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ABSTRACT Precision agriculture is the process that uses information and communication technology for
farming and cultivation to improve overall productivity, efficient utilization of resources. Soil prediction
is one of the primary phases in precision agriculture, resulting in good quality crops. In general, farmers
perform the soil prediction manually. However, the efficiency of soil prediction may be enhanced by using
current digital technologies. One effective way to automate soil prediction is image processing techniques
in which soil images may be analyzed to determine the soil. This paper presents an efficient image analysis
technique to predict the soil. For the same, a robust feature selection technique has been incorporated in
the image analysis of soil images. The developed feature selection technique uses a new oscillating spider
monkey optimization algorithm (OSMO) for the selection of features that are relevant and non-redundant.
The new oscillating spider monkey optimization algorithm increases precision and convergence behavior by
using an oscillating perturbation rate. A set of standard benchmark functions was deployed to visualize the
performance of the new optimization technique (OSMO), and results were compared based on mean and
standard deviation. Furthermore, the soil prediction approach is validated on a soil dataset, having seven
categories. The proposed feature selection method selects the 41% relevant features, which provide the
highest accuracy of 82.25% with 2.85% increase.

INDEX TERMS Soil prediction, feature selection, spider monkey optimization, perturbation rate, smart
agriculture.

I. INTRODUCTION
Worldwide, agriculture is one of the significant sources of
food and income. The economy of various countries highly
depends on the outcome of agriculture. Different types of
plants are harvested according to geographical locations and
soil quality. There is a direct relationship between the soil, and
the plants [1]. For each plant, a specific soil is required. Soil
texture affects agriculture, selection of crops, the requirement
of nutrients and water, and growth of crops. Therefore, it is
essential to predict the soil before farming.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

Furthermore, the selection of plants according to the soil
will increase productivity. In general, the soil is predicted
manually by farmers as the availability of experts is not
easy at all times. This manual process further may be biased
and non-appropriate due to the expertise and knowledge of
the farmers [2]. Therefore, the automation of soil prediction
with precision may improve this selection and may be help-
ful to increase productivity without the need for an expert.
Furthermore, precision agriculture tries to bring farmers and
soil closer and work in synchronization. It uses technology
and intelligent devices that are interactive and easy to use in
farming.

In general, the soil may be classified according to its
texture into seven classes; namely, silty sand, clay, sandy clay,
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clayey sand, clayey peat, humus clay, and peat [3], [4]. The
pipette and hydrometer methods are the primary method of
predicting the soil, which is time-consuming and requires
an extensive workforce. Moreover, the most common soil
analysis approach to study soil sub-surface with soil surface
depth information is known as cone penetration testing (CPT)
[5], [6]. However, Zhang et al. [7] observed that this CPT
method may give uncertain results due to the complex com-
position and varying mechanical properties of soil. It results
in class overlapping of different soils.

Furthermore, CPT and hydrometer methods are not easily
approachable to each farmer. Recently, digital image process-
ing provides very effective classification techniques that can
be utilized to select soil according to its texture. Therefore,
in this work, a soil prediction method has been developed
using image analysis techniques that use the texture images
of soil for its classification.

Past several years witnessed different soil classification
methods [3], [8], [9]. Chung et al. [10] use RGB histogram
techniques to represent the paddy soil series. Sharma and
Kumar [11] presented traditional image mid-level and high-
level classification methods for the classification of soil.
Bhattacharya et al. [3] extracted the features using the bound-
ary energy technique after the segmentation of signals. For the
classification task, various classifiers are used and validated
like neural networks, decision trees, support vector machine
(SVM), and many others. Furthermore, Gordon reviewed
the SVM classifiers in soil classification using image-based
features and observed that the efficiency of these techniques
is highly affected by how features are extracted.

