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ABSTRACT Fog computing (FC) models the cloud computing paradigm expedient by bridging the breach
between centralized data servers and diverse terrestrially distributed applications. It wields various wireless
sensor networks (WSNs) that sprawl in the core of any IoT applications. Consequently, the operation of
fog network turns on the efficiency of WSNs operation, while the all-inclusive network energy consumption
depends on both FC andWSNs operation. This paper addresses how dissimilar organizations of a fog network
can influence its effectiveness and energy savings. Chiefly, it appraises whether deploying multi-sink nodes
in close enough vicinity to the fog nodes can give in energy savings and foster coherent data communication
betweenWSNs and fog networks. To assess the multi-sink assignment problem the following four criteria are
used: (i) Distance from the fog network nodes; (ii) Nodes degree; (iii) Sink nodes energy; and (iv) Sink nodes
processing capabilities. This paper suggests four novel solutions to the multi-sink connectivity for some
challenges of fog networks deeming: (i) Window Nondominant Set (WNS); (ii) Evaluation Based Approach
(EBA); (iii) Harris Hawks Optimizer (HHO); and (iv) Modified HHO (MHHO). Distinct sets of experiments
are conducted to check out algorithmic performance. The performance of all algorithms is measured and then
compared to each other in terms of power consumption, runtime, packet loss, and localization error. One of
the key supremacies of our approaches is the utilization of fog network for sensor networks data processing,
principally with the large-scale networks. Yet, the communication challenges could need further study due
to the limited communication range of the sensors.

INDEX TERMS Cloud computing, energy, fog computing, fog nodes, wireless sensor networks.

I. PROPOSED ACRONYMS

Abbreviation ⇒ Expansion.
WSNs ⇒Wireless Sensor Networks.
IoT ⇒ Internet of Things.
WNS ⇒Window Nondominant Set.
EBA ⇒ Evaluation Based Approach.
HHO ⇒ Harris Hawks Optimizer.
MHHO ⇒Modified HHO.
CC ⇒ Cloud Computing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

FC ⇒ Fog Computing.
FNs ⇒ Fog Nodes.
SNs ⇒ Sink Nodes.
MST ⇒Minimum Spanning Tree.
CHs ⇒ Cluster Heads.
LEACH ⇒ Low-Energy Adaptive Clustering Hierarchy.
NLT ⇒ Network Life Time.

II. INTRODUCTION
As the CC utilizes a network of remote resources through
the Internet, it brings off organizations the cost of servers
and other equipment (e.g., internal servers and personal
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computers). Most of the data arising from mobile nodes and
IoT devices are assembled in realtime. The data-intensive and
time-sensitive applications of such devices have challenged
the idea that CC operates a high Internet bandwidth. The FC
is a good solution to lessen the impediments of WSNs with
its capacity to intersect the requirements of IoT applications.
Nevertheless, most IoT applications suffer from network
latency. Consequently, the processing of large volumes of
data would result in a low throughput. The conventional
provisioning of virtual machines may extensively cap the
number of concurrent applications as well as users within
a system. Numerous solutions have been proposed [1]–[4]
to alleviate these problems, among them the adoption of
serverless computing [5].

The serverless architecture is delegated to third-party
providers in charge of dynamically provisioning and allocat-
ing resources. Another alternative execution model is the FC
(or sometimes referred to as edge computing) [6]–[10]. The
FC acts as a mediator between remote servers and hardware.
The FC is a distributed decentralized infrastructure, whereas
the CC is a centralized system.Most of the FNs are geograph-
ically distributed, resource constrained, and heterogeneous.
As a result, the FC extends the CC paradigm by bridging
the gap between centralized data servers and miscellaneous
applications of geographically distributed computing and
storage resources. The key eccentricity of the FC is its
topology. Explicitly, the geographically distributed nodes
that carry out the computations and offer storage as well
as network services. An N-tier fog distribution consists of
miscellaneous frameworks at various hierarchical levels [11].
It comprises of servers co-located with internet-service-
provider gateways and radio base stations from each fog
node to each sensor node. The implementation of the FC
brings up a long list of challenges including resource handling
of FNs [12], the positioning and movement of application
equipment with utilities onto fog and cloud nodes [13]–[15],
and the offloading from mobile and IoT devices [16]–[21].
Additional adaptations are frequently demanded for almost
every single application based on its architecture, implemen-
tation process, and service requirement.

Concerning sensor network deployment related issues,
most of the research works specify to the placement of a
sink node [22]–[31]. In such directional studies, separate
nodes are generally deployed on the border of the WSN as
an end point to analyze the collected data and make the
decision. Nonetheless, in our scenarios, the WSNs are now
in a separate layer that is used to communicate with the
fog network for data processing. Furthermore, the WSNs
transfer their information to the FNs. Besides, in most fog
network applications, sensors are deployed randomly and are
unattended in the monitoring field. Accordingly, the selection
of sensor nodes on the border of the fog networks to operate
as gateways is pivotal to keep the WSN operating for a long
time and to keep the overall fog and cloud network operating
efficiently. In this paper, the selected nodes are referred to as
SNs since it is widely used term in WSNs.

Motivation: A comprehensive survey on fog network
energy is presented in [32]–[38] where IoT devices are
connected to the CC and the FNs are used as getaways
between the IoT devices and cloud nodes. The core of the
IoT network is the sensor network that incorporates very
tiny and limited capability devices. This research focuses
on the energy consumption of the fog and cloud networks
in terms of energy cost. Yet, there is an important part of
the network, which is the sensor network, which keeps track
of the environment and delivers its information to the fog
points. The energy of this part of the network is critical
in it; if one of the sensor nodes connected to a fog node
were to fail, the overall network would be dysfunctional. The
energy and connectivity of this part of the cloud and fog
network cannot attract much research attention even though
saving some of the energy used byWSNs would be beneficial
to the overall structure of the fog network. Organizing the
WSN in a way that fits the requirements of both FC and
CC is another fault-finding issue. Henceforth, the aim of this
study is to realize the optimal energy saving and connectivity
parameters in relation to the monitoring networks (WSNs)
and the data analysis and decision-making networks. Based
on our previous experience with WSNs, we argue that the
sink node could be one of the nodes given that the sink node
in WSNs is a changeable node based on the current WSN
energy state. In addition, using FNs as SNs is not beneficial
in terms of overall energy saving.

