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ABSTRACT Spectrum sensingmethods based on deep learning require massive amounts of labeled samples.
To address the scarcity of labeled samples in a real radio environment, this paper presents a spectrum
sensing method based on semi-supervised deep neural network (SSDNN). Firstly, a deep neural network
is established to extract the features of signals by using small amounts of labeled samples; Then, plenty of
unlabeled samples are used for self-training process, and the ones with high confidence are marked with
pseudo-label to expand the labeled dataset. Finally, the extended dataset is used to retrain the network.
Plentiful experiments are carried out on a dataset of 124,800 samples. The results demonstrate that the
proposed algorithm has good detection performance over multi-path fading channel and additive white
Gaussian noise channel due to the utilization of a great deal of unlabeled dataset. When the labeled samples
account for only 5% of the traditional fully supervised deep learning model and the SNR is higher than
−13 dB, the detection probability of SSDNN is higher than 90%.

INDEX TERMS Cognitive radio, spectrum sensing, deep neural network, semi-supervised learning, limited
data.

I. INTRODUCTION
With the rapid development of communication technology,
the wireless spectrum is widely used in broadcasting, satel-
lite, military, and other communication systems. Research
shows that the utilization rate of authorized frequency band
is between 15% and 80%, while the unlicensed frequency
band is increasingly short [1]. As an intelligent wireless
communication technology, cognitive radio (CR) [2], [3] can
intelligently find available free spectrum to improve spec-
trum utilization. Spectrum sensing is crucial for CR [4], [5].
The secondary user (SU) detects whether there is a primary
user (PU) in a specific frequency band through spectrum
sensing, so as to decide if available free spectrum exists or
not. Therefore, improving the accuracy of spectrum sensing
can effectively enhance spectrum utilization.

Traditional spectrum sensing methods are divided into
single node spectrum sensing [6]–[9] and collaborative spec-
trum sensing [10]–[12]. Typical single node spectrum sens-
ing methods include energy detection [6], cyclostationary
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feature detection [7], matched filter detection [8], and fre-
quency domain entropy-based methods [9]. In collaborative
spectrum sensing, the fusion center makes the final decision
according to the hard fusion or soft fusion rules by receiving
the signal or decision result of each SU [10]. Due to the
complexity of the actual communication environment, both
single node spectrum sensing and collaborative spectrum
sensing are required to have the ability to adapt to the com-
plex and changeable communication environment, as well
as the ability to carry out spectrum sensing quickly. How-
ever, the traditional spectrum sensing methods are not always
able to meet the requirements of the real electromagnetic
environment.

With the development of deep learning technology, the
feature extraction ability of neural network is constantly
improving, and spectrum sensing algorithms based on deep
learning emerge in endlessly [13]–[16]. The spectrum sensing
methods based on deep learning have strong feature extrac-
tion ability and detection performance. Deep learning makes
spectrum sensing intelligent by collecting environment infor-
mation and user state in the CR network for modeling and
reasoning learning, so as to make it adapt to the actual
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TABLE 1. Deep learning model in spectrum sensing.

communication environment and obtain high perfor-
mance [17]. Table 1 summarizes several typical spectrum
sensing algorithms based on deep learning.

In [18]–[23], a convolutional neural network(CNN) is
applied to spectrum sensing. Pan et al. proposed a spec-
trum sensing method for orthogonal frequency division
multiplexing (OFDM) signals based on deep learning and
cyclic spectrum [18]. In that paper, the cyclic autocorrela-
tion characteristics of the OFDM signal were analyzed, and
the cyclic spectrum was obtained by using the time domain
smooth fast Fourier transform accumulation algorithm. Then
the cyclic spectrum was converted into the gray image as the
input feature. The improved CNN model based on LeNet-5
was used to extract deep features layer by layer. The numer-
ical simulation results indicate that the proposed method
has better sensing performance than the traditional methods
under low signal-to-noise ratio (SNR). Xie et al. used the
information of the activity pattern of PU to find available free
spectrum [19], which can be divided into two phases: offline
training and online identification. In the phase of offline train-
ing, the CNN trained model parameters using the covariance
matrix of the sensing data in the current frame, the covariance
matrix of historical sensing data and the labeled PU state
data. In the phase of online identification, the trained CNN
achieved real-time detection based on current and historical
sensing data. The numerical simulation results show that the
algorithm is better than the estimator detection and hidden
Markov model detector. In [20], the CNN with 5 convolution
layers, three maximum pooling layers and two fully con-
nected layers were used for binary classification to determine
whether the signal exists or not. The results show that the
accuracy of the training set is about 98%, and the accuracy of
the validation set is about 92%. In [21], the normalized signal
power spectrum was used as the input of CNN, and eight
kinds of modulation signals and noises were used to train the
network. The simulation results show that the performance of
the method is better than that of the traditional method based
on the maximum-minimum eigenvalue ratio and the method
based on frequency entropy. At the same time, it has a strong
generalization ability and can detect various untrained sig-
nals. In the case of noise and interference, the signal spectrum
sensed by SU was calculated in [22] and sent to the CNN
detector for classification to determine whether a PU signal
exists. Simulation results show that the performance of the