Since the classification accuracy is heavily dependent on
the quality of extracted features [12], [13], various fea-
ture extraction methods for soil classification have been
presented. These feature extraction techniques are general
statistics and learning-based. The methods of learning-based
feature extraction use machine learning for feature extraction
from soil images. Some popular machine learning approaches
in this category are convolutional neural network (CNN) [14],
restricted Boltzmann machines [15], and auto-encoders [16].
Feature selection problem is a combinatorial optimization
problem, recently Shi et al. [17] proposed a collaborative
approach for dimensionality reduction, and Li and Du [18]
deployed the Laplacian method for analyzing hyperspectral
imagery. Padarian et al. [19] used a CNN model to predict
the soil organic carbon and showed that it reduces the error
by 30%. Lu et al. [20] presented a 4 layers deep CNN for
soil detection. For the same, they have used the combination
of 80 synthetic hyperspectral bands and eight multispectral
bands to improve the soil prediction accuracy by 7.42%. Fur-
thermore, Yu et al. [21] proposed a three-dimensional CNN
for soil classification and accelerated the feature discrimina-
tor’s ability. Thuy and Wongthanavasu [22], [23] proposed
two new approaches for feature selection; the first approach is
based on D-stripped quotient sets, and the second is based on
stripped neighborhood. In literature, these learning-based
feature extraction methods perform well. Swarm-based

techniques [24], [25] are successfully deployed for solving
different real-world problems. However, a high computa-
tional cost is induced in these approaches.

The statistical techniques extract different sizes, shapes,
and structural features from the soil images further supplied
to one of the classifiers. These methods do not generally
perform well due to the complexity of an image’s texture.
Recently, different texture feature-based methods have been
implemented to take out the features of an image like local
binary pattern (LBP) [26], the histogram of oriented gra-
dient (HOG) [27], speed-up Robust Features (SURF) [28],
and scale-invariant feature transform (SIFT) [29]. These fea-
ture extraction methods show better performance for com-
plex structured images. However, these methods generate
high-dimensional feature maps that may lead to the gen-
eration of irrelevant and redundant features. These redun-
dant and irrelevant features are responsible for the degraded
performance of a classification system [30]. Therefore, this
work uses a powerful feature selection approach to reduce
redundant and irrelevant features.

In literature, many feature selection methods are present,
which can be categorized into wrappers, filters, and embed-
ded methods [31]. The filter method is computationally effi-
cient because it uses featuremaps as class variables. However,
these filter methods do not perform well when used as a
classifier [32]. In the case of wrapper methods, predictive
models are used to find the feature subset such as Sequential
backward selection (SBS) [33] method. These methods are
more promising than the filter methods [31] and iteratively
remove the irrelevant features. Finally, embedded methods
use classifiers to find a good set of features such as SVMwith
recursive feature elimination (SVM-RFE) [34]. The primary
concern with the wrapper and embedded methods are their
computational complexity which is very high [12].

Graph-based techniques are also successfully deployed for
feature selection. Roffo et al. [35] proposed a framework for
feature selection using Markov chain and power series of
matrices. Hashemi et al. [36] introduced a multi-label graph-
based approach. Here, the author used the PageRank algo-
rithm. Henni et al. [37] deployed PageRank algorithm with
subspace for feature selection using a graph-based unsuper-
vised algorithm. Roffo et al. [38] introduced a graph-based
ranking system with probabilistic latent. Zhang and Han-
cock [39] introduced hypergraph clustering in feature selec-
tion. Chen et al. [40] used these algorithms for object-
oriented classification.

Classical search strategies are single solution-based tech-
niques for optimization, and the result is also one optimized
solution. These classical optimization methods cannot solve
problems that are non-differentiable, discrete, and multi-
model. Thus, it is required to use some approaches to handle
these complexities. Population-based approaches are one of
the best solutions and emerging techniques. These algorithms
use a swarm of solutions in every cycle and result in a popula-
tion of solutions. Population-based algorithms share numer-
ous mutual conceptions. Due to the capability of handling a
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large class of problems, this research work considered SMO
as the center of research. The use of meta-heuristic methods
generally removes the drawbacks of the feature, as men-
tioned earlier, selection methods. Different researchers pre-
sented various meta-heuristic algorithms to efficiently select
features from high-dimensional feature maps. For example,
the spider monkey optimization (SMO) [41] algorithm is
a nature-inspired algorithm based on the behavior of spi-
der monkeys. SMO has been proved better for handling
high-dimensional feature space, which may be helpful in
feature selection. The algorithm looks over the search area
in its initial phases and then exploits it iteratively. For the
same, the SMO uses the social organization of spider mon-
keys. SMO has been used in various real-world optimization
problems successfully. Hybrid of SMO with other NIA [42]
also deployed for information retrieval and performed well.
However, its performance may be improved by modifying its
different parameters.

In SMO, different phases are used, like the global and
local leader phases, which are highly affected by a param-
eter known as perturbation rate. It is an essential parameter
of SMO for deciding its convergence behavior. In stan-
dard SMO, a linearly increasing perturbation rate is used.
Although this linear increasing function performs well but
not so well for non-linear real-world problems, the inclusion
of non-linearity in perturbation rate may increase the per-
formance of new variants. Considering the same, different
researchers have used different non-linear perturbation rates.
For example, Kumar et al. [43] used a chaotic SMO in bag-
of-words for soil prediction in which chaotic perturbation is
used.

Moreover, an exponential perturbation rate is used in SMO
for plant leaf disease identification [44]. However, these
variations also converge towards the local optima. Hence,
improvement in the perturbation rate is still an open area.
Therefore, this paper introduces a new approach (OSMO)
in which the perturbation rate oscillates between a range
and improves the balancing of exploitation and exploration.
Furthermore, the proposed OSMO has been used to select
the optimum set of features from high dimensional feature
vectors of soil images.

The major research contributions of this paper are as
follows:

1) A detailed study was conducted for recent modifica-
tions in SMO and recent development in plant disease
identification.

2) A new oscillating perturbation rate was introduced
in SMO and named the oscillating SMO (OSMO)
algorithm.

3) The texture features are obtained from the images using
the SURF method, and OSMO-based feature selection
enhances the classification accuracy.

4) The performance of OSMOwas evaluated on 15 bench-
mark problems, and results were validated byWilcoxon
rank-sum test.

5) Soil images are classified by SVM, LDA, kNN, and
RF classifiers. These algorithms are compared for the
number of features selected and the accuracy achieved.

6) The RF classifier achieved the best accuracy (82.25%)
for the OSMO-based feature selection approach with a
2.85% increase.

The rest of the paper is as follows. The standard SMO is
briefed in Section II followed by the OSMO algorithm in
Section III. Section IV contains result discussion and statis-
tical validation of achieved results. Section V concludes the
paper with future scope.

II. SPIDER MONKEY OPTIMIZATION (SMO)
The SMO algorithm is driven by spider monkeys’ social and
foraging behavior. The fission-fusion social structure (FFSS)
is used to model the SMO algorithm, in which monkeys
divide themselves into groups from large to small and vice-
versa. The following are the essential characteristics of FFSS
in spider monkeys [41].

1) All the spider monkeys maintain a group of 40 to
50 monkeys known as individuals in SMO.

2) There is a global leader (GL) among the monkeys
who can divide the groups into smaller three to eight
subgroups if the food is insufficient. Each group starts
foraging independently.

3) Each subgroup also has a local leader (LL) under which
the food is searched.

4) The group members use a unique sound to social inter-
action with other members of the group’s

As mentioned earlier, the basis of foraging among spi-
der monkeys, the SMO, has been mathematically designed
and developed. In SMO, there are six phases and discussed
in subsequent subsections. The Algorithm 1 illustrates the
pseudo-code for the standard SMO.

Let ith individual (Xi) in a D-dimensional vector of N
population is represented by Eq. (1) and initialized by
Eq. (2).

Xi = X1
i ,X

2
i , . . . ,X

j
i , . . .X

D
i (1)

X ji = X jmin + φ × (X jmax − X
j
min) (2)

where X jmax and X
j
min are upper and lower value of Xi in the

jth dimension. φ returns an arbitrary number in the range of
[0, 1].

A. LOCAL LEADER PHASE (LLP)
This phase updates the location (X ji ) of each member using
the learning of the LL (XL jk ) and members of the local group
by Eq. (3), based on a probability pr that is known as per-
turbation rate. This position is only updated if a new solution
has higher fitness than the existing solution.

X ji = X ji + φ × (XL jk − X
j
i )+ ψ × (X jr − X

j
i ) (3)

here,ψ ∈ [−1, 1] is a random number, XL jk is the positions of
the LL in k th group and X jr is randomly selected r th individual
from this group.
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FIGURE 1. The proposed OSMO based soil image classification method.

Algorithm 1 Spider Monkey Optimization
Randomly initialize the swarm of N monkeys. That
denote a vector of D decision variables, depicted as
{X1

i ,X
2
i , . . . ,X

j
i , . . .X

D
i }. Here, i is the i

th individual.
Randomly initializes pr and limit for Local and Global
Leader.
Measure, the fitness of each individual.
Elect local and global leaders using greedy selection pro-
cess.
while Stopping Criteria do
Obtain new positions for all individuals using the Local
leader phase.
Use the fitness values of each group member to deploy
the greedy selection.
Apply the global leader phase to obtain the group mem-
bers’ new positions.
The location of global and local leaders is updated based
on fitness.
If there is no change in any Local group leader for a
predefined limit, apply the LLD phase.
If Global Leader is not updated for a predefined limit,
then apply the GLD phase to divide the group into
smaller subgroups. Maintain the minimum size of each
group to four.

end while

B. GLOBAL LEADER PHASE (GLP)
After the LLP, every individual updates its location using
Eq. (4). This phase includes the knowledge of GL (XGj) and
members of the local group.

X ji = X ji + φ × (XGj − X
j
i )+ ψ × (X jr − X

j
i ) (4)

C. GLOBAL LEADER LEARNING (GLL) PHASE
In the GLL phase, the best individual is declared as a global
leader (XGj). If the GL fails to update her position, it incre-
ments the global limit counter.

D. LOCAL LEADER LEARNING (LLL) PHASE
The monkey (Solution) with the highest fitness is elevated as
LL (XL jk ) of a particular group during the LLL phase. Similar
to the previous step, if the position of LL does not change,
then the counter for the local limit is incremented by one.

E. LOCAL LEADER DECISION (LLD) PHASE
This phase either randomly initializes all the group members
or modifies their position using Eq. (5) based on the counter
for local limit.

X ji = X ji + φ × (XGj − X
j
i )+ ψ × (X jr − X

j
i ) (5)

F. GLOBAL LEADER DECISION (GLD) PHASE
If the count of global limit for a GL (XGj) outstretched a
threshold, then the GL creates smaller subgroups until the
maximum number of groups (MG) is achieved. This phase
also selects the LL’s (XL jk ) by using the LLL phase. On the
other hand, if the location of GL remains the same until the
threshold MG, then it fuses all the small groups into a large
group.

III. OSMO BASED SOIL IMAGE CLASSIFICATION
The proposed approach presents a new soil predictionmethod
using the soil images. First, the method identifies the category
of soil in three simple steps as given in Fig. 1. The 1st step
is the extraction of features from the considered soil images
followed by the second step selection of features. The primary
research outcome of this work is the development of the
second step, i.e., feature selection. A new approach (OSMO)
has been introduced in feature selection to select optimum
features. The identified prominent features are then made
available to the classification phase, where a classifier is
trained to recognize the soil quality. Each phase of the pro-
posedmethodology is described in the upcoming subsections.

A. FEATURE EXTRACTION
The first step of the proposed soil classification system
is extraction features. For the same, texture features are
extracted from the images using the SURF technique. The
SURF technique for feature extraction was developed by
Bay et al. [28] which extracts the local features and cor-
responding descriptor. Generally, SURF is used to extract
the texture features in various application areas of com-
puter vision. The features extracted by SURF are rota-
tional, illumination, scale, and noise invariant. This technique
works in three phases: detecting interest points, neighborhood
description, and keypoint matching. First, the Hessian matrix
approximation finds the interest points in the image. Then, the
sum of Haar wavelet responses among the neighborhood is
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measured for the feature descriptor. Finally, keypoint match-
ing is performed between the descriptors.

B. OSCILLATING SMO BASED FEATURE SELECTION
After the SURF features extraction method, a high-
dimensional feature map is generated. Due to its high
dimension, the computation cost of a classification system
increases. Furthermore, some of these features may be redun-
dant and irrelevant, reducing the efficiency of a deployed
classifier. Therefore, to minimize these two effects, a new
feature selection approach has been presented in this paper.
The newly presented feature selection approach uses an
OSMO algorithm to select the optimum features. OSMO is an
optimization algorithm that finds the optimum solution in a
guided search and variant of the existing SMO algorithm. The
steps of the proposed feature selection method are as follows.

1) Let D features are extracted by the SURF method.
These features are represented in a one-dimensional
vector.

2) Initialize the N individuals in the population of
the OSMO algorithm randomly in the range of
[0, 1]. The dimension of every solution is equated
to the count of features, ie. D and is represented by
{X1

i ,X
2
i , . . . ,X

j
i , . . .X

D
i } as depicted in Eq. 1.

3) Initialize limit for Global and Local Leader and pr
randomly.

4) Calculate the fitness of every solution as follows:

a) Convert the decision variables values of each indi-
vidual from real to binary using a threshold value
(Th) and Eq. (6). The value of (Th) can be selected
empirically.

X ji =

{
1 if X ji > Th

0 if X ji ≤ Th
(6)

b) Use the accuracy returned by K-fold cross SVM
as the fitness value of an individual. The input
to the SVM classifier is those features whose X ji
value is 1 and the corresponding image label.

5) Apply the OSMO algorithm to find the best individual.
6) Select those features whose corresponding X ji value

is 1 in the best individual returned by the OSMO
algorithm.

The proposed OSMO algorithm is similar to the SMO algo-
rithm except for the perturbation rate. In basic SMO, the
perturbation rate increases linearly, while an oscillating per-
turbation rate is introduced in the newly proposed OSMO
algorithm and is explained in the following subsection.

1) OSCILLATING PERTURBATION RATE
The perturbation rate, an essential parameter of SMO, dra-
matically impacts the precision and rate of convergence.
The basic SMO has a linearly increasing perturbation rate.
However, as the maximum problems in the real world are
nonlinear, non-linearity in the perturbation rate can improve

SMO’s performance. Recently Kumar et al. [43], [44] pro-
posed chaotic SMO [43] and exponential SMO [44] for
soil classification and leaf image classification respectively.
These two modifications in SMO taken advantage of the
nonlinear perturbation rate. The chaotic map used by [43] to
decide perturbation rate is illustrated by Eq. (7).

pr(t+1) = 1− (prt )×
(
max_it − t
max_it

)
× z (7)

where, t andmax_it represent current iteration and maximum
number of iterations respectively. The value of z is decided by
Eq. (8)

z(t+1) = µ× zt × (1− zt ) (8)

where, zt ∈ [0, 1] represent chaotic number for t th generation.
Value of µ is fixed 4 for this experiment after exhaustive
experiments.

In exponential SMO [44], the perturbation rate, is increased
exponentially with the help of exponential function as illus-
trated in Eq. (9)

prnew = (prinit)
max_it

t (9)

where, t andmax_it represent current iteration and maximum
number of iterations respectively and prinit in initial rate
of perturbation that is randomly initialized in the range of
0 and 1.

Keeping these modifications in mind, this paper proposes
a new oscillating perturbation rate which is inspired by the
oscillating inertia weight in PSO [48]. In OSMO, the rate of
perturbation is updated as per its oscillating behavior, which
can be implemented by the following Eq. (10).

pr(t) =
Prmin + Prmax

2
+
Prmax − Prmin

2
cos(

2π t
T

) (10)

T =
2S1

3+ 2k
(11)

where, Prmin and Prmax are the oscillating range of Pr . The
value of t represents the t th iteration. T is the oscillation
period, and k is a constant integer value in the range of [1, 7].
S1 is the count of iterations for which Pr oscillates, and for
the remaining iterations, its value is kept constant. This way,
the Pr oscillates for S1 number of iterations and remains the
same as other iterations.

C. SOIL IMAGE CLASSIFICATION
In the final step of soil image classification, a classifier is used
that is trained using selected features and the corresponding
image labels. The proposed OSMO algorithm selects the
features. This paper uses four classifiers for classification:
k-nearest neighbors, Linear discriminant analysis (LDA),
SVM, and random forest (RF). The SVM classifies the data
with the help of a defined hyper-plane. This paper uses
a multi-class SVM classifier for the classification of soil
images. LDA uses a linear combination of features to dis-
criminate against the classes. K-nearest neighbors classifier
stores all available cases and categorizes new objects based
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TABLE 1. Standard benchmark functions [43], [45]–[47].

TABLE 2. Parameter settings for the proposed OSMO algorithm.

on a similarity measure. RA is an ensemble learning method
for classification in which decision trees are used to predict
the classes.

IV. EXPERIMENTAL RESULTS
The performance of the oscillating SMO-based feature
selection algorithm for the prediction of soil images
has been conducted in two phases. The result analy-
sis of the new OSMO algorithm is depicted in phase
one, followed by the effectiveness analysis of oscillating
SMO-based feature selection method on soil image dataset.
The results of both phases are illustrated in the subsequent
subsections.

A. RESULTS OF OSCILLATING SMO
For the analysis of the OSMO performance, 15 representative
benchmark functions are used. These functions are taken
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TABLE 3. Performance analysis (in terms of mean fitness values for 30 and 50 dimensions) of OSMO and other considered algorithms.

from Kumar et al. [43] who have also worked on the soil
classification and presented chaotic SMO (CSMO). These
functions are depicted in Table 1 [43], [45]–[47] along with
the optimum value of each function, range of decision vari-
ables, and the considered dimensions. For the compara-
tive analysis, five meta-heuristic algorithms are considered,
namely CSMO [43], exponential SMO (ESMO) [44], whale
optimization algorithm (WOA) [49], intelligent gravitational
search algorithm (IGSA) [50], and PSO [51]. The parame-
ter settings of the proposed OSMO algorithm are given in
Table 2. The parameter settings are considered from their
literature for all other existing algorithms. However, for all
the considered algorithms, the number of iterations and pop-
ulation size is kept to 1000 and 50, respectively. To eliminate
the randomization effect, results are averaged for 30 runs, and
their mean fitness values are recorded and compared.

The mean fitness values returned by different meta-
heuristic algorithms for 30 and 50 dimensions are compared
and depicted in Table 3. From the table, it can be seen that
the proposed OSMO outperforms the other existing methods

for F1,F2,F3,F4,F5, F7,F8,F9,F11,F12,F13,F15 func-
tions for both the 30 and 50 dimensions. For the F6 function,
IGSA shows the competitive results. In the case of F10,
CSMO shows better results. For F14, the proposed OSMO
gives better results on 50 dimensions. This validates that
the proposed OSMO algorithm converges better than other
methods.

Furthermore, the mean fitness value results are statistically
validated by using the Wilcoxon rank-sum test [52] for both
the dimensions, i.e. 30 & 50 and presented in Tables 4 and 5
respectively. The NULL hypothesis is that with a significance
level of 5%, two methods are the same for a benchmark
function. In the table, ‘+’ and ‘=’ signify the rejection and
acceptance of the NULL hypothesis, respectively. Moreover,
‘+’ specifies that the OSMO algorithm performs better than
the corresponding method. From the Wilcoxon rank-sum
test table, it is discernible that the OSMO either performs
better for the benchmark functions or performs equally than
the existing method. The values for F6,F10, and F14 func-
tions with respective to IGSA is ‘=’, which indicate that
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TABLE 4. Statistical validation of OSMO algorithm for 30 dimensions using the Wilcoxon rank-sum test for 0.05 significance level.

TABLE 5. Statistical validation of OSMO algorithm for 50 dimensions using the Wilcoxon rank-sum test for 0.05 significance level.

the proposed algorithm gives a similar output as for IGSA
and CSMO, respectively. Therefore, these results validate the
performance of the OSMO better than the other considered
methods.

Figure 3 shows the comparison of features selected by the
proposed OSMO algorithm and other considered algorithms,
while Figure 4 shows the accuracy comparison for consid-
ered algorithms.

B. RESULTS OF OSMO BASED SOIL IDENTIFICATION
A soil image dataset is considered to validate the performance
of OSMO based feature selection method. The soil image
dataset consists of seven types of images, namely sandy clay,
clayey sand, clay, silty sand, peat, clayey peat, and humus
clay, [3]. There are 175 images, 25 from each category.
A sample image of soil from each class is displayed in Fig. 2.

The input images are of different sizes and are RGB-colored
images. Hence, the images are reshaped to 250 × 190. The
images are captured from different geographical locations.
After extracting features, the efficiency of extracted features
is tested on four classifiers, namely RF, LDA, kNN, and
SVM.

The performance of the OSMO algorithm-based feature
selection mechanism for the soil image dataset is com-
pared with CSMO, ESMO, IGSA, WOA, and PSO-based
feature selection approaches. The accuracy of classifica-
tion and number of selected features are considered as
the performance parameters, and the results are illustrated
in Table 6. It is discernible from the table that SURF
extracted 127054 from the image, and the same is illus-
trated in Fig 3. Moreover, the table also depicts the num-
ber of features selected by the proposed and considered
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FIGURE 2. Sample soil images.

TABLE 6. Comparison of performance for OSMO-based feature selection and classification methods against the existing methods.

feature selection methods. The proposed OSMO-based fea-
ture selection method selects 52092 features which are 41%
of total features. Regarding the feature elimination process,

the OSMO eliminates the highest number of features, i.e.,
59%, followed by IGSA based algorithm, which reduces
the 56% of features. This result reflects that the oscillating
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FIGURE 3. Algorithm wise feature selection.

FIGURE 4. Comparison of accuracy for considered algorithms.

perturbation rate helps SMO converge better and gives higher
precision values in selecting relevant features than other exist-
ing methods.

Four classifiers are used to check the relevancy of the
selected features, namely SVM, LDA, kNN, and RF. The
returned accuracy from each classifier is depicted in Table 6
and Fig. 4. The RF classifier gives 82.25% accuracy for
an OSMO-based approach which is the highest. However,
the remaining classifiers also perform better for feature
sets selected by OSMO. Therefore, it can be said that the
OSMO-based feature selection approach for soil image clas-
sification improves other algorithms and can be utilized for
other classification applications.

V. CONCLUSION AND FUTURE SCOPE
This work presented a new approach for feature selec-
tion from soil images named as oscillating SMO algo-
rithm. An oscillating perturbation is proposed in the OSMO
algorithm to take advantage of non-linearity and achieve
a better convergence. The OSMO algorithm was tested on

15 benchmarks and compared against CSMO, ESMO, IGSA,
WOA, and PSO algorithms. The results show the best con-
vergence behavior of the OSMO algorithm. In addition, the
proposed algorithm was tested on a soil image dataset that
has seven classes. The proposed OSMO-based feature selec-
tion algorithm takes SURF extracted features and eliminates
irrelevant and non-redundant features. The work was com-
pared with five other well-known meta-heuristic algorithms,
namely CSMO, ESMO, IGSA, WOA, and PSO-based tech-
niques. The proposed OSMO-based algorithm eliminates the
maximum number of features, i.e., 59%. Four classifiers are
tested to classify soil images: RF, LDA, kNN, and SVM.
Table 6 demonstrates that all the classifies give good results
for OSMO, but RF gives the best accuracy for it.

The future work includes the applicability of the OSMO to
other real-world datasets. Furthermore, the parallelization of
OSMO may be implemented for its use in big data. The per-
turbation rate may be modified with some nonlinear search
strategies to take advantage of the nonlinear nature of the
problem.
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