One of the advantages of the FC is its closeness to the
sink node. Therefore, instead of sending all of the sensed
data to the cloud computing which is not energy efficient,
the FC could be more closer for data processing and things
that needs quick decisions could be handled more faster than
sending them to the cloud computing. Besides, some of the
data reduction techniques could be applied on the FC before
sending it to the cloud.

This paper addresses an energy efficient framework for
fog networks based on multi-sink wireless sensor networks.
It is an extension to our previous conference paper [1].
The previous paper proposed two greedy algorithms namely
WNS and EBA with simple test cases. This paper extends
the previous two algorithms by adding more details and
extensive experiments for evaluation. In addition, this
paper proposes more sophisticated algorithms to solve the
multi-sink deployment problem considering both HHO and
MHHO. Succinctly, our contributions in this paper include:
• The proposal of a realistic and a simplified framework
for fog network involving WSNs as a core network;

• The introduction of the problem of WSNs connectivity
with the fog network through a set of SNs (Gateways);

• The proposal of four avant-garde solutions (e.g., Algo-
rithms of 1, modified of 1, 2, and 3) to the multi-sink
connectivity for fog network problem.

The rest of the paper is organized as follows: Section III hints
some preliminaries; Section IV goes through the relevant
literature; Section V discusses miscellaneous algorithms used
for this paper; Section VI specifies the problem; Section VII
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outlines the approaches used to find a solution to the problem;
Section VIII presents the conducted simulation experiments
along with their obtained results; Section IX analyzes the
obtained results; and, Section XI concludes the paper with
few hints of future study.

III. PRELIMINARIES
The FC is a highly virtualized platform that provides
computing, storage, and network services between edge
devices and cloud-based data servers. The FC harnesses
personal devices to speed wireless networks. There are many
applications for the FC including the connected vehicle, smart
grid, andWSNs.Many applications related to smart cities use
controllers that communicate via wireless links [39]. Besides,
the FC allows for data collected from video surveillance
cameras [40] to be stored and processed in fog nodes.
However, according to Bonomi [2], the FC is distinguished by
the following characteristics: low latency, location awareness,
mobility, geographical distribution, support of a large number
of nodes, heterogeneity, strong presence of streaming, and
realtime applications. Because of these characteristics, the
FC could be an appropriate infrastructure for many IoT
applications. The FC can be seen as an extension of the CC
from the core to the edge of the network. Nevertheless, the
CC suffers from a high latency which is not recommended
when working with WSNs. This is one of the reasons that
the FC can be beneficial; especially when operating realtime
applications that require realtime interactions instead of batch
processing (e.g., video steaming, gaming, and augmented
reality). Besides, the FC has a distributed control topology;
whereas the CC has a centralized control topology and this
assists in performing distributed processing on the edge
devices. This can be seen in large scale sensor networks used
to monitor the environment as the FC can support a large
number of nodes. The FC methods are widely wireless but
are fixed.

The WSNs are composed of single nodes that are
capable of interacting with their environment by sensing and
controlling physical tools. To accomplish their tasks, WSN
nodes must collaborate using wireless communication. There
are several directions conserve energy in constrained energy
WSNs including multiple mobile sinks, mobile sinks, mobile
sensors, and multiple sinks. Almost all WSN applications
need actuators to employ physical actions to either close
or open or move. These controlling system actuators could
open new dimensions to WSNs. It is worth mentioning that
the flow of information between sensors and sink as well
as controller node and actuators is bidirectional but not
unidirectional. The actuators network and the wireless sensor
became an assembly of sensors and actuators connected by a
wireless medium to execute distributed sensing and actuation
jobs. The sensor network has to be able to interact with
other devices. But connecting WSNs with the Internet is
difficult due to the lack of standardization in communication
protocols. Besides, WSN data cannot be transmitted over
long distances due to the restriction of the transmission

protocols of the WSN. Hence, it is necessary that WSN
devices exchange data with a gateway or a mobile device that
physically provides the connection to the Internet.

IV. RELATED WORKS
While the CC lacks data transmission because of the
infrastructure and limitations of networks which enormously
decrease its performance, the FC brings computing and
storage resources closer to end users. There are many
techniques that could be used to save energy in a fog
network. Some of the used techniques are based on data
caching [41]–[44]. Such techniques depend on retrieving the
required data from the cached data [45] to save time and
energy. Some approaches are basing the fog operation on 5G
technology [46], [47], while other approaches (e.g., [48]) try
to optimally localize the virtual machines in the fog network.
Additionally, there exits a large body of research focused
on multi-sink localization in WSNs [22], [23], [26], [27],
[29], [49]–[53]. In one of the studies, the sink placement
problem was considered as an optimization problem with an
energy saving objective function. For example, an optimal
solution was proposed in [22], where different heuristics were
used based on Cuckoo [23], Local search [26], Bactria [27],
and Backbone information [29]. However, energy saving in
WSNs may also depend on the used routing algorithms. One
of the most commonly applied algorithms is the LEACH
algorithm [54], which can be used as a clustering and routing
algorithm simultaneously.

In this section, we aim to comprehensively review the most
important up-to-date algorithms in FC related to multi-sink
sensor networks energy saving and clustering techniques.