CNN detector is better than that of the classical energy detec-
tor. In [23], Liu et al. used the sample covariance matrix as
the input to generate test statistics. Thus, a CNN model with
maximum posterior probability (MAP) as the cost function
was designed. According to the Neyman-Pearson criterion,
the spectrum sensing likelihood ratio test method based on
CNN was derived. It is proved that the CM-CNN method
is equivalent to the optimal estimator correlator detector
under an independent identical distribution model. In [24],
LSTM was combined with CNN to realize spectrum sens-
ing. CNN was used to extract energy-related features from
the covariance matrix generated by receiving data. Then the
features of multiple sensing periods were input into LSTM
to learn PU activity pattern, so as to further improve the
detection probability, and the performance of CNN-LSTM
was verified in the presence and absence of noise uncertainty.
In [25], a spectrum sensing method combining deep auto-
encoder (DAE) neural network and SVM was presented. The
received signal was converted into an image and sent to DAE
for feature learning. The results of DAEwere input into SVM
for classification, so as to determine whether the input signal
was a PU or SU.

The above spectrum sensing methods using deep learn-
ing are all based on supervised learning, which can obtain
excellent detection performancewhen the true-label dataset is
sufficient. In a real radio environment, it is feasible to use the
receiver to obtain vast amounts of PU signals, but labeling all
the signalsmanually is very time-consuming.Moreover, there
may be mislabeling. At present, the research of spectrum
sensing for limited label samples is still in its infancy at home
and abroad, but there are some semi-supervised learning
methods in other fields [26], [27].

Inspired by the extensive usage of MIMO technology in
spectrum sensing algorithms, Xie et al. proposed an unsuper-
vised deep spectrum sensing algorithm (UDSS) [14], which
established the variational auto-encoder Gaussian mixture
model to complete the signal clustering identification. How-
ever, the high detection probability of this method relies on
a large number of antennas and the significant correlation
coefficient between the received signals of each antenna.
Motivated by this, the problem of the spectrum sensing is
considered in a general sense in this paper, regardless of
the specific signal types and complex channel models. The
application of semi-supervised learning in spectrum sensing
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is investigated, as it only requires a few of labeled training
samples at a small cost and canmake the best use of amajority
of unlabeled samples.

Very recently, semi-supervised learning methods mainly
use artificial features and classifiers to realize self-learning.
The typical classifiers mainly include support vector
machine [28], [29], k-nearest neighbor [30] (KNN), Gaus-
sian mixture model [31], [32] (GMM), and artificial neural
network [33]–[35] (ANN), etc. These classifiers can achieve
better performance in the case of only a bit of labeled sam-
ples. However, it is challenging to select the appropriate fea-
tures and classifiers in practical application. Aiming to solve
the above problems, this paper combines a semi-supervised
learning method with a deep neural network, which can avoid
selecting features and classifiers. The feature extraction and
classifier can be combined to conduct the training.

To sum up, the contributions of this paper are as follows:
• The training phase of this method is based on semi-
supervised classification. Therefore, only a small num-
ber of labeled samples are needed. Compared with
the traditional spectrum sensing method based on deep
learning, the proposed method significantly reduces the
dependence on labeled samples.

• Tomake full use of slight labeled samples and a majority
of unlabeled samples, a semi-supervised deep neural
network is proposed to improve the classification accu-
racy by setting the confidence function and modifying
the cross entropy loss function.

• Through extensive simulation and comparison, the
advantages of the proposed detection method are veri-
fied compared with traditional spectrum sensing meth-
ods, such as the energy detection method (ED) and
entropy-based method (Entropy). Meanwhile, it shows
that the proposed method can effectively improve the
performance of spectrum sensing. The detection prob-
ability is almost the same as that of the fully supervised
deep learning method, making it a more practical solu-
tion to address the issue that it is difficult to acquire a
sufficient amount of labeled dataset in deep learning.

• In addition, the effects of different sampling lengths, dif-
ferent false alarm probabilities, different channel fading
scenarios, and different frequency offset scenarios on
the detection performance of the SSDNNmodel are also
explored.

II. METHOD AND IMPLEMENTATION
A. PROBLEM DESCRIPTION
Spectrum sensing problem can be effectively transformed
into a binary hypothesis decision problem. There are two
hypotheses: H0 represents the absence of the primary user,
and H1 represents the presence of the primary user, then the
N points of the received signal can be expressed as [36]:

H0 : x(n) = v(n)

H1 : x(n) = h(n)s(n)+ v(n) (1)

where, n = 0, 1, 2, · · · ,N − 1, x(n) denotes the com-
plex signal received by SU; s(n) is the transmitted signal
of PU; v(n) is the additive white Gaussian noise (AWGN)
subject to N

(
0, σ 2

)
, and h(n) is the channel gain between PU

and SU. Detection probability Pd and false alarm probabil-
ity Pf are two important indexes to measure the performance
of spectrum sensing :

Pd = P (H1 | H1)

Pf = P (H1 | H0) (2)

Assuming that the signal dataset received by SU is D,
it is divided into labeled dataset DL =

(
XL ,YL

)
={(

x(1), y(1)
)
,
(
x(2), y(2)

)
, · · · ,

(
x(l), y(l)

)}
and unlabeled

dataset DU = XU
=
{
x(l+1), x(l+2), · · · , x(l+u)

}
, where x(i)

is the ith sample, y(i) is the true label of x(i), l is the total num-
ber of labeled samples, and u is the total number of unlabeled
samples, on the premise of l � u. y(i) ∈ [0, 1] represents
H0 orH1, respectively. The purpose of SSDNN is to pre-train
the neural network according to the labeled dataset DL and
mark the reliable unlabeled dataset XU ′ in XU with YU ′ .
Then the extended dataset D′ =

{(
XL ,YL

)
,
(
XU ′ ,YU ′

)}
is used to retrain a more powerful classifier model with better
classification performance.

B. PROPOSED METHOD
Figure 1 highlights the framework of SSDNN, which
is mainly composed of the pre-training phase, the
semi-supervised learning phase, as well as the training and
sensing phase.

In the pre-training phase, DNN is pre-trained according to
the labeled dataset DL =

(
XL ,YL

)
; In the semi-supervised

learning phase, the unlabeled dataset XU is input, and the
dataset XU ′ with a high confidence level is marked with
pseudo labels YU ′ by using the pre-trained model. In this
phase, there are usually several iterations. In the training
and sensing phase, the labeled samples and the iteratively
generated pseudo-label samples are used as the new dataset
D′ =

{(
XL ,YL

)
,
(
XU ′ ,YU ′

)}
to retrain the DNN model

gw,b, maximize the posterior probability P(Y | X), and obtain
the optimal model parameterW∗ and b∗.(

w∗,b∗
)
= argmax

w,b
P(Y | X;w;b) (3)

So far, an optimal spectrum sensing classifier model g∗w,b
has been obtained, and the spectrum sensing can be realized
after inputting the test dataset.

1) PRE-TRAINING
The pre-training phase is the critical step of the SSDNN
model. Adding unlabeled samples won’t improve the perfor-
mance of the model until the pre-trained network reaches
a certain accuracy. The training process includes forward
propagation and backward propagation. Forward propagation
refers to the calculation and storage of intermediate variables
(including outputs) for a neural network in order from the
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FIGURE 1. Framework of SSDNN.

input layer to the output layer according to the training set.
The CNN input is set as a1 = x(i), and the weight param-
eter W and bias parameter b of the network are initialized.
The total number of layers of the network is K . The k(k =
2 ∼ K − 1) layer may be one of the convolution layer,
pooling layer, and fully connected layer. The K th layer is
the output ai,K =

[
prob

(
x(i),H1

)
, prob

(
x(i),H0

)]
of the

softmax classifier, which represents the probability that the
ith sample belongs to H1 or H0, respectively. The label corre-
sponding to the maximum probability is selected as the clas-
sification result y(i) of the ith sample, and prob

(
x(i),H1

)
+

prob
(
x(i),H0

)
= 1. The output of each layer is as follows.

If the kth layer is a convolution layer, the output is:

ai,k = σ
(
zi,k
)
= σ

(
ai,k−1 ∗Wk

+ bk
)

(4)

where i represents the sample number, k represents the
layer number, and σ (·) represents the activation function,
zi,k = ai,k−1 ∗Wk

+ bk .
If the kth layer is a pooling layer, the output is:

ai,k = pool
(
ai,k−1

)
(5)

where pool(·) refers to the process of reducing the dimension
of input features according to the size of the pooling template
and pooling standard.

If the kth layer is a fully connected layer, the output is:

ai,k = σ
(
zi,k
)
= σ

(
ai,k−1Wk

+ bk
)

(6)

For layer K (output layer), the calculation formula is as
follows:

ai,K = softmax
(
zi,K

)
= softmax

(
ai,K−1WK

+ bK
)

(7)

Then the binary cross entropy loss between the expected
output and the real output is calculated by using
equation (8).

Jl(W,b)

= −
1
l

l∑
i=1

y(i) log
(
prob

(
x(i),H1

))
+

(
1− y(i)

)
log

(
prob

(
x(i),H1

))
, x(i) ∈ XL (8)

Comparing the error between the output value and the
expected value of the network, when the error is greater than
the expected value, the error is sent back to the network, and
the errors of the fully connected layer, pooling layer, and con-
volution layer are obtained in turn. The weight parameters are
adjusted and updated by the error gradient, and the network
is trained again, which is called backward propagation. The
propagation sensitivity (error) δi,K of the output layer can be
calculated from the cost function:

δi,K =
∂Jl(W,b)
∂zi,K

=
∂Jl(W,b)
∂ai,K

� σ ′
(
zi,K

)
(9)

where ‘‘�’’ denotes Hadamard product, and σ ′(·) is the
derivative of the activation function σ (·).

If the kth layer is a convolution layer, the error output is as
follows:

δi,k = δi,k+1 ∗ rot 180
(
Wk+1

)
� σ ′

(
zi,k
)

(10)

where rot 180(·) represents that the convolution kernel rotates
by 180 degrees, which can be realized by row symme-
try transformation and column symmetry transformation.
For each convolution kernel, the learning rate is set to η,
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thenW and b are updated as follows:

Wk
= Wk

− η

l∑
i=1

δi,k ∗ ai,k−1 (11)

bk = bk − η
l∑
i=1

∑
u,v

(
δi,k

)
u,v

(12)

where
(
δi,k

)
u,v denotes the submatrix of δi,k .

If the kth layer is a pooling layer, the error output is as
follows:

δi,k = upsample
(
δi,k+1

)
� σ ′

(
zi,k
)

(13)

The unsample(·) function completes the logic of pooling
error matrix amplification and error redistribution.

If the kth layer is a fully connected layer, the error output
is as follows:

δi,k =
(
Wk+1

)T
δi,k+1 � σ ′

(
zi,k
)

(14)

The updated expressions of parameters W and b are as
follows:

Wk
= Wk

− η

l∑
i=1

δi,k
(
ai,k−1

)T
(15)

bk = bk − η
l∑
i=1

δi,k (16)

The training is not over until the error is equal to or less than
expected.

2) SEMI-SUPERVISED LEARNING
Semi-supervised learning is a crucial technology to improve
classification performance using unlabeled dataset [37]. The
most frequently used semi-supervised learning algorithm is
self-training [38], [39], which has become a new research
direction in the field of machine learning and an essential
branch of data mining. Moreover, it is gradually becom-
ing a practical tool in many areas. Semi-supervised self-
training attempts to automatically mark unlabeled samples
with pseudo labels and add them to the labeled dataset of each
learning cycle.
The pre-trained deep learning network is used to predict the

classification category (H0 or H1) of unlabeled samples, and
this category is regarded as the pseudo label of the unlabeled
sample. As the initial classifier uses a small dataset, the
classification performance may not be high, so the pseudo
labels generated by the model are likely to be incorrect and
may prevent the learning of new information. Once suffi-
cient amounts of wrong labels are added to the self-training,
it cannot improve the accuracy of classification, and even
reduce the performance of the classifier. Therefore, this paper
mainly enhances the proportion of true labels and reduces the
interference of wrong labels to the training model by setting
the confidence function and modifying the cross entropy loss
function.

3) LABELING SAMPLES WITH HIGH CONFIDENCE
To find the samples with the highest correct probability
from unlabeled samples, a confidence measure function is
defined. Using the confidence value provided by the func-
tion, the sample with the highest correct probability that
needs to be added to the next round of self-training can be
obtained. The ith sample in DNN outputs two neurons ai,K =[
prob

(
x(i),H1

)
, prob

(
x(i),H0

)]
from the softmax classifier.

The confidence function is defined as follows:

Confidence
(
prob

(
x(i),H1

)
, prob

(
x(i),H0

))
=

∣∣∣prob (x(i),H1

)
− prob

(
x(i),H0

)∣∣∣ (17)

The higher the confidence value p obtained by for-
mula (17), the greater the probability of output as correct
classification.

4) MODIFYING CROSS ENTROPY LOSS FUNCTION
If the pseudo label is regarded as the true label directly and
the loss of unlabeled dataset is calculated by the formula (8),
the model will bias toward the wrong training direction, since
these pseudo labels are not all true labels. Therefore, the loss
gradient brought by them to the model needs to be multiplied
by a balance coefficient λ to avoid being excessively affected
by the wrong information:

Ju(W,b)

= −
λ∣∣XU ′
∣∣
∣∣∣xU ′ ∣∣∣∑
i=1

ŷ(i) log
(
prob

(
x(i),H1

))
+

(
1− ŷ(i)

)
log

(
prob

(
x(i),H0

))
, x(i) ∈ XU ′ (18)

where
∣∣∣xU ′ ∣∣∣ refers to the size of pseudo labeled dataset, and

ŷ(i) represents the corresponding pseudo label of x(i). The
modified cross entropy loss function is obtained by combin-
ing labeled samples and unlabeled samples.

J (W,b) = Jl(W,b)+ Ju(W,b) (19)

5) TRAINING AND SENSING
The DNN model gw,b is retrained with a pretty small number
of true-label samples and a mass of pseudo-label samples
generated in the semi-supervised phase to maximize the pos-
terior probability P(Y | X), so as to obtain the optimal
spectrum sensing classifier g∗w,b. In order to evaluate the spec-
trum sensing performance of the classifier, the test dataset is
used.

The test dataset does not reuse the training dataset.
It is assumed that there are M pairs of test samples
DM =

(
XM ,YM

)
=

{(
x(1)test , y

(1)
test

)
,
(
x(2)test , y(2)test

)
, · · ·(

x(M )
test , y

(M )
test

)}
. When there is a primary user, M pairs

of test signal samples are generated. For the ith data

sample, x(i)test is input to the classifier g∗w,b and the output

ai,Ktest =
[
prob

(
x(i)test ,H1

)
, prob

(
x(i)test ,H0

)]
is obtained,
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where prob
(
x(i)test ,H1

)
and prob

(
x(i)test ,H0

)
denotes the

probability of belonging to signal or noise, respectively.
In order to improve the sensing accuracy, the detection criteria
shown in equation (20) are used in reference [21]:

H0 : 1− prob
(
x(i)test ,H0

)
≤ γ

H1 : 1− prob
(
x(i)test ,H0

)
> γ (20)

Setting the threshold γ and counting the number of test
samples kd that satisfy 1 − prob

(
x(i)test ,H0

)
> γ , then the

recognition accuracy is kd/M , which is also the detection
probability Pd under this threshold.

Similarly, when there is no primary user, M pairs of test
signal samples are generated, and the number of test samples
kf satisfying 1 − prob

(
x(i)test ,H0

)
≤ γ can be counted to

obtain the false alarm probability Pf = kf /M under this
threshold.

The SSDNN algorithm flow is as follows.

Algorithm 1 SSDNN Network Algorithm Flow

Input: true-label dataset DL =
(
XL ,YL

)
, unlabeled dataset

DU = XU , maximum self-training times T , pseudo
label confidence threshold p, balance coefficient λ, initial
self-training times t = 0.

Output: get the optimal spectrum sensing classifier g∗w,b.
1: while t <= T do
2: Input true-label dataset DL =

(
XL ,YL

)
3: Initialize SSDNN model network parameter (W,b)
4: Training process : calculate the actual output accord-

ing to equations (4)-(7), use equation (9) to calcu-
late the forward propagation error of this iteration,
reversely obtain the error of each layer according to
equations (10), (13) and (14), and update the parameter
(W,b) of each layer;

5: Load the network parameter (W,b) of the current
iteration number, inputDU into the network, select the
sample set with confidence higher than p, mark the
pseudo label YU ′ and add it to the training set XU ′ ,
delete the sample set YU ′ from DU , and replace equa-
tion (8) with the modified cross entropy loss function
shown in equation (19)

6: end while
7: The labeled samples and the iteratively generated pseudo

labeled samplesD′ =
{(
XL ,YL

)
,
(
XU ′ ,YU ′

)}
are used

as the new training set to retrain theDNNmodel gw,b, and
an optimal spectrum sensing classifier g∗w,b is obtained.

The structure of the deep neural network (DNN) is shown
in Figure 2. Network input is an IQ dual channel matrix com-
posed of receiving complex signals x(n). (n1 × n2,Conv, n3)
represents the convolution layer of n3 convolution cores with
a size of n1 × n2; BN represents batch standardization, and
FC represents fully connected layer.

FIGURE 2. The Framework of the deep neural network.

III. EXPERIMENT AND ANALYSIS
A. DATASET
For dataset, PU signals are modulated by four types, namely,
AM, BFSK, QPSK, and 16QAM, all of which suffer from
Rican channel fading and are polluted by additive Gaussian
white noise. 960 samples of 1024 points are generated for
each modulation signal with different SNR from −20dB to
4dB with an interval of 2dB, and additive Gaussian white
noise samples with the same number and points are gener-
ated with zero mean and unit variance to form a training
set with a total number of 99,840 samples. Similar to the
above, 1,920 samples of four modulation signals under each
SNR are generated to form a test set with a total number
of 24,960 samples. In total, 124,800 samples are generated
to form the original dataset. Instead of directly using the
received time-domain complex signal x(n), it is normalized

to x(n)/
√∑N

n=1 |x(n)|2

N before training or inference. Next, the
proportion of labeled samples in the training set will be
changed and a series of experiments will be conducted.

All signals are generated by MATLAB. The hardware
CPU is Intel (R) core (TM) i7-9700, and the GPU is GeForce
RTX 2070s. The running memory is 20GB.

B. ALGORITHM PERFORMANCE ANALYSIS
1) THE CHOICE OF SELF-TRAINING TIMES
6,240 samples are selected from the training set in
Section III-A as the labeled training set, accounting for 5% of
the original set, and the rest of the training set are regarded as
unlabeled samples. The maximum number of self-training T
is set to 3, and the balance coefficient λ is 0.01. For the binary
classification problem, the category with the probability of
greater than 0.5 will be selected as the decision result, but
the preference of model for a particular category cannot be
controlled. Therefore, 15% samples are extracted from the
labeled training sets to form the support set. The support
set is used to test the trained classifier, and the confidence
threshold is selected when the accuracy is the highest. Then
the unlabeled signal samples are labeled with pseudo-labels
gradually by the self-training algorithm. The curves of
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FIGURE 3. Self-training process of semi-supervised deep neural network.

training accuracy and loss function with the iterations of the
self-training algorithm are shown in Fig. 3 (a) − (d).

Figure 3 (a) shows the classification results of the classifier
trained with only 6,240 labeled samples. With the increase of
iterations, the classification accuracy is gradually improved,
and the cross entropy loss is decreasing. However, due to the
limited samples, the classification accuracy is only 73.08%.
Figure 3 (b) shows the results of the training process after
adding pseudo-label samples with high confidence for the
first time. As more valuable information of samples is added
to the classifier, the feature extraction ability of the SSDNN
model for signal samples is enhanced, so the classification
accuracy is improved to 82.81%. Figure 3 (c) and Figure 3 (d)
show the training process after adding pseudo-label samples
for the second time and the third time respectively, and the
classification accuracy is 83.13%, and 83.82% respectively.
Even after three times of self-training, the training accuracy
is still less than 100%. This is because when the SNR is low,
a large amount of signal samples will be wrongly classified as
noise samples. Moreover, there are false labels in unlabeled

samples with high confidence, which will affect the classifi-
cation accuracy to a certain extent.

After the first self-training, it can achieve higher accuracy,
and the loss function does not continue to decline signifi-
cantly after increasing the number of times of self-training.
As self-training will improve the training time of the model,
T = 1 is set in the following experiments.

2) VISUALIZATION OF HIDDEN SPACE FEATURES
The feature extraction and classification of SSDNN are car-
ried out in hidden space. Aiming to intuitively see the dis-
tribution of high-dimensional signals in the classifier, the
two-dimensional data mapped by the fully connected layer in
SSDNN model is visualized, as shown in Figure 4 (a) − (c),
where samples belonging to H0 are represented by ‘‘o’’ and
samples belonging toH1 are represented by ‘‘+’’. Figure 4 (a)
shows the distribution of samples in two-dimensional space
after just initializing the deep learning network. It can be
observed that the PU signal represented by H1 overlaps
with the Gaussian white noise represented by H0, and the
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FIGURE 4. 2D visualization of deep features. (a) accuracy = 51.2%, after just initializing the deep learning network. (b) accuracy = 74.6%, after the
pre-training phase. (c) accuracy = 83.3%, after the semi-supervised learning phase and the training and sensing phase.

category of each sample cannot be distinguished from the
visual diagram alone. Figure 4 (b) shows the spatial dis-
tribution of two-dimensional signals with the classification
accuracy of 74.6% after the pre-training phase. Compared
with Fig. 4 (a), the two categories of samples is of zonal
distribution, and the differentiation is apparent, but there are
still some overlapping areas. Figure 4 (c) shows the spatial
distribution of two-dimensional signals with a classification
accuracy of 83.3% after the semi-supervised learning phase
and the training and sensing phase. Except for a small part
of the overlap, H0 or H1 can be distinguished as a whole.
At the same time, it can be seen from Fig. 4 (a) − (c) that
the noise distribution is more concentrated. In contrast, the
signal distribution is loose, which may be contributed to
the information of different modulation types in mapped
two-dimensional signal features.

3) INFLUENCE OF BALANCE COEFFICIENT ON ALGORITHM
PERFORMANCE
To explore the influence of balance coefficient λ on classi-
fication accuracy, the proportion of labeled samples to the
original set is 1%, 3%, 5%, 7%, 9%, and 11% respectively.
The relationship between the accuracy of the SSDNN and
the value of λ in different proportions of labeled samples is
shown in Figure 5. From the figure, some conclusions can
be obtained. (1) The balance coefficient has an impact on
the accuracy of SSDNN algorithm. (2) When the balance
coefficient λ is fixed, increasing the proportion of labeled
samples can improve the classification accuracy on thewhole.
This is because when the number of labeled samples is small,
the fitting ability of the SSDNN model is not strong. With
the increase of the proportion of labeled samples in the total
samples, the fitting ability is enhanced, and the different
features of the signal can be extracted better. Especially when
the proportion of labeled samples increases from 1% to 7%,
the classification accuracy can be significantly improved.
(3) When the number of labeled samples is fixed, the

FIGURE 5. Accuracy with different λ.

classification accuracy does not always increase with the
increase of λ, since the increase of λmeans that the impact of
pseudo labeled samples on the trainingmodel increases. If the
proportion of false labeled samples is large, the model will be
trained in the wrong direction. In addition, according to the
experimental results shown in Table 2, higher classification
accuracy can be obtained when the value of λ is between
0.005 and 0.1. Taking λ = 0.01 as an example, when the
proportion of labeled samples increases from 1% to 5%, the
accuracy is improved by 6.6% and 11.9% respectively, which
shows the effectiveness of the SSDNN when the proportion
of labeled samples is low.

4) INFLUENCE OF CONFIDENCE THRESHOLD P ON
ALGORITHM PERFORMANCE
In order to study the influence of confidence threshold p
on classification accuracy, the values of p are set to
0,0.2,04,0.6,0.8 and 1 respectively in 5% labeled sample
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TABLE 2. Labeling accuracy with different λ.

FIGURE 6. Accuracy with different p.

dataset. The balance coefficient is set to 0.01. For simplicity,
the number of self-training T = 1 is assumed. The relation-
ship between the accuracy of SSDNN algorithm and p value
under different confidence thresholds is shown in Figure 6.
As can be seen from the figure: (1) the maximum accuracy
can be obtained when the value of p is 0.6. According to
equation 17, p equals to 0.6 means that a certain category
is selected and marked with a pseudo-label when its prob-
ability is greater than 0.8. (2) p equals to 1 means that a
certain category is selected and marked with a pseudo-label
when its probability is 1. In this case, only few samples will
be selected and marked. The performance of the classifier
mainly depends on 5% of the labeled samples. Because the
number of labeled samples is too small, the classification
accuracy is not ideal. (3) When the p is 0, it means that the
probability of a certain category is greater than 0.5 before it is
selected and marked. In this case, all unlabeled samples will
be marked. As there are wrong labeled samples in the dataset,
the classification accuracy is also not high.

5) INFLUENCE OF SIGNAL SAMPLING LENGTH N ON
ALGORITHM PERFORMANCE
In order to study the effect of the length of the signal
sample N on the probability of detection, the values of N are
set to 512, 1024, and 2048 respectively in 5% labeled-sample
dataset to conduct experiments. The balance coefficient is
set to 0.01 and the false alarm probability is set to 0.1 by

FIGURE 7. Pd under different signal lengths.

adjusting γ , which is required in the IEEE 802.22 standard.
It can be seen from the Figure 7 that the detection probability
increases with the increase of the length of the signal sample.
Especially when the length increases from 512 to 1024, the
signal sample contains more useful information, and it is
used by the classifier, so the detection probability of the
algorithm increases significantly. However, when the signal
sample length increases from 1024 to 2048, the improvement
of detection probability is not obvious at the range between
−20dB and −14dB. This is because when the SNR is low
and the classification performance of the trained classifier
is limited, and blindly increasing the signal sample length
cannot effectively improve the perceptual performance.
(2) The parameters and complexity of the model increase
with the increase of signal sample length. When the detection
probability is 95% and the length are 2048, 1024 and 512,
respectively, the SNR needed are −13.6dB, −12.5dB, and
−11dB, respectively. The longer the sample length is, the
higher the complexity of the algorithm is. Therefore, consid-
ering the performance and complexity of the algorithm, the
sample length N = 1024 is taken latter.

6) INFLUENCE OF DIFFERENT FALSE ALARM PROBABILITY Pf
ON ALGORITHM PERFORMANCE
In order to study the effect of the false alarm probability Pf on
the detection performance, the value of Pf is set to 0.1, 0.05,
and 0.01 respectively to conduct experiments. The proportion
of labeled samples is set to 5% and 10% respectively. It can
be observed from the figure 8 that when the false alarm
probability is fixed, the detection probability increases with
the number of labeled samples. For example, when Pf =
0.1 and SNR is −15 dB, the detection probability of 5% and
10% labeled samples are 71% and 98% respectively. At the
same time, when the detection probability is 100% and the
proportion of labeled samples is 10%, under the three false
alarm probabilities, the required SNR are −12 dB, −10 dB,
and −8 dB, respectively.
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FIGURE 8. Pd under different Pf . (a) Pf = 0.1, (b) Pf = 0.05 and (c) Pf = 0.01.

7) INFLUENCE OF CHANNEL FADING ON ALGORITHM
PERFORMANCE
To explore the detection performance of SSDNN in different
channel fading scenarios, four scenarios are considered: no
fading, Rayleigh fading, Rican fading and Nakagami Fading.
Figure 9 shows the simulation results of SSDNN in 5%
labeled samples, where Pf is set to 0.05, λ = 0.01. The
three path delays and path gains of Rayleigh fading, Rican
fading and Nakagami fading are [0, 4.5, 8.5]*e-05 and [0,−2,
−10]dB respectively. As can be seen from the figure, different
fading channels impact the spectrum sensing performance of
the SSDNN. In the Gaussian channel, the SSDNN algorithm
has the highest detection performance, and in the Rayleigh
channel, the SSDNN algorithm has the worst detection per-
formance. For example, when the detection probability is
90%, the needed SNR of the proposed algorithm in Rayleigh
fading is −9dB, which is 1.5 dB, 2.8 dB and 3.5 dB higher
than that in Nakagami Fading, Rican Fading and no fading
scenarios, respectively.

8) INFLUENCE OF FREQUENCY OFFSET ON ALGORITHM
PERFORMANCE
In order to illustrate the influence of carrier frequency off-
set on the SSDNN method, the sensing performance on
different frequency offsets is analyzed. Energy detection
method (ED) [6], entropy-based spectrum sensing method
(Entropy) [9] and supervised learning CNN [21] are com-
pared. When there is a frequency offset, the received signal
can be described as:

x(n) = ej2π1fcn/fch(n)s(n)+ v(n) (21)

wherein 1fc is the center frequency offset of the transmitted
signal and the received signal, and 1fc/fc is the normalized
carrier frequency offset. In the experiment, Pf is set to 0.05;
the sampling length N equals 2048; 5% labeled samples
constitute the training sets, and 1fc/fc is set to −0.1, 0
and 0.1. The sensing results of four algorithms are shown

FIGURE 9. Pd under different fadings.

in Figure 10. As can be seen from the figure, the performance
curves of the SSDNN and CNN [21] hardly change with
the deviation of carrier frequency, so the two methods can
resist the frequency offset. The frequency offset has a little
effect on the traditional ED and Entropy methods, and their
performance of resisting the frequency offset is worse than
the former two. Both SSDNN and CNN are based on the deep
learning model, in which only the original IQ data is input.
The results show that the deep learning methods can learn
the features of frequency offset in the training process.

9) PERFORMANCE COMPARISON
This section compares the performance of SSDNN, energy
detection method (ED) [6], entropy-based spectrum sensing
method (Entropy) [9] and supervised learning CNN [21].
The labeled sample proportions of SSDNN are 5%, 10%
and 100% respectively, and Pf is 0.1, λ = 0.01. The detec-
tion probability curves of the four algorithms are shown
in Figure 11. It can be observed from the figure that the
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TABLE 3. Computational complexity of different methods.

FIGURE 10. Pd under different frequency offsets.

FIGURE 11. Comparison of different methods.

spectrum sensing methods based on deep learning are bet-
ter than the traditional spectrum sensing methods (ED and
Entropy), owing to the ability that deep learning can learn
the characteristics of PU signal and noise from a quantity of
samples. When the detection probability is 90%, the needed
SNR of fully labeled SSDNN(abbreviated as FSSDNN),
CNN [21], 10% labeled SSDNN and 5% labeled SSDNN
are −16.2 dB, −14.9 dB, −14.1 dB and −13.2 dB respec-
tively. The performance of deep learning spectrum sensing
algorithms with fully labeled samples (FSSDNN and CNN)

is better than that of SSDNN. This is because the former is a
fully supervised learning method with sufficient information
of labeled samples. Still, only the samples with high con-
fidence will be marked in SSDNN, which will reduce the
total number of samples in training. However, the sensing
performance of 10% labeled samples of the SSDNN method
is close to that of the CNN method.

10) COMPLEXITY ANALYSIS
For fair comparison, the computational complexity of the four
methods is analyzed. The computational complexity of the
four algorithms is summarized in Table 3. Both SSDNN and
CNN algorithms need to establish models through offline
training, while entropy and ED algorithms do not have
training process and can directly carry out online detection.
Among them, entropy and ED algorithms do not involve
matrix operation, and their complexity isO(N ). It can be seen
from reference [40] that the time complexity of calculating
all convolution layers is O

(∑D
l=1 nl−1 · s

2
l · nl · m

2
l

)
, Where

l is the index of a convolutional layer, D is the number
of convolutional layers, nl is the number of filters in the
lth layer, sl is the spatial length of the filter and ml is the
spatial size of the output feature map. In addition, Nt and
Ne denote the numbers of training samples and epochs of
the offline training, respectively. For CNN, an extra offline
training is required, and its main complexity depends on
Nt and Ne. The offline training of SSDNN mainly includes
two stages, that is, pre-training and self-training. The com-
putational complexity of pre-training is the same as that
of CNN. Setting the number of self-training as T , the total
computational complexity is shown in Table 3. It should be
noted that in the pre-training stage of SSDNN, only small
amounts of the Nt samples with true-label participate in the
training. Similarly, in the self-training stage, only some of
the Nt samples with true-label and pseudo-label participate
in the training. Therefore, in fact, the computation time of
SSDNN algorithm is less than T + 1 times that of CNN. This
is also illustrated by the actual runtime of the four algorithms
in Table 4. It can also be seen from the table that the traditional
spectrum sensing methods can realize spectrum sensing in a
short time, while the spectrum sensingmethods based on deep
learning need a lot of training time due to the complex model,
but the accuracy of the methods based on deep learning
is higher than that of the traditional method. Although the
SSDNN has the highest training time complexity, its online
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TABLE 4. Runtime of different methods.

detection time is lower than that of CNN once the model is
well-trained.

IV. CONCLUSION
In order to tackle the issue that it is challenging to obtain
vast amounts of labeled samples in real radio environment,
this paper provides a limited data spectrum sensing method
based on semi-supervised deep neural network (SSDNN).
The SSDNN does not require any prior information about
signal and noise distributions. Compared with the existing
supervised learning based spectrum sensing algorithms, the
SSDNN requires a smaller number of labeled training set,
which effectively solves the problem of insufficient labeled
samples in practical application, and provides a new solution
for spectrum sensing with limited samples. The performances
of the SSDNN algorithm in different lengths, different false
alarm probabilities, different fading scenarios and different
frequency offset scenarios are simulated and analyzed for a
dataset of 124,800 samples. It can be observed via the results
of the simulations that when the labeled samples account for
only 10% of the traditional deep learning networks such as
CNN, the classification accuracy of the SSDNN is close to
that of CNN.
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