to the relatively slower rate of
degradation while in storage, leading to both lower velocity
and volume for ‘‘good data’’ [10], [11].

Physics-based approaches, data-driven approaches and
a hybrid of both are conventional prognostic approaches
to develop degradation models. An et al. [12] provide a
review for selecting data-driven or physics-of-failure prog-
nostic approaches and conclude that Gaussian process regres-
sion (GPR) is an easy and fast option for implementation;
however, it suffers from cubic computational complexity.
Liu et al. [13] highlight that this complexity of O(n3), due to
inversion and determinant computation of the n × n kernel
matrix, limits the use ofGPR for large datasets. As our storage
fleet data is normally sparse, this limitation becomes less of
a constraint. Neural networks (NN) provide advantages to
handle cases with large noise and complex models, however,
they demand extensive and diverse training sets. Elforjani
and Shanbr [14] demonstrate the advantage of NN with
back propagation (BP), over support vector machine (SVM)
regression and GPR for bearing remaining useful life (RUL)
prediction with acoustic emission signals. However, given
the storage context with far lower data velocity and volume,
adoption of NN is a challenge for us to estimate the remaining
storage life (RSL). Bishnoi et al. [15], on the other hand,
demonstrate the utility of GPR over NN, with a small dataset,
to provide rigorous property estimates, without the issue of
overfitting, which is a common problem associated with NN.

For the physics-based approaches, particle filter (PF) and
Bayesian method (BM) provide more superior performance
to data-driven approaches like GPR and NN; however, they
require a prior established underlying physical model gov-
erning the degradation process along with the constraint of
constant loading conditions [11]. In the context of storage
prognosis, such degradation models may not be available as
the physics of degradation under storage is hard to decipher
and is often, unknown. This poses challenges to adopting PF
and BM approaches for RSL prediction.

Focusing on readiness of aerospace products, Lu et al. [16]
introduce the development of storage life assessment and
evaluation with accelerated life test, life evaluation process
and storage life assessment method.Mense et al. [17] provide

a data driven approach with binary logistic regression (BLR)
model to assess recent system failures during non-operating
storage and transportation. However, the reliability predic-
tions are sensitive to the accuracy and completeness of the
information provided to perform the prediction. Li et al. [18],
on the other hand, proposed a method to estimate the storage
life distribution parameters by fitting to exponential compo-
nent and the storage period can subsequently be determine
with test results. However, this approach requires the storage
degradation profile to follow the exponential distribution.

There are several good case studies of GPR being used for
prognostic applications in the recent past. Yang et al. [19]
use GPR to present a novel approach to estimate the state-of-
health (SoH) for lithium-ion batteries, based on four specific
parameters from the charging curve, instead of typical charg-
ing cycles. Richardson et al. [20] used the GPR to forecast
battery state of health to suggest the relative advantage of
data-driven approach over physics-of-failure approach when
modeling complex battery degradation trends. Extending the
typical GPR (single output), they explored the multi-output
Gaussian process regression (MOGPR) to exploit the cor-
relation of degradation time-series trend between different
battery cells under the same loading environment.

Liu et al. [21] presented a comprehensive review on the
performance of MOGPR under asymmetric and symmetric
scenarios. Under the asymmetric or multi-fidelity scenarios,
there are differences in the number of training points across
outputs and they attempt to improve the predictions of more
costly high-fidelity output by transferring information from
the less costly low fidelity outputs. Under the symmetric
scenarios, the outputs have the same number of training
points, and the authors attempt to improve predictions with
all related outputs. The symmetric scenario discussed in their
work has some synergy and synchrony with our intent to RSL
prediction for fleet storage scenario where the prediction of
an equipment degradation trend can be made and improved
with degradation trend from other equipment, within the fleet
under the same environmental conditions.

Duong et al. [22], [23] used MOGPR to predict the lumen
maintenance life for light emitting diode (LEDs) over a long
horizon of their active service life. While similar in concept,
the training data sets in that work are large and the degrada-
tion of active components are more prominent than that in the
storage context. To this end, we have previously explored the
basicMOGPR to obtain residual storage life (RSL) prediction
and achieved 80-90% estimation accuracy for Li-ion batteries
in storage with sparse degradation data points, in the absence
of an established degradation model (Ref. [24]). In order to
further improve the accuracy of the predictions, we attempt
to refine the basic MOGPR approach.

As part of the MOGPR procedure, it involves a step of
detrending the degradation time series prior to performing
the training. Typically, the arithmetic mean of the training
data is used to detrend the training data. However, for the test
data, the arithmetic mean of the test data will not be available
until all the test data has been observed, and as such, the
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arithmetic mean of the training data itself is often used, as an
estimate, to detrend the test data. It is observed that this choice
of the detrending mean may introduce bias into the MOGPR
training, due to inherent differences between the means of the
training and test data sets. These differences may arise from
manufacturing differences within specification tolerances or
differing usage history prior to storage. As the magnitude of
the degradation in storage is typically small, these inherent
differences, while seemingly small, may induce a relatively
significant bias that can result in unacceptable distortions in
the degradation time series predictions, compromising on the
RSL estimation accuracy quite a lot.

Tominimize this bias, there is a need to explore approaches
to detrend the test data, possibly with the mean of the
incremental test data observed up to current time of test.
A better prediction with lower mean absolute percentage
error (MAPE) was obtained by trying this approach in our
work [25]. However, this approach was unstable when the
number of test data points is low. Subsequently, we also
explored possibility of having bounded training sets with an
equally weighted mean of both training data sets to detrend
the test data. While this further lowered the bias and MAPE,
resulting in improved RSL [25], it greatly constrains the
selection of the training sets to be the upper and lower bound
of all collected data (which most often may not be the case in
practical circumstances) and enforces stringency on the test
data sets which have to strictly stay within the bound of the
training data sets in order to achieve a lower MAPE.

This paper investigates into the effects of bias in the
detrending mean on the MAPE (or RSL prediction) while
performingMOGPR and proposes more versatile approaches
to reduce MAPE in the degradation profile. Section II pro-
vides an overview of MOGPR and the concept of detrending
mean in MOGPR. Sections III describes the data, perfor-
mance evaluation metric and simulation set-up. Section IV
examines the various detrending approaches and discusses
the key results and observations. Finally, Section V presents
a conclusion of our study with specific recommendations for
future exploration.

II. DETRENDING IN MULTI-OUPUT GAUSSIAN PROCESS
REGRESSION
A. MULTI-OUTPUT GAUSSIAN PROCESS REGRESSION
MOGPR models the degradation time series, f (t) with a
Gaussian probability distribution over the function [26]:

f (t) ∼ N (m (t) , κMOGP) (1)

where m(t) is the function mean, estimated by the arithmetic
mean of the test time series, and κMOGP is the function
covariance, derived as the product of the label covariance and
temporal covariance:

κMOGP = κc
(
λ, λ′, θc

)
× κt (t, t ′, θt ) (2)

where κt (t, t ′, θt ) is the temporal covariance matrix for test
time series, κc

(
λ, λ′, θc

)
is the label covariance matrix,

t denotes a specific time within the time series, t ′ denotes
the remaining times within the time series, λ denotes the
label input for a specific times series, λ′ denotes the label
inputs for remaining times series, and θc and θt are the vector
of hyper-parameters for the label and temporal covariance,
respectively. In our context, to model the degradation time
series, the intuition for the function mean (m(t)) can be per-
ceived as the trend. The function covariance (κMOGP) can be
perceived as the relative changes from the trend. In a basic
GPR, also termed as single-output GPR (SOGPR), for time
series, we describe the relationship from one data point to
the other data points in the time series, with the temporal
covariance. For simplicity, we have adopted the common
square exponential (SE) covariance for κt (t, t ′, θt ):

κt = κSE = σf e
(− (t−t′)2

2θ2t
)

(3)

where σf denotes the scaling hyper-parameter for f . The
hyperparameters are optimized through maximizing the log
marginal likelihood expression:

log p (y | t, θt)=−
1
2
Y T κ−1t Y−

1
2
log |κt | −

n
2
log(2π) (4)

where Y = [
(
y(t1

)
, . . . ,

(
y(tn

)
]T denotes the array of data

points from the degradation time series, n denotes the number
of training points (observations).

Extending SOGPR to MOGPR with multiple outputs,
we leverage on the relationship of the observed time series
test data set with one or more similar time series training data
sets to enhance our prediction. This relationship is described
by the label covariance matrix. The term ‘‘label’’ is merely
used to index the training and test data sets. κc

(
λ, λ′, θc

)
is a

positive semi-definite covariance matrix, obtained by the free
form parameterization by Cholesky decomposition to provide
the elements of the lower triangular matrix [6]:

κc = LLT

 θc,1 · · · 0
...

. . .
...

θc,k−m+1 · · · θc,k

 (5)

where k = m× (m+1)/2 is the number of correlation hyper-
parameters. The diagonal elements represent the correlation
of the times series, whereas the non-diagonal elements repre-
sent the correlation between multiple time series.

B. DETRENDING MEAN AND BIAS
Different approaches to preprocess the degradation time
series can have a significant impact on the prediction per-
formance. Ahmed et al. [27] listed some of the common
approaches, including but not limited to deseasonalisation,
log transformation and detrending. The basic MOGPR can
be specified completely by just the mean function and covari-
ance function. It is common and practical, though not neces-
sary, to use a Gaussian Process (GP) with zero mean function.
For simplicity, we start with a fixed (deterministic) value as
the GP mean function.
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For the training data set, this fixed mean function value
can be easily obtained by computing the arithmetic mean of
the training data set. As illustrated in Figure 1, by taking
the difference between each data point and this fixed mean
function value, we are effectively detrending the training data
set into an adjusted training set with zero mean. We can then
apply the common zero mean GP to this adjusted training set.
However, in the case of the test data set, the test data points
are collected incrementally, and hence, the true arithmetic
mean can only be computed after the complete test data set
has been collected. It will, however, be meaningless by then
for practical application of MOGPR prediction. As such, the
arithmetic mean of the training data set is typically used as
the best estimate to detrend the test data before subjecting the
adjusted test data to MOGPR based predictions.

FIGURE 1. Illustration of detrending to shift the sample mean (red line) to
zero (black line) by subtracting all the data points with the sample mean.

The inherent differences between the test and training data
mean are known to introduce bias, as seen in Figure 2. This
bias leads to distortions in the MOGPR predictions. Based
on our earlier works (Ref. [24] & [25]), we observed a strong
negative correlation between the detrending bias and the pre-
diction MAPE. To understand the effects of this bias, various
approaches to detrend the test data will be considered in our
study here, as summarized in Table 1. In doing so, we hope to
develop a generic and practical framework that can be widely
used for bias-suppressed prognosis.

FIGURE 2. Illustration of detrending the test data set with the training
mean which introduces a bias that is the difference between the test and
training mean.

III. SIMULATION SET-UP
A. CHOICE OF LED TECHNOLOGY FOR THE STUDY
In this study, we have selected LED as the technology of
focus to illustrate the utility of MOGPR in storage prognosis
and develop our modeling framework, due to the increased
proliferation of LED and associated prognostic challenges,
as elaborated in the ensuing paragraphs.

Since 2011, LED-based products have steadily penetrated
the market compared to conventional incandescent, halogen,
florescent and high-intensity discharge (HID) lamps. Market
penetration for LED-based products is projected to reach
75-85% by 2030 [28]. With such proliferation, there have
been significant research significant on the reliability of
LEDs. This is an upheaval undertaking. LEDs typically have
long operating lifetime with few observable degradations.
It is costly and time consuming for manufacturers to collect
failure or degradation data to comprehensively assess and
improve the reliability of LED.

B. CURRENT STATUS OF LED PROGNOSIS STUDIES
Furthermore, failures can occur outside laboratory condi-
tions. Trivellin et al. [29] provided a comprehensive review
of the failures of LEDs in real-world applications, beyond
laboratory environment where stress parameters are carefully
controlled or isolated. Several real-world LED degradation
mechanisms like electrical overstress, assembly issues, mis-
handling and chemical contamination were reported to be
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crucial in the upstream manufacturing process to prevent
downstream catastrophic service failures. Driel et al. [28]
reviewed that there have been a whopping 88 failure
unique modes for LED documented since 2011 and pro-
jected, based on the Goel-Okumoto maturity model, and that
another 42 unique failure modes remain to be discovered. The
possible interplay of these large number of multiple failure
modes presents a big challenge to develop a comprehensive
physics-of-failure model for LED.

Nayak et al. [30] attempt to predict lumen degradation
with traditional statistical models like Normal, Weibull and
Lognormal models. They conclude that lognormal provides
the best fit with Akaike Information Criterion (AIC). How-
ever, such models are deterministic and may not be useful for
non-monotonic degradation scenarios, as observed for LEDs
under storage.

Recent advances in artificial intelligence and machine
learning have provided additional options for reliability anal-
ysis. As the LED lamp system comprises of sub-systems
like LED driver, LED module, diffuser, reflector and inter-
connects, the system can be decomposed into sub-systems
for analysis. Instead of the traditional deterministic reliabil-
ity block diagram (RBD) approach for LED system relia-
bility assessment, Ibrahim et al. [31] leverage on fault tree
analysis (FTA) results and expert knowledge to develop a
Bayesian network (BN) to model the complex system reli-
ability to address the uncertainties and interaction between
sub-systems. The proposed BN approach provides an accu-
rate lifetime prediction with shorter testing time. While
this approach provides better reliability insights for LED
manufacturers to assess and improve their product design,
it requires the furthermodelling of sub-systemswhich is often
untenable for the storage agency.

Jing et al. [32] implemented long short-term mem-
ory (LSTM) and recurrent neural network (RNN) to predict
the lifetime of ultra-violet (UV) LEDs against the nonlinear
least squares (NLS) regression approach, as recommended by
Illuminating Engineering Society of North America (IESNA)
TM-21 industry standard. They achieve more robust results
with improved accuracy of 29.7% lower lifetime predic-
tion error. Magnien et al. [33], on the other hand, used a
Bayesian regression approach to quantify the parametric
uncertainty in a temperature driven prediction model with
the temperature sensitive electrical parameter (TSEP) mea-
surements to improve fatigue lifetime model for LED. Simi-
larly, Ibrahim et al. [34] employed the model-based Bayesian
method to estimate the remaining useful life with lumen
degradation data from accelerated degradation tests. An expo-
nential decay model was developed with parameters obtained
through Markov Chain Monte Carlo (MCMC) sampling with
Metropolis-Hasting (MH) algorithm. This approach did pro-
vided better prediction results against IESNA TM-28. TM-28
is the existing standard employed by the industry to project
long term lumen maintenance for LED light source. All of
these approaches, however, are still data intensive and focus
on the degradation of LED under active usage conditions.

Purwanto et al. [35] presented an aging study of LED
with counter-intuitive results. LED samples exposed to least
level of radiation energy (simulated sunlight) displayed the
highest physical degradation in conversion efficiency and
transparency of LED, under ambient temperature and short
exposure duration of 500 hours. They suggest that there
may be other more dominating degradation factors, namely
oxygen and humidity exposure, that are responsible for this
observation. Degradation may be significant even under stor-
age. This re-iterates the complexity of LED degradation pro-
cess when different physics-of-failure mechanisms can have
counter-intuitive interactions and effects and dominate the
degradation under operating and/or storage conditions.

C. LED STORAGE DATA SET
The LED data sets are obtained from the work of Singh
and Tan [36] at Chang Gung University (CGU) from the
Center for Reliability Science and Technology (CReST R©) in
their proposed moisture-electrical-temperature (MET) test to
evaluate the outdoor reliability of high power LEDs. In order
to simulate the morning condition when the streetlamp is
‘‘OFF’’, a subset of 20 blue LED samples is maintained in
the ‘‘OFF’’ condition, with a constant temperature of 85◦C
and 85% relative humidity, as the accelerating environmental
factor. The ‘‘OFF’’ condition is akin to LEDs placed under
long-term storage, hence, is applicable for our study. In our
previous work [25], we have explored some basic flavors of
MOGPR to predict remaining storage life for these LEDs and
the same data sets have been employed here for this study.

FIGURE 3. Non-monotonic degradation curves due to the partial recovery
behavior in light emitting diodes. The samples are intentionally selected
to provide a diversity of completely bounded samples and inter-twining
samples to simulate unbounded samples.

Each LED sample is a time series that consists of 12 lumen
degradation data points, collected every 24 hours, for optical
and electrical measurements. 5 LED sample data sets are
selected, as illustrated in Figure 3, where 1 LED sample can
be considered as the test data set, while the required train-
ing sets are selected from the remaining 4 LED samples
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TABLE 1. Exploration of approaches with different detrending means overview of different detrending means and their characteristics.

to simulated different scenarios. The test data can also be
subsequently reused as training sample in other simulations.
Samples 11 and 13 serve as the upper and lower bound,
respectively. Samples 3 and 5 follow the general degradation
profiles of the bounded training samples, and they are dis-
tributed around the 50% (mid-point) and 30% (nearer to the
lower bound), respectively, of the bounding pair. Sample 19
displays more profile irregularities with reference to the other
four samples and is distributed around 30% (nearer to the
lower bound), like Sample 5. Sample 19 is also selected as
it intertwines with Sample 3 and Sample 5; hence, it can be
used to simulate scenarios where the test data transcends the
training pairs.

D. TEST REGIME
The Multi-task Gaussian Process (MTGP) Toolbox [37] for
MATLAB R© is used to implement the MOGPR simulation to
generate the projected degradation profile for the test data set.
We have performed the MOGPR simulation over the various
approaches of detrending on the test data, as listed in Table 1,
referred to here on as Methods A to E.

E. ERROR METRICS
To visualize the typical remaining useful life (RUL) or
RSL prediction, the predicted degradation profile is plotted
together with test data point with a user defined condition
failure threshold. The time when the predicted degradation

profile cuts the failure threshold defines the predicted
RUL/RSL, as illustrated in Figure 4. This can be validated
against the true RUL/RSL determinedwith actual failure data.
The prediction error is defined as:

ej = τ − t̂j (6)

where τ denotes the true RSL based on the observed time
series data, t̂ j denotes the predicted RSL computed based on
the remaining time from the time that jth test data is collected
to the time where median generated by the MOGP regression
intersects the defined failure threshold, j refers to the number
of test data used for MOGP regression.

While this standard threshold failure-based approach
works for monotonic degradation profile, it is not useful for
non-monotonic degradation profile as there may be multi-
ple points of intersection of the degradation trace with the
threshold. For non-monotonic degradation profiles, we have
adopted the mean absolute percentage error (MAPE) as our
measure of prediction performance:

MAPE =
1
n

∑n

1

(∣∣∣∣ ŷi − yiyi

∣∣∣∣)× 100% (7)

where n is the number of data points used, yi is the luminous
flux observed at data point i, and ŷi is the predicted luminous
flux at data point i, obtained from the median of the MOGPR
prediction. MAPE effectively measures the performance of
the approach to retrace or replicate the degradation trend.
For this paper, only the predicted points, i.e., the remaining
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points that are yet to be observed at the time of simulation,
are subjected to theMAPE computation. This will prevent the
dilution of the errors with the increasing number of observed
data points.

FIGURE 4. Illustration of a typical degradation trace for a monotonic
degradation scenario. The predicted RSL is defined by the time (with
respect to current time) when the degradation curve intersects the failure
threshold. Error (ej) is computed based on the difference between
predicted (tj) and actual RSL (τ ).

IV. METHODS AND RESULTS
A. METHOD A: DETRENDING USING STATIC TRAINING
MEAN
The ideal approach for MOGPR is to detrend the test data
set with its true mean (as illustrated in Figure 1). However,
the test data is observed incrementally, and the true mean
can only be computed after all test data are observed. The
true mean, hence, cannot be determined or used, in advance,
at each iteration step. In lieu of the true test mean, the mean
of the training data set is often used as an estimate for the true
test mean (as illustrated in Figure 2). This premise is on the
assumption that the training set forMOGPR should be largely
similar in characteristics to the test set. In this case, both the
training and test data sets are detrended by the same training
mean, prior to training and prediction, where:

µ̂test = µtrain (8)

where µ̂test = estimator of test mean to be used as detrending
mean for test sample, µtrain = mean of training sample.

As mentioned in Section II.B, this method introduces a
detrending bias when µtest 6= µtrain. The training mean
is used to detrend Test Sample 3 and Test Sample 5, with
detrending bias of 0.67 and 0.82, to yield an MAPE of 2.9%
and 3.8%, respectively. To establish the ideal MAPE baseline
reference, the true means of the respectively test data are used
to detrend the test data (which is the ideal scenario we refer
to in Table 1), prior to subjecting the test data to the MOGPR
with single training data set (Sample 13). The detrending bias
in this case is zero. For Test Samples 3 and 5, the ideal MAPE

turns out to be 0.5% and 0.4%, respectively. From Figure 5,
theMAPE obtained by detrendingwith trainingmean shows a
significantly higherMAPE than that obtained with true mean.

FIGURE 5. Plot of MAPE for test sample 3 & 5 detrended with true test
mean and training mean. The plots from training mean reveal
significantly higher MAPE than that from the true test mean.

FIGURE 6. Scatter plot to show the relationship between MAPE and
detrending bias when sample 3 & sample 5 are detrended with training
mean (of sample 13) at multiple time instants. Sample 5 shows a larger
detrending bias and MAPE, as compared to sample 3.

Figure 6 shows the plot of theMAPE against the detrending
bias. Since the training mean is fixed, the detrending bias
is consistent throughout each iteration for Sample 3 and
Sample 5, hence, the plot appears as 2 vertical lines of plots.
It should be noted that Sample 5 has a larger bias than
Sample 3, and therefore, the larger MAPE is also observed
for Sample 5.

B. METHOD B: DETRENDING USING DYNAMIC
OBSERVED TEST MEAN
Observing the loss of prediction performance due to the
detrending bias between the training mean and the true test
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FIGURE 7. Illustration of method B with dynamic observed test mean, computed with all test data observed thus far. As the number of observed
points (k) approaches to the total number of observed test data, this dynamic observed test mean approaches the true test mean.

mean, we previously proposed an incremental observed test
mean to be used (Ref. [24]), instead of the training function
mean, to detrend the test data, as illustrated in Figure 7. This
observed test mean is derived by averaging only the observed
test data points, available at the respective measurement time
intervals.

µ̂ (k)test = (
∑k

i=1
yi)/k (9)

where µ̂(k)test = estimator of true test mean to be used
as detrending mean for test sample, yi = luminous flux at
observation data point i, k = number of observation data
points available, thus far in the LED unit under test. Based
on Equation (9), it should be noted that the detrending mean
is dynamic with every new test data observed.

In our simulation, detrending Samples 3 and 5 with their
observed test means as compared to detrending with the
training Sample 13, the MAPE is reduced by more than 40%.
As the number of sampling points increases, this observed
test mean will tend towards the true mean of the test data.
It should naturally serve as a better estimate candidate for the
true mean of the test data. While this approach offers lower
MAPE, hence, better prediction performance, than the train-
ing mean approach, the region of instability (orange dashed
box), exhibited as high MAPE, is observed when number of
sampling points are small, as observed in Figure 8.

This instability reduces rapidly with the increase in number
of data points. It usually offers a more stable MAPE only
after 5 data points when there are high fluctuations in the
initial actual degradation profile. This shortcoming can be
explained as when the number of observed test data points are
small, there are insufficient data to represent the true test data
set. Consequentially, these observed test means computed
(when data points are small) cannot achieve a good estimator
of the true mean, leading to high detrending bias. This leads
to erratic MAPE performance during the initial phase of

FIGURE 8. Plot of MAPE for test sample 3 & 5 with observed test mean
and training mean (of sample 13) as detrending mean. The observed test
mean approach reduces the MAPE significantly from the training mean
approach with the increase in number of data points used.

prediction when the number of observed test data points is
small. Figures 9 and 10 show the MAPE against detrending
bias plot. Similarly, it is observed that the larger the detrend-
ing bias, the higher the MAPE. Here, a more obvious positive
correlation between the MAPE and detrending mean can be
clearly observed.

C. METHOD C: DETRENDING USING STATIC BOUNDED
TRAINING PAIRS
To alleviate the initial shortcoming presented by detrending
with the dynamic observed test mean, our group further pro-
posed to use the equally weighted average of the training
means of the upper and lower bound training data series,
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FIGURE 9. Scatter plot MAPE against the bias between true test mean,
training mean and observed test mean as the detrending means for each
simulation run for test sample 3.

FIGURE 10. Scatter plot MAPE against the bias between true test mean,
training mean and observed test mean as the detrending means for each
simulation run for test sample 5.

to detrend the test data series, as illustrated in Figure 11
(Ref [25]).

The detrending mean is estimated by the mid-point of the
upper and lower bound:

µ̂test = wtrain−UBµtrain−UB + wtrain−LBµtrain−LB (10)

wtrain−UB = wtrain−LB = 0.5 (11)

where µ̂test = estimator of test mean to be used as detrending
mean for test sample, wtrain−UB = wtrain−LB = weight of
mean of upper bound and lower bound training samples,
respectively, µtrain−UB =mean of upper bound training sam-
ple, µtrain−LB = mean of lower bound training sample.

As both training data sets are completely available, they
do not suffer from the inadequacy to represent the test data
set, as in the previous case of the incremental test mean
approach. By estimating the test mean with the equally
weighted average of the upper and lower bound training data
series, we help reduce the unilateral bias, which exists when

FIGURE 11. Degradation profile of test sample 3 bounded completely by
training sample 11 (lower bound) and training sample 13 (upper bound).

performing detrending with either one of the training means
alone. By restricting the training sets to be within the upper
and lower bound, we restrict the detrending bias to be no
greater than half of the difference between the mean of upper
and lower bound training sets, as illustrated in Figure 12.
This also implies that the smaller the difference between
the means of the bounded training pair, the smaller the pos-
sible range of detrending bias. In this specific case, Sam-
ple 3 is situated close to the middle (50%) of the training pair,
as such, it can be observed that their equally weighted mean
(22.74 lumen) becomes a very good estimator for the true test
mean (22.67 lumen). It provides better stability over the entire
range of data points (entire lifecycle span of the prognosis) as
compared to Method B, as shown in Figure 13. The detrend-
ing bias is greatly suppressed to 0.07 in this specific case,
as seen in Figure 14. The MAPE-detrending bias plot reveals
that the performance of Method C to be comparable to that
derived by the true test mean, with average MAPE of 0.9%.

Similar procedure is repeated for Sample 5 and Sample 19.
The degradation profiles of Sample 5 and Sample 19, rel-
ative to the bounded training pair (Sample 11 & 13) are
shown in Figure 15 and Figure 16, respectively. As elabo-
rated previously, Sample 3 lies around the mid-point between
the bounded training pair, leading to low detrending bias,
whereas Sample 5 and Sample 19 reside around the 30%
(nearer to the lower bound) between the bounded training
pair. The 30% offset, while within the constraint of half of
the difference between the mean of upper and lower bound
training sets, leads to the higher detrending bias (in blue and
green) than that for Sample 3 (in red), as seen in Figure 17.
As such, the resultant averageMAPE from Sample 5& 19 are
also observed to be larger, at 1.4% and 2%, respectively,
as observed in Figure 18.

It should be noted that while the equally weighted bounded
training pair approach yields a more stable MAPE, it does not
guarantee a better performance than the observed test mean,
as the detrending bias is constrained to half the difference
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FIGURE 12. Illustration of method C with the plot of means of upper & lower bound training pair, their
equally weighted mean, and the true mean of test sample. The bounded training pair approach constrains
the detrending bias to a maximum of half the difference between the means of training pair, i.e., the true test
mean will fall either between (1) the detrending mean and mean of upper bound training sample, or (2) the
detrending mean and mean of lower bound training sample.

FIGURE 13. Plot of MAPE for test sample 3 with observed test mean
(method B) and equally weighted bound pair mean (method C) as
detrending mean. The equally weighted bound pair mean approach
provides better stability over the entire range of data points (entire
lifecycle span of the prognosis).

between the means of the bounded training pair. When the
difference between the means of the bounding pair is large,
it provides opportunity for larger detrending bias; and hence,
higher MAPE. The observed test mean approach, on the
other hand, tends towards the MAPE performance of the
true mean approach as the number of data points increases.
Furthermore, while equally weighted bounded training pair
approach eliminates the challenges presented by the earlier
approaches, it assumes that the upper and lower training data

FIGURE 14. Scatter plot of MAPE against the bias between true test
mean, training mean, observed test mean and equally weighted bounded
pair mean as the detrending means for each simulation run for test
sample 3. The plot includes analysis carried out at multiple instants of
time spanning the whole lifecycle.

sets can be determined upfront. While in most practical cases,
this may be possible, however, it is challenging to obtain the
optimal bounding pair for each test sample and we cannot
exclude the possibility that the test data series may become a
new upper or lower bound, or it may intermittently transcend
the upper and lower bound training data, hence, invalidating
the basis to lead to the reduction of the bias from the true test
mean.
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FIGURE 15. Degradation profile of test sample 5 bounded completely by
training sample 11 and training sample 13.

FIGURE 16. Degradation profile of test sample 19 bounded completely by
training sample 11 and training sample 13.

To analyze the performance of equally weighted means of
the bounded pair approach when the test sample transcends
the bounded pair, Sample 19 is used as the test sample with
Sample 3 and Sample 5 replacing Sample 11, as the lower
bound, as seen in Figure 19 and Figure 20, respectively.
It should be noted that Sample 19 intersects Sample 3 and
Sample 5 as the ‘‘lower bound’’, at several points. Figure 21
shows the relative MAPE performances with the previous
static equally weighted bounded training pair approach when
the test sample 19 is completely boundedwithin the upper and
lower bound of training samples 11-13 pair, and when the test
samples transcend the bounded pairs of training samples 3-13
pair and training samples 5-13 pair. It can be observed that
the MAPE has increased, compared to that achieved with
training sample 11-13 pair, as test sample 19 is no longer
completely bounded by the training pair, in both cases of

FIGURE 17. Scatter plot for MAPE against the detrending bias for
sample 3, sample 5, & sample 19, detrended by the equally weighted
training bound pair mean.

FIGURE 18. Comparison of MAPE for test sample 3, test sample 5 and test
sample 19, detrended by the equally weighted training bound pair mean.

training sample 3-13 pair and training sample 5-13 pair. This
violates the ‘‘completely bounded test sample’’ constraint for
Method C. Nevertheless, it should be noted that even this
‘‘degraded’’ Method C where the test sample transcends the
bounded pair offers better prediction when compared to the
most standard training mean approach (Method A).

Between the two runs with the ‘‘degraded’’ Method C
where the test sample transcends the bounded pair, train-
ing sample 5-13 pair provides better prediction with lower
MAPE, compared to training sample 3-13 pair. This is coher-
ent with our postulation of the detrending bias-MAPE cor-
relation, where bias arising from the training sample 5-13
pair (magenta) and training sample 3-13 (cyan) pair are
0.42 and 0.50, respectively, as illustrated in Figure 22.
This analysis illustrates that the performance of the equally
weighted means of the bounded pair approach degrades when
the test data series transcend the bounded training pair.
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FIGURE 19. Degradation profile of test sample 19 transcends the bounds
of training sample 3 and training sample 13.

FIGURE 20. Degradation profile of test sample 19 transcends the bounds
of training sample 5 and training sample 13.

D. METHOD D: DETRENDING WITH DYNAMIC WEIGHTED
MEAN OF UNBOUNDED TRAINING PAIR
To relax the constraint to be able to determine upper and lower
bound data sets as the training pair, prior to the complete
observation of all test data points, a detrendingmean obtained
by dynamically computing the weighted average of any two
training data set pairs is proposed here. In this case, the
weight of the mean of each training sets is assigned based
on the proximity to the test data. This allows the test data to
permanently or intermittently transcend the bounds of either
of the training data sets, while maintaining a lower bias from
the true test mean.

µ̂(k + 1)test =wtrain1µtrain1+wtrain2µtrain2 (12)

wtrain2= (ytest,k − ytrain1,k )/(ytrain2,k − ytrain1,k ) (13)

wtrain1= 1− wtrain2 (14)

where µ̂(k + 1)test = estimator of test mean to be used
as detrending mean for the test sample for k + 1 runs,

FIGURE 21. Comparison of MAPE for sample 19 detrended with
unbounded equally weighted sample 3–13 pair and sample 5–13 pair.

FIGURE 22. Scatter plot of MAPE against the detrending bias for test
sample 19, with equally weighted mean with various bounded and
unbounded training pairs.

wtrain1 =weight of mean of training sample 1,µtrain1 =mean
of training sample 1, wtrain2 = weight of mean of training
sample 2, µtrain2 =mean of training sample 2, ytest,k = lumi-
nous flux of test sample at observation data point k ,
ytrain1,k = luminous flux of training sample 1 at observation
data point k , ytrain2,k = luminous flux of training sample 2 at
observation data point k .

As the test sample is no longer completely bounded
by the training sample, it is intuitive to reduce the bias
of the detrending mean by estimating a mean by allocat-
ing dynamic weightage to the means of training samples,
based on the proximity to observed test sample, as seen in
Eqns. (12)-(14). Method D is illustrated in Figure 23. To con-
trast the effects of Method C and Method D, Method D is
repeated for sample 3-13 and 5-13 training pair sets, using
test sample 19 for our analysis.

From Figure 24, it can be observed that the dynamic
weighted approach provides a lower MAPE in general, than
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FIGURE 23. Illustration of method D with dynamic weighted mean of unbounded training pair at different iteration of observed test data points. The
weight of the mean of each training set is assigned based on the proximity to the previous test data.

FIGURE 24. Comparison of MAPE for unbounded test sample 19,
detrended by the equally weighted and dynamically weighted mean, with
training sample 3–13 pair and sample 5–13 pair.

the equally weighted training pair mean approach when the
test data transcends the training pair. TheMAPE performance
by the dynamic weighted mean approach does not have the
restriction for the test sample to remain completely bounded
by the training sample pair. We attribute the lower MAPE for
the prediction to the lower detrending bias by the dynamic
weighted mean approach, as seen in Figure 25. Similarly, the
detrending biases are distributed laterally due to the dynamic
nature of the detrending mean, as compared to the equally
weighted mean approach where the static detrending biases
are lined vertically. The dynamic weighted mean approach
also suffers from the similar challenge of initial instability as
the observed test mean approach. This is all themore apparent
when there are high fluctuations of the degradation profile in

the initial stage. The dynamic weighted approach will also
result in highly fluctuating detrending means, and hence,
detrending bias, in tandem with the degradation profile.

FIGURE 25. Scatter plot MAPE against the detrending bias for unbounded
test sample 19, detrended by the equally weighted and dynamic weighted
mean, with training sample 3–13 pair and 5–13 pair.

E. METHOD E: DETRENDING WITH DYNAMIC WEIGHTED
MEAN OF UNBOUNDED TRAINING PAIRS USING
MOVING AVERAGES
While the dynamic weighted training pair mean approach
removes the hard constraint for the test data sets to remain
within the bounds of the training data sets, the approach pro-
duces highly fluctuating detrending means as the proposed
detrending mean is a function of the individual observed test
data that fluctuates around the static true test mean, at the time
of observation. This is especially so when the degradation
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FIGURE 26. Moving average of the dynamic weighted means is introduced to smoothen the fluctuation of detrending mean,
hence, the detrending bias. In general, the increase in moving average window reduces the detrending bias.

profile is undulating or non-monotonic. To smoothen this
fluctuation, the previous dynamic weighted mean approach
is further refined with the moving average (MA) preprocess-
ing methods, with different sliding windows, considered in
Ref. [14]. Method E flattens the fluctuations of the detrending
means, and generally reduces the bias from the true test
mean, as illustrated in Figure 26. The generalized form of
the dynamically weighted training pair mean, with moving
average of sliding window, n is defined as:

µ̂(k + 1,MAn)test = wtrain1µtrain1+wtrain2µtrain2 (15)

wtrain2 = 1
n

∑k
i=k+1−n [

(ytest,i−ytrain1,i)
(ytrain2,i−ytrain1,i)

] (16)

wtrain1 = 1− wtrain2 (17)

where µ̂(k + 1,MAn)test = estimator of test mean to be used
as detrending mean for test sample for the (k + 1)th run,
wtrain1 =weight of mean of training sample 1,µtrain1 =mean
of training sample 1, wtrain2 = weight of mean of training
sample 2, µtrain2 =mean of training sample 2, ytest,i = lumi-
nous flux of test sample at observation data point i,
ytrain1,i = luminous flux of training sample 1 at observation
data point i, ytrain2,i = luminous flux of training sample 2 at
observation data point, i.

The dynamic weighted means of any training sample pair
with moving averages are extended to the same three test
sets, i.e., test sample 19 with training sample 11-13, 3-
13 and 5-13 pair sets, with varying moving average win-
dows of window size, n = 2 to 5. It should also be
noted that MA(1) is effectively the dynamic weighted train-
ing pair mean as discussed in the Section IV (Method

D). Figures 27-29 illustrate the relative reduction of the
MAPE from the equally weighted bounded pair approach
(denoted by ‘‘zero’’ size of moving average), as discussed
in Section IV (Method C), to the dynamic weighted mean
of training pair by moving averages with varying window
sizes.

Figure 27 illustrates the case where the test sample 19 is
completely bounded by the training pair. The new approach
shows only slight improvement from the equally weighted
bounded pair approach (‘‘zero’’ case) as the previous
approach has already yielded relatively good performance,
given that it complies with our completely bounded constraint
for the approach.

Figure 28 and Figure 29 illustrate the cases where the
test sample 19 is not bounded by the training pair. Signif-
icant improvement in the MAPE, compared to the equally
weighted bounded pair approach, can be observed. By using
the dynamic weighted mean of any training sample pair with
moving averages, the MAPE can be reduced to about 1%,
regardless of whether the test sample is bounded, or not,
by the training sample pair across various test samples. This
approach provides flexibility to select training samples with-
out compromising the performance of the prediction of the
degradation profile.

The corresponding detrending bias are also plotted in
Figure 30-32. The boxplots in Figures 30-32 show that this
moving average approach suppresses the bias and the fluctu-
ation or dispersion of the bias. This contributes to a lower
MAPE during each iteration of the MOGPR. Larger win-
dows of moving averages (n) will smoothen the fluctuations
encountered in the previous approach, thereby providing a
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FIGURE 27. Boxplot for MAPE for test sample 19, completely bounded by
training samples 11 and 13, across different sizes of moving average to
dynamically weight the means of the training samples.

FIGURE 28. Boxplot for MAPE for test sample 19, with training samples 3
and 13, across different sizes of moving average to dynamically weight
the means of the training samples.

more consistent estimation of the detrending mean. This will
lead to a lower detrending bias. However, the larger moving
average windows will also be a limiting factor in that the
very first prediction can only be made after n + 1 test data
points have been observed. This implies that prediction will
be deferred until sufficient data points have been observed
and fed as input to derive the moving averages, MA(n). This
may be a challenge in the situation when there are sparse or
little data points collected, as in our case for RSL prediction.

It will be necessary to probe deeper into the MA window
size to trade-off the expected prediction performance and
sufficient remaining life to make meaningful predictions for
prognosis of equipment in storage. From our experience,
MA(3) seems to provide an intuitive window to reap the
effects of the moving average approach, while leaving suf-
ficient remaining life to make meaningful predictions. The
studied range, from MA(1) to MA(5), provides coverage for

FIGURE 29. Boxplot for MAPE for test sample 19, with training samples 5
and 13, across different sizes of moving average to dynamically weight
the means of the training samples.

FIGURE 30. Boxplot for detrending bias for test sample 19, completely
bounded by training samples 11 and 13, across different sizes of moving
average to dynamically weight the means of the training samples.

FIGURE 31. Boxplot for detrending bias for test sample 19, with training
samples 3 and 13, across different sizes of moving average to dynamically
weight the means of the training samples.

the analysis over our intuitive window of n= 3. It is observed
that the degree of suppression of bias and improvement to
MAPE is not strictly increasing with the increase of moving
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TABLE 2. Approaches with different detrending means—summary of performance and characteristics.

FIGURE 32. Boxplot for detrending bias for test sample 19, with training
samples 5 and 13, across different sizes of moving average to dynamically
weight the means of the training samples.

average windows, as seen in Figure 30 and Figure 31, where
the detrending bias from MA(2) is observed to be lower than
that from MA(3). As such, the choice of the ideal moving
average window (which verymuch depends on the time series
pattern and evolution of the data) remains inconclusive and
will require further investigation.

The effects of bias suppression and improvement toMAPE
could also be visualized with a scatterplot. Figure 33 and
Figure 34 show the scatterplots of MAPE against detrending
bias for test sample 19 with training samples 3-13 pair and
5-13 pair, respectively. A ‘‘V ’’ shape clusters of data points
in the scatterplot suggests the strong correlation between the
detrending bias and MAPE.

F. SUMMARY OF METHODS
The approaches we present in the sequence of Methods A to
E above gradually suppress the detrending bias and achieve
a better MAPE performance. Method A uses the training
mean as a simple and practical estimate for the detrending
mean. However, due to the inherent bias between the training
and test data, it introduces detrending bias which results in
significant MAPE compared to the ideal case of detrending
with true test mean. Method B uses the observed test data
to incrementally compute the detrending mean, which tends
to the true test mean in the long run. While it eventually
tends to the performance of the ideal case, it may suffer
from initial instability. Method C uses an equally weighted
mean of a pair of bounding training samples to overcome
the initial instability of Method B, however, it imposes the
restriction for the test sample to be completely bounded
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FIGURE 33. Scatterplot illustrates the effects of detrending bias on MAPE
for test sample 19, with training samples 3 and 13, over different
windows of moving average with dynamic weighted means. The colored
average window increases from MA(1) (magenta) to MA(5) (yellow).

FIGURE 34. Scatterplot illustrates the effects of detrending bias on MAPE
for test sample 19, with training samples 5 and 13, over different
windows of moving average with dynamic weighted means. The colored
boxes illustrate the reduction of the spread of MAPE and bias as moving
average window increases from MA(1) (magenta) to MA(5) (yellow).

by the training samples, to yield good detrending bias and
MAPE. To relax the ‘‘completely bounded’’ constraint and
to cater for flexibility in training samples selection, while
maintaining comparable MAPE performance to the equally
weightedmean of training pair approach, a dynamic weighted
mean of unbounded training pair is proposed. This approach,
however, suffers from similar initial instabilities as in the
observed test mean approach. Eventually, we propose a mov-
ing average pre-processing of the detrending means from
the weighted mean of training pair, to smoothen the initial
instability, especially when the test data is non-monotonic
and fluctuates across the degradation profile. The summary of

the characteristics and performance of the various detrending
approaches, with their respective pros and cons, is presented
in Table 2. Given the sparse data used for the simulations,
the computation load is not demanding. The computation
time ranges from around 10 sec for the single training sam-
ple approaches, to approximately 20 sec for the training
sample pair approaches. The regression is performed on a
MacBook Air (Retina, 2018) with 1.6 GHz Dual-Core Intel
i5 and 16GB 2133 MHz LPDDR3 RAM.

V. CONCLUSION AND FUTURE WORK
In the absence of extensive datasets and established physics-
of-failure models, MOGPR is one of the few data-driven
techniques that offers a practical approach to model non-
monotonic degradation profiles for prognosis in fleet storage
scenario. We observe that the introduction of detrending bias
reduces the predictionMAPE performance. As such, we were
motivated to develop a framework to suppress this detrending
bias further to achieve lower prediction MAPE. The bounded
training pair approach provides a good MAPE but it requires
the test sample to remain completed bounded by the training
sample pair. In practical applications where the test sam-
ple data points are incrementally collected, it will not be
possible to ensure, in advance, that the entire test sample time
series remains completely bounded by the selected training
sample pair. In this study, we extend the approach with
dynamically evolving weights derived from the proximity of
the test data to the training data pair, to address scenarios
where the test sample transcends the training sample pair.
This relaxes the bounding constraint while achieving simi-
lar MAPE performance, thus, yielding improved flexibility
for the training samples selection. The technique, however,
suffers from initial instability. As such, we further refined
the approach with the moving average sliding windows to
smoothen the fluctuation of the dynamic detrendingmean and
bias. This eventually resulted in a drastic reduction of MAPE
to about 1%, comparable to that obtained with the ideal true
test mean, regardless of whether the test sample is bounded,
or not, by the training sample pair. However, the choice of the
ideal moving average window remains inconclusive and will
require further investigation.

Note that past research works that dealt with GPR mostly
focused on active use loading condition data sets, wherein
the extent of degradation is far higher than the detrending
bias. In such scenarios, the use of the standard training mean
approach (Method A) already yields very good outcomes.
However, in the storage prognosis scenario, as the extent
of degradation becomes comparable to the detrending bias,
we are required to more carefully analyze the data using
the Methods B-E discussed in this work to achieve similar
accuracy standards of MAPE. As such, it is worth mentioning
that the approach presented in this work is mostly suited only
for storage prognosis scenarios and such intricacies are not
relevant to prognosis under active use conditions.

In summary, this paper has laid the foundation to shift
the fleet storage industry from traditional periodic inspection
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approach to condition-based maintenance by offering simple
and practical MOGPR modeling framework. It dispels the
misconception on the need for Big Data to leverage artificial
intelligence and machine learning for fleet storage prognosis
with the use of only sparse degradation data patterns. Based
on the correlation observed between the detrending bias
and MAPE, we have developed the framework to suppress
detrending bias and achieve much better degradation predic-
tion with an improvement in MAPE accuracy for MOGPR by
70% (from 3.3% to 0.87%) through detrending with dynamic
weighted mean of unbounded training data sets using the
moving average sliding window approach.

Future works may include investigations into the behaviors
of the various windows of moving averages on MAPE for
different degradation profiles, vis-à-vis different sampling
rate. The optimal moving average window may depend on
the extent of non-monotonicity in the degradation profile and
the full width half maximum (FWHM) of any humps in the
time series trend, as well as the density of data points. Alter-
natively, an operational perspective can be studied wherein
the adoption of an incremental window size n that increases
with the number of data points is feasible, given that the
expectation on accuracy in the initial storage life is not as
critical, and a progressive reduction in the MAPE in tan-
dem with the increase in storage life may be acceptable.
Finally, beyond detrending bias, there may be other factors,
for instance, the (1) number of observations, (2) degree of
correlation between the multiple outputs, (3) degree of noise,
(4) number of iterative steps for hyper-parameter optimiza-
tion, introduced during MOGPR that may affect MAPE.
A systematic analysis to understand these potential error
sources may support further suppression of the MAPE.
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