A. COMPREHENSIVE SURVEYS
Habibi et al. [55] made a comprehensive architectural survey
on FC. Nejad et al. [56] aimed to investigate fog-based
context-aware systems. Ahammad et al. [57] performed an
elaborative study on cloud, fog, roof, and dew computing
including their interaction, benefits, and limitations in IoT
ecosystem. Sharma et al. [58] work presented an overview
and description of FC in the context of CC and IoT
and also sheded light on the key differences between
CC and FC. Khalid et al. [59] surveyed on privacy and
access control schemes in FC. Matrouk et al. [60] aimed
to comprehensively review and analyze many scheduling
algorithms in FC. Singh et al. [61] resented a systematic
literature review of FC. Merabtine et al. [62] reviewed the
existing feature-based classifications of clustering protocols
and elaborated a more generic and unified classification.
Ullah [63] made a survey on hybrid, energy efficient and
distributed based energy efficient clustering protocols for
WSNs.

B. HHO RELATED ALGORITHMS
Abdel-Basset et al. [64] described the high virtualized lay-
ered FC model taking into account its heterogeneous
architecture. Their normalization and scaling phase aided
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the standard HHO algorithm to solve the task scheduling
in FC. Hossain et al. [65] used a 2-hop routing algorithm
based on the multi-objective HHO algorithm that selected
the optimal forwarders between the source and destination
vehicles. Shanmugam et al. [66] proposed cross-layer-based
opportunistic routing protocol for WSNs. For optimal clus-
tering, k-medoid with adaptive HHO algorithm was utilized
for clustering the sensor nodes. In a different direction,
Sharma et al. [67] used HHO algorithm for sensor nodes
localization problem in WSNs.

C. LIFESPAN RELATED ALGORITHMS
Suzuki et al. [68] proposed two schemes forWSNswith mul-
tiple sinks for saving battery energy and to improve network
lifetime performance. Cha et al. [69] proposed an energy
efficient clustering algorithm for self-organizing and self-
managing WSNs. Their simulation results revealed that their
framework allowed smaller energy consumption for network
management and longer network lifetime than the existing
schemes including LEACH. Khediri et al. [70] improved
energy efficient clustering protocol for increasing the life
time ofWSNs. Aydin et al. [71] divided the sensor nodes into
clusters. In each cluster, the sensor that was the closest to
the cluster center and had the highest residual energy, was
chosen as the cluster head. To reduce the energy consumption
of CHs, a mobile sink was used. Simulation results showed
that their models increase the energy efficiency and extend
the network lifespan. Koyuncu et al. [72] explained several
WSNprobabilistic routing protocols including LEACH. They
selected CHs based on the energy drain pattern and location
of the sensor nodes, which increased the lifespan of sensor
nodes.

D. OPTIMIZATION METHODS RELATED ALGORITHMS
Oprea et al. [73] proposed an adaptive direct load opti-
mization and control with IoT architecture for FC.
Tuli et al. [74] used a gradient based optimization strategy
using back-propagation of gradients with respect to input.
Singh et al. [75] formulated a delay-based task allocation
problem which suggested the optimal task allocation among
local IoT devices, edge server, and the cloud toward the mini-
mum energy consumption and end to end delay. The problem
was then solved using energy-efficient task offloading strat-
egy based on Levy-flight moth flame optimization (LMFO)
algorithm. Borujeni et al. [76] used FECR (Pegasis-based
Routing of FNs) and FEAR (Ant Colony Optimization based
Routing of FNs) algorithms for WSNs. The results of their
simulation showed that the average amount of energy usage
in FECR protocol could be reduced by 9% and by 8% in
FEAR. Arafat et al. [77] hinted an energy-efficient three-
dimensional bio-inspired localization algorithm based on
the hybrid gray wolf optimization method. They claimed
tha their method reduced localization errors, avoided flip
ambiguity in bounded distance measurement errors, and
achieved high localization accuracy. Abdel-Basset et al. [78]
demonstrated amulti-objective approach based on integrating

themarine predator’s algorithmwith the polynomial mutation
mechanism for task scheduling in FC environments.

E. DATA UTILITY BASED ALGORITHMS
Abidoye et al. [79] focused on a routing protocol for data
transmission in WSNs based on FC. FC was integrated
into their scheme due to its capability to optimize the
limited power source of WSNs and its ability to scale up
to the requirements of the IoT applications. The results of
their simulations showed the performance of their approach.
Biswas et al. [80] focused on reducing the energy loss
problem and designing an energy-efficient data transfer
scenario between IoT devices and clouds. Bai et al. [81]
suggested a joint computation offloading, data compression,
energy harvesting, and application scenarios algorithm for
FC. Maher et al. [82] introduced a data backup system
based on multi-cloud and FC. Their system utilized the
advantages of multi-cloud storage to ensure users’ data
protection and reliability. Zhang et al. [10] designed an
auditing system based on two private key cryptographic
techniques, namely message authentication code (MAC)
and homomorphic MAC, for secure data storage in fog-to-
cloud computing. Krishnan et al. [83] enhanced a clustering
methodology with multiple mobile sinks for efficient data
collection. Loganathan et al. [84] determined CHs based on
the sensor node’s weighted metric. The sensor nodes were
then self-adaptive by making correct decisions in real-time
based on the sensed data, but detected information was
often inaccurate due to some mechanical, wireless loss, and
battery problems. Barzegaran et al. [85] addressed control
applications virtualized on a distributed FC platform, which
were implemented as tasks running on FNs that exchanged
messages over time sensitive networking.

F. DISTANCE RELATED CLUSTERING ALGORITHMS
Suleiman et al. [86] proposed an energy-efficient adaptive
distance-based clustering in WSNs using an adaptive prob-
ability function for formulating clusters. Mehta et al. [87]
employed an approach based on LEACH and considered
network load for electing cluster head in addition to number
of links, residual sensor energy and distance. Zhou et al. [88]
divided the monitor area into several annuluses with different
width. By considering the distance between sensor nodes
and the base station, sensor nodes were firstly classified into
different levels. Then, CHs selection and clusters formation
were conducted independently in each annulus. Finally, the
simulation results illustrated the effectiveness of their method
in terms of energy efficiency and energy balance.

G. NEURAL NETWORKS BASED ALGORITHMS
Aliyu et al. [89] employed a lightweight, human immune,
and anomaly-based intrusion detection system for the fog
layer. They claimed a 10% reduction in the energy con-
sumption of the fog node when compared with deploying a
neural network on the fog node. Baccarelli et al. [6] designed
the main building blocks and supporting services of the
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learning-in-the-fog architecture by explicitly accounting for
the multiple constraints on the per-exit maximum inference
delays of the supported conditional deep neural networks.
Kilcioglu et al. [9] applied an energy-efficient fine-grained
deep neural network partitioning scheme for wireless collab-
orative FC systems. Farooq et al. [90] presented two energy
prediction techniques. The first one was based on the
recursive least square filter and the second one used the
artificial neural network. Both techniques used inputs such as
the number of tasks and size of the tasks to predict the energy
consumption at different FNs. Wu et al. [91] presented an
efficient binary convolutional neural network with numerous
skip connections for FC to enable real-time smart industrial
applications.

H. LATENCY CONSTRAINT ALGORITHMS
Aoun et al. [92] addressed the problem of clustering in
WSNs, subject to upper bounds on the maximum latency,
the energy consumed by intermediate nodes, and clusters
size. Hebal et al. [93] proposed latency and energy medium
access control aware routing for WSNs using information
of the time-division multiple-access and exploiting the
information of the energy consumed by each node in order
to optimize the latency of communications and the energy
consumption when relaying information to the sink in a
WSN. Essalhi et al. [94] presented an approach based on a
Fog-IoT architecture with the objective of ensuring smart
energy management during communication and processing
of offloaded tasks in IoT applications while respecting
the latency constraint. Experimental results showed the
effectiveness of their approach in terms of energy efficiency.
Sutagundar et al. [95] utilized the functionalities of sensor
cloud and FC to classify and save the information in better
way along with minimizing the latency issue.

I. MISCELLANEOUS ALGORITHMS
Ullah-Kifayat [96] implemented and evaluated a fog-assisted
link aware and energy efficient protocol for wireless body
area networks. Their solution improved the path loss
by 24%. Rahman et al. [97] suggested trust based virtual
machine migration in vehicular FC. They applied fuzzy
logic for trust evaluation in vehicular FC. Paris et al. [98]
investigated edge-facilitated collaborative FC to augment
the computing capabilities of individual devices while
optimizing for energy-efficiency. Sampaio et al. [99] intro-
duced an autonomic system to perform management of
energy consumption in IoT devices and FC, including an
advanced orchestration mechanisms to manage dynamic duty
cycles for extra energy savings. Ijaz et al. [100] investigated
workflow scheduling in fog-cloud environments to provide an
energy efficient task schedule within acceptable application
completion times. Lai et al. [101] aimed to minimize the total
power consumption of a dense small cell network while
offering the quality of service to all its user equipment.
Kavitha et al. [102] determined a near-optimal probability
for cluster head selection to reach the maximum effi-

ciency in the energy consumption for large-scale WSNs.
Zamry et al. [103] applied an energy saving hierarchical
network protocol based on low-energy adaptive clustering
hierarchy for WSNs. He [104] suggested an energy-saving
algorithm and simulation of WSNs based on clustering
routing protocol. Vo [105] designed a method to optimize
the energy consumption for sensor processing layer in IoT.
Debasis et al. [106] suggested an energy saving medium
access control protocol for wireless sensor networks.

Over the last several years, applications related to IoT have
grown one of the most key techniques in the world to enhance
the quality of our daily life. The number of devices used in
those applications are increasing quickly. In effect, this is
leading to the creation of huge amounts of data along with
the challenges of low energy efficiency, low latency rate,
and low bandwidth. To minimize such issues along with an
essential need of a smart computing paradigm, miscellaneous
smarter algorithms are being proposed every day. With this
vein, we have addressed how dissimilar organizations of a fog
network can influence its effectiveness and energy savings.

V. OUR USED ALGORITHMS
In this section, we focuss on the algorithms of LEACH,MST,
and HHO.

A. THE LEACH ALGORITHM
For any WSN to work efficiently, nodes are grouped in
clusters. In this paper, we used a simplified clustering algo-
rithm for the purpose of performance evaluation. We used the
LEACH algorithm for its simplicity and short computational
time. Besides, the LEACH algorithm is a clustering algorithm
designed especially for WSNs that makes the routing process
much easier and energy saving [107]–[109]. It is based on the
energy consumption of each node. It is also a round-based
technique, where CHs should be periodically changed to
balance the network energy. Previously selected CHs cannot
join the next round of selection. The algorithm divides the
nodes into groups, with a cluster head for each group. It has
two phases - setup and creation phases. In the setup phase,
each node generates a number between 0 and 1. If a node
selects a number that is lower than a certain threshold (T (i)),
it announces itself as a cluster head for the current round. The
T (i) can be computed as:

T (i) =


 p

1− p X
(
r mod 1

p

)
 , if i ∈ G;

0, otherwise;

(1)

where p is the percentage that is required to become a cluster
head andG is the node that was not selected in the 1/p round.
The nodes deployment could be generated randomly or based
on the node’s residual energy. The second phase is called
the steady state, where nodes join the nearest CHs and start
aggregating and transmitting data to their CHs. The CHs can
be responsible for transmitting their collected data to the sink
node. Following a certain period of time, the network starts
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another round of selection to CHs. There are many variations
of LEACH including the ones reported in [2].

B. THE MST ALGORITHM
Another routing algorithm that is used to measure perfor-
mance in this paper named as MST. Prim’s and Kruskal’s
algorithms [110], [111] are the famous greedy algorithms.
They are used to find the MST of a given graph. To apply
them, any given graph should be weighted, connected, and
undirected. Kruskal’s algorithm [111] handles edges in order
of weight (the smallest to the largest), with each edge not
forming a loop with the previously attached edges, but ending
after inserting edges to MST. The edges form a forest tree
slowly grows into one individual MST. Prim’s algorithm is
a Greedy one as well. The process begins with an empty
spanning tree. The goal is to keep two groups of vertices
separated. The first set comprises vertices that have already
been included in the MST, whereas the second set contains
vertices that have not yet been included. It evaluates all the
edges that connect the two sets at each step and selects
the least weighted connection from among them. It inserts
the opposite endpoint of the edge to the set containing MST
after choosing the edge. So, at each step of Prim’s method,
we discover a cut (made up of two sets: one of which includes
the vertices already included in MST and the other of which
contains the remaining vertices), choose the smallest weight
edge from the cut, and add this vertex to the MST Set (the set
that contains already included vertices).

C. THE HHO ALGORITHM
The HHO was implemented in [31] that considers the
efficient placement of a single sink and multi-SNs in WSN.
However, this paper does not take the edge nodes into
consideration. Therefore, as part of this paper the HHO has
to be modified accordingly. The HHO is based on the hunting
activity of the hawks of Harris, also known as dusky hawks.
Such birds perch in the air, spot their prey from far away and
attack it in a collaborative effort. The hawks’ perching action
is the exploration process in the HHO and the exploitation
mimics the hawks’ attacking style. The HHO has three major
phases: exploring a target, the surprise pounce, and other
kinds of hawk attacking strategies. The details of these phases
are explained in [31] and [112] as well as implemented using
MATLAB in [113]. The algorithm summary is given below.

1) EXPLORATION PHASE
Harris hawks have insightful eyes that can locate and spot
predators that are often not simple to find. Harris hawks are
patient, they perch and wait quietly, sometimes for hours. The
HHO models this behavior at the discovery level, which can
be articulated as:

X i+1i

=

{
X trand − r1|X

t
rand − 2r2X (t) q ≥ 0.5;

(Xrabbit − X tm)− r3(LB+ r4(UB− LB)) q < 0.5;

(2)

where X i+1i is the i-th individual position (t + 1)-th iteration.
The Xrabbit is the rabbit (prey) position as well as q, r1, r2, r3,
and r4 are random numbers between 0 and 1 (i.e., [0,1]) that
are updated with each iteration. The upper and lower bounds
of variables are represented by LB and UB, respectively. The
X trand represents the hawk that is selected randomly out of
the hawk population. The X tm indicates the average hawk
population at iteration t . The average of the hawks’ position
is computed using the following equation:

Xm(t) =
1
N

N∑
i=1

Xi(t); (3)

where Xi(t) is the location of hawk i at time of t .
Fig. 1(a) illustrates HHO stages [113].

2) TRANSITION FROM EXPLORATION TO EXPLOITATION
The HHO may exchange exploration for exploitation on the
basis of the rabbit’s escaping energy. The rabbit’s energy can
be measured using the following equation:

E = 2E0

(
1−

t
T

)
; (4)

where E is the escaping energy of the rabbit, T is the
maximum number of iterations, and E0 is the rabbit’s initial
energy, E0 ∈ (−1, 1). The energy behavior of the rabbit is
shown in Fig. 1 (b) [113].

3) EXPLOITATION PHASE
In the exploitation phase of the process, hawks opt to besiege
the prey from several directions. How slowly or quickly they
decide to close in on the prey depends on the remaining
energy of the prey. So, the idea of the hawks is to try to limit
the scape chances for the prey. Therefore, hawks surround
the prey from different directions. However, their remaining
energy defines their movement speed toward the prey. Escape
depends on the prey’s chance r . A successful escape occurs
when r < 0.5. If r ≤ 0.5, the algorithm adopts the soft
besiege mode; otherwise it will opt for the hard besiege
option. The HHO algorithm uses four strategies to simulate
the attacking stage: soft besiege, hard besiege, soft siege with
progressive rapid dives, and hard siege with progressive rapid
dives.

a: CASE 1: SOFT BESIEGE (r ≥ 0.5 AND |E | ≥ 0.5)
This behavior is modeled by the following equation:

X (t + 1) = ∇X (t)− E|J Xrabbit (t)− X (t)|

∇X (t) = Xrabbit (t)− X (t); (5)

where ∇X (t) is the difference between the position of the
rabbit and its current location in iteration t and J = 2(1− r5)
with r5 is the rabbit random jump intensity during the escape
process and r5 ∈ (0, 1) is a random number.
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FIGURE 1. Illustration of HHO algorithm [113].

b: CASE 2: HARD BESIEGE (r ≥ 0.5 AND |E | < 0.5)
Here, the current position is updated using the following
equation:

X (t + 1) = Xrabbit (t)− E|∇X (t)|. (6)

A simple example on this step is shown in Fig. 1 (c) [113].

c: CASE 3: SOFT BESIEGE WITH PROGRESSIVE RAPID DIVES
(r < 0.5 AND |E | ≥ 0.5)
Here, hawks decide their next move based on the following
equation:

Y = Xrabbit (t)− E|J∇X (t)− X (t)|. (7)

It has been assumed that the hawks dive according to the Levy
Fight (LF) patterns (named for the French mathematician
Paul Pierre Levy) where:

Z = Y + (S)(LF(D)); (8)

where D is the dimension of the problem and S is a random
vector of 1×D size. The LF patterns are identified using the
equation below:

LF(D) =
0.01µσ

|ν|
1
β

σ =

0(1− β) sin(πβ2 )

2
β−1
2 0( 1+β2 )β

 1
β

β = 0.5; (9)

where µ and ν are random values between 0 and 1. Based on
the following equations, the hawks change position according
to Eq. 10. Fig. 2 (a) shows an example of this move.

X (t + 1) =

{
Y if (F(Y ) < F(X (t)));
Z if (F(Z ) < F(X (t)));

(10)

where Y and Z are computed from Eqs. 7 and 8, respectively.

d: CASE 4: HARD BESIEGE WITH PROGRESSIVE RAPID DIVES
(r < 0.5 AND |E | < 0.5)
Here, the hawk is close to the prey and its behavior is
modelled by Eq. 11:

X (t + 1) =

{
Y if (F(Y ) < F(X (t)));
Z if (F(Z ) < F(X (t)));

(11)

where Y and Z are computed from Eqs. 12 and 13,
respectively.

Y = Xrabbit (t)− E|J Xrabbit (t)− Xm(t)| (12)

Z = Y + S + LF(D); (13)

where Xm(t) is calculated by Eq. 3. The pseudo code is
illustrated in Algorithm 1. As it can be seen in Algorithm 1,
the three cases of HHO have been represented at the
algorithmic lines of 16-21. The HHO algorithm is adapted
by [31] for sink node placement in WSNs, where the input of
the algorithm is a graph that represents the sensor nodes and
their neighbors with energies. For multi-sink placement, the
fitness function f (x) is changed as:

f (x) =
ACN

NUMnbr
; (14)

where ACN indicates the number of the sink node’s sensor
neighbors, NUMnbr is the number of the active nodes. The
optimization of the location can be expressed as minimum
of f (x). Fig. 2 (b) shows an example of hard besiege.
Algorithm 1 depicts the pseudocode of HHO.

VI. PROBLEM DEFINITION
With the current emergence of IoT applications, WSNs and
fog networks need to communicate in a reliable and efficient
manner in terms of data transmission and energy saving.
On that account, we deal with two interrelated problems as
follows:
• Problem 1 ⇒ There is the need for an efficient
framework that combines both fog networks andWSNs.
The proposed framework should have efficient commu-
nication interfaces between the fog network and WSNs.
This leads to the second problem.
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FIGURE 2. Examples of soft and hard besieges [113].

Algorithm 1 Harris Hawks Optimizer (HHO)
1: Input⇒ The population size N and maximum number of iterations T.
2: Output⇒ The location of rabbit and its fitness value.
3: Initialize the random population Xi, where i = (1, 2, . . . ,N ).
4: Repeat (stopping condition is not met)
5: Calculate the fitness values of hawks.
6: Set Xrabbit as the location of rabbit (best location).
7: for (each hawk (Xi)) do
8: Update the initial energy E0 and jump strength J .
9: Update the E using Eq. 3.
10: if |E| ≥ 1 then
11: Update the location vector using Eq. 2.
12: end if
13: if |E| < 1 then
14: if r ≥ 0.5 and |E| ≥ 0.5 then
15: Update the location vector using Eq. 5.
16: else if r ≥ 0.5 and |E| < 0.5
17: Update Update the location vector using Eq. 6.
18: else if r < 0.5 and |E| ≥ 0.5
19: Update Update the location vector using Eq. 10.
20: else if r < 0.5 and |E| < 0.5 then
21: Update Update the location vector using Eq. 11.
22: end if
23: end if
24: end Repeat
25: return Xrabbit

• Problem 2⇒As stated above, sensor nodes suffer from
different limitations including memory and processing
capabilities. They also have security issues that will be
considered in a different article.

The WSNs could be modelled as an undirected graph
G(N ,E), where sensors (N ) represent the nodes and con-
nectivity represents the edges (E). Two nodes are connected,
when they can reach each other wirelessly. If we consider
the communication range as ri, where i is the node index
and the node’s location is (xi, yi), two nodes are considered
connected if the distance dij between node i and node j equals
the min(ri, rj), as shown in Fig. 3. The distance dij would be
simply computed by Euclidian distance as:

dij =
√
(xi − xj)2 + (yi − yj)2. (15)

FIGURE 3. Two sensor nodes with communication ranges r1 and r2.

In addition, sensor nodes consist of many components
including microcontrollers or microprocessors, sensor(s),
transceiver, and energy source. Therefore, to model a sensor
node’s energy, components such as energy consumption need
to be considered. We follow the footsteps of Zhou et al. [114]
in modelling the energy of sensors, taking into consideration
Eqs. 3, 4, 5, 6, and 7 during the simulation.

Ecpu = Ecpu−state + Ecpu−change (16)

Esensor = Eon−off + Eoff−on + Esensor−run (17)

Etrans−state = ETX + ERX + EIdle + Esleep + ECCA (18)

Etrans−transition =
n∑
i=1

(
Ntrans−change(j)

) (
etrans−change(j)

)
(19)

etrans−change(j) = (Einit−end (j))
(
Pinit (j)+ Pend (j)

2

)
; (20)

where Ecpu is the sum of the CPU energy consumption
as a function of Ecpu−state and Ecpu−change; Etrans−state is
the sum of transceiver based on its state; Etrans−transition is
the transmitter transition energy; and, Esensor is the sensor
consumed energy in terms of running and state transition.

It can be seen from the aforementioned equations that
energy consumption in WSN is a critical issue, especially
when it is left unattended and it is required to work for a
long period of time. Sensors sense the environment and send
their data to a sink node. The sink node is one of the sensor
nodes that should be elected to collect data of sensors for
further transmission to the cloud or for internal analysis.
Based on our proposed framework, sensed data must travel

167722 VOLUME 9, 2021



R. A. Ramadan et al.: Energy Coherent Fog Networks Using Multi-Sink Wireless Sensor Networks

FIGURE 4. The proposed energy efficient fog network.

through a fog network to a cloud server for analysis and
decision making. To increase the NLT [115] and save energy,
we propose using a multi-sink to transmit the sensed data to
the fog network. The key problem is the selection of the SNs
that can represent the edge of the framework as depicted in
Fig. 4. Such SNs should be selected carefully based on the
following four criteria.

1) Energy source (E) ⇒ Nodes should have the best
energy for a longer lifetime.

2) Efficient processing capabilities (P)⇒Nodes will be
used to process the sending and receiving from a large
number of nodes.

3) Nodes degrees (D) ⇒ Selected nodes have to have a
sufficient number of neighbors to serve.

4) Closeness to the fog network nodes (C) ⇒ This
reduces the required communication energy which
diminishes the number of dropped messages. This also
limits the selected nodes to the nodes on the border of
the fog network.

There are some other characteristics that can be included,
for example, the reliability of the selected node and security.
These are, however, not within the scope of this paper.
Another problem is the number of SNs to be selected. This is
important because selecting a large number of SNs would not
make sense and selecting a small number of sinksmight cause

a network congestion problem. Henceforth, it is a tradeoff
between these two extremes. For the purpose of the evaluation
of our proposed algorithms, we consider the number of SNs
as the number of FNs on the border of the fog network. The
relation between the sink node and the fog node could be
one to one or many to one. To wit, each sink node could
have a dedicated fog node, or a group of sink nodes could
communicate with a certain fog node based on the fog nodes
availability and their locations.

VII. SOLUTION APPROACH
This section is dedicated to the suggested solution approaches
for the aforementioned problems. In this section, we explain
the proposed framework and solutions in detail.

A. FOG-WSNs FRAMEWORK
In this subsection, we present an efficient framework for
fog and WSNs. It is noticeable from Fig. 4, the proposed
framework consists of three main layers, from the in-out,
the cloud computing layer, the fog layer, and the edge layer.
At the same time, since we are dealing with WSNs, there
exits an extra layer that is referred to as the sensor nodes
layer. The cloud and fog layers have been explained in the
previous sections. The edge layer is a layer of interface
between the WSN and the fog network as well as SNs. Those
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SNs are carefully selected to minimize the energy consumed
by WSNs and prolong their lifetimes. At the same time,
it guarantees easy and fast transfer of the sensed data to the
fog network. Those edge nodes are carefully selected on the
basis of certain criteria, as mentioned previously.

B. MULTI-SINK ASSIGNMENT APPROACHES
To select the best SNs, we propose two solutions namely
WNS and EBA as hinted in algorithms of 2 and 3,
respectively.

Algorithm 2Window Nondominated Set (WNS)
1: Setup Phase:
2: Define the number of nodes to be deployed (S).
3: Define the number of required SNs (N ).
4: Compute the nodes parameters (E, P, D, C).
5: Define the size of the monitored area (A).
6: Define the window size (N ).
7: Deploy the nodes on the monitored area either randomly or determinis-

tically.
8: Repeat
9: if W is not full then
10: Add(WN , si)
11: end if
12: end Repeat
13: Sink Selection Phase:
14: Repeat for all si
15: Compute (si, E , P, D, C)
16: if (Nondominated (WN )6= 0 then
17: Remove (D(si)) www
18: Repeat www
19: if W is not full then www
20: Add(WN , si) www
21: end if
22: end Repeat
23: else if ((Nondominated(WN )== 0&& i 6= N )
24: Expand(W,1)
25: Add(WN , si)
26: end if
27: end Repeat
28: return W

1) WNS ALGORITHM
This solution is a strict solutionwhere the best SNs are chosen
in terms of the four-selection criteria stated in the sectionVI at
item 1, item 2, item 3, and item 4. Selecting the best SNs could
be formulated as a multi-objective optimization problem.
In addressing this problem, we propose to use a Pareto
Optimality [116], [117], named after the Italian engineer and
economist Vilfredo Pareto (1848–1923), as a multi-objective
optimization technique. Nevertheless, it is well-known that
the Pareto Optimality with more than two parameters is an
NP-Hard problem [118]. Therefore, we try to simplify the
problem as much as possible by introducing the concept of
the window. The window concept is inspired from the sliding
window communication protocol, where we limit the number
of elements to be processed to a window size n, where all
nodes need to be processed. Onemay suggest processing only
the nearest nodes to the fog network. Based on the criteria that
need to be optimized, that might not be an optimal solution as
some may have a lower level of energy than other nodes that
are a little far from the fog border.

As it can be observed in Fig. 5, the nodes in the window are
the ones with the highest IDs. Within this window, the Pareto
Optimality is applied. Once the first round is completed,
the dominated nodes are removed from the window and the
window is moved to include other nodes within the window
limit n. This process is repeated until the last node is reached.
The window size could be identified by the fog network
designer or could simply be the number of FNs that will be
connected to the sensor network. Explicitly, one sink node
must correspond to one fog node. There are two special cases
that occur when applying the window concept along with the
Pareto Optimality concept:
• The window is full, and the last node was not reached.
In this case, the window is extended by one space and
then the algorithm is retracked. This might lead to the
next problem.

• Too many nondominated nodes. In this case, nodes are
sorted according to their distance from the FNs and a
certain number has to be selected.

By the end of the process, the window is left with the best
selected SNs in terms of the optimized criteria. Algorithm 2
shows how the Window Non-dominated Set approach works.
As shown in the algorithm, awindow is treated as a queue data
structure. The output of the algorithm is the window elements
(W ) that involve the selected SNs. The selected nodes will
work as gateways between WSN and FNs.

2) ALGORITHM OF EBA
This is a simplified approach, where the optimization
parameters are normalized and prioritized on the basis of the
equation:

Evli = W1 Ei +W2 Pi +W3Di +W4 Ci (21)

where

W1 +W2 +W3 +W4 = 1. (22)

The Evli value is computed for each node and then the overall
values are sorted accordingly. A number of nodes are then
selected to be the SNs based on the normalized values. The
advantage of this approach is that the optimized criteria can
be prioritized and this approach is quite simple to process.
Algorithm 3 shows the steps required for the compute
function that is responsible for computing the normalized
value for all of the sensor nodes. It is noticeable that EBA
algorithm is based on equations. It is a very light algorithm
in terms of computation, where its complexity is O(1).

3) ALGORITHM OF MHHO
In the previously described HHO [31] approach, a number
of sinks are chosen with the fitness function that depends on
the sink node degree, sensors with high energy connected to
the sink, and closeness to the center of the deployment field
as given in the following Eq. 23:

min f (x) =
1

α1
∑Nnbr

i=1 Enbr (i)+ Ex + α2 Nnbr + α3 dx
(23)
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FIGURE 5. Window dominated set example.

Algorithm 3 Evaluation Based Approach (EBA)
1: Setup Phase:
2: Define the number of nodes to be deployed (S).
3: Define the number of required SNs (N ).
4: Define the size of the monitored area (A).
5: Deploy the nodes on the monitored area either randomly or determinis-

tically.
6: Sink Selection Phase:
7: Repeat for all si
8: Compute (si, E , P, D, C)
9: List[S] = Compute(si, E, P, D, C)
10: end Repeat
11: Sort(List[S])
12: Return the top N nodes.

where Nnbr is the number of sensor neighbors served by the
sink node; Enbr is the energy of each neighbor to the sink; Ex
is the residual energy of node x; dx is the distance between
node x and the center of the deployment field; and, α1, α2,
α3 are random numbers between 0 and 1.
For HHO to fit the purpose of WSN connectivity as part of

a fog network, there must be two variations, as follows:
• No change to the selected SNs is madewhere a sink node
operation is only modified to send its collected data to
the nearest FN. This variation is referred to as the HHO
algorithm.

• The fitness function is modified to fit the purpose of this
paper to include the required parameters of initial energy
(E), high processing capabilities (P), node degree (D),
and closeness to the FNs (C) as given in Eq. 24. This
modification is referred to as MHHO.

min f (x) =
1

α1
∑Nnbr

i=1 Dnbr (i)+ Ex + α2Px + α3
∑N

j=1 C(j)
(24)

where Dnbr is the number of sensor neighbors served by the
sink node; Ex is the residual energy of node x; Px is the
processing capability of nodes x; C(j) is the distance between
node x and the fog node j; and α1, α2, α3 are random numbers
between 0 and 1.

VIII. EVALUATION CRITERIA AND SIMULATION
ENVIRONMENT CONFIGURATION
The evaluation criteria for the proposed algorithms and the
environment setup are explained in this section. This section
also presents the simulation results forWNS, EBA,HHO, and

MHHO algorithms. Our simulation strategy is to experiment
with a different number of nodes using LEACH followed by
the results of MST along with the different number of FNs
and present the results of each evaluation criterion.

A. EVALUATION CRITERIA
The proposed evaluation criteria are described in this subsec-
tion. In addition, we follow the footsteps of Donta et al. [119]
in mathematical description to the evaluation criteria. Our
proposed evaluation criteria are stated below.
• Energy Consumption ⇒ This is the percentage of
the sum of the energy consumed by all the nodes in
transmitting messages within a predetermined time of
operation over the sum of the initial energy of all nodes.
This could be measured by the Eq. 25 as:

APC =
N∑
i=1

(
sni CE
sni IE

)
; (25)

where sni is the sensor node i; N is the number of nodes
in the sensor network; and CE is the consumed energy
and IE is the initial energy.

• NLT ⇒ This is the time that elapses from the start of
the simulation to when the first node dies due to energy
depletion. NLT could be computed by the Eq. 26 as:

NLT = tend − t0; (26)

where t0 and tend belong the start time and the end time
of the simulation, respectively.

• Packet Loss⇒ The definition of the packet loss is the
ratio of the sum of the received messages by the FNs to
the sum of all messages sent by the nodes. This indicates
how efficient the sink node should be placed. Packet loss
could be computed by the Eq. 27 as:

PacketLoss =
n∑
i=0

Msgi,FN
Msgi,sent

; (27)

where Msgi,FN is the messages received by FN from
node i,Msgi,sent is the number of messages sent by node
i, and n is the total number of nodes.

• Localization Error ⇒ This is an indictor to how
much of the required parameters are satisfied by the
algorithms. In other words, the algorithms are required
to find at least one sink node that is corresponding
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and connected to each fog node. For example, if there
are 5 FNs, it is assumed that the algorithm is able to find
at least 5 corresponding SNs that are directly connected
to the 5 FNs. If an algorithm produces at least the
number of SNs that corresponds to the number of FNs,
the localization error is equal to 100%. The localization
error could be computed by the Eq. 28 as:

LocalizationError =
FSN
SN
; (28)

where FSN is the number of sink nodes discovered
by the algorithm and SN is the total number of
sink nodes.

B. SIMULATION ENVIRONMENT
This section outlines the set of experiments that were
conducted to verify the effectiveness of the proposed
algorithms in selecting SNs for fog network purposes.
Our algorithms were implemented and tested using the
CupCarbon [120] simulator. The simulator was extended to
include modules for our proposed algorithms. Only the HHO
and MHHO algorithms were implemented using MATLAB
benefiting from the work done in [113]. However, to enable
a fair comparison, the same simulation environments and
parameters were used and the same types of networks
simulated. Table 1 shows the simulation parameters that were
used with all of the algorithms. Different sets of experiments
were conducted using a different number of nodes (e.g.,
500, 1000, and 5000), a different number of FNs (e.g.,
5, 10, and 15) and different routing methodologies (e.g.,
LEACH and MST). The sensors energy must be a value
other than 0. If the initial energy is 0, the sensor will
not be able to handle any of the required tasks. For this
reason, in the simulation scenario, we have assumed initial
energy as 1J , but not 0J . In addition, the carrier-sense
multiple access with collision avoidance (CSMA/CA) of the
MAC (Medium Access Control) layer protocol was used in
all of the experiments for simplicity. There is no specific
topology that was used during the data collection. The
nodes are distributed randomly with uniform distribution.
It is noted that this paper is based on specific module for
data generation, implemented by authors, used in all of the
algorithms for performance measure. Hence, there is no
need for specific data generation module on MATLAB. The
results presented in this paper relate to small scale, medium-
scale, and large-scale networks as well as different routing
methodologies. Only for clarity, Fig. 6(a) hints a network
with 130 nodes to demonstrate the nodes’ connectivity and
distribution on certain terrain. Fig. 6(b) shows a sample
of 500 nodes deployed randomly within the monitored
areas representing a small-scale network. The computing
capabilities of 500 nodes, the degree of 500 nodes, and
the distance of 500 nodes from the nearest FN node have
been demonstrated in Fig. 6 (c), (d), and (e), respectively.
This indicates the variations of the sensor nodes used as
parameters.

TABLE 1. Simulation environment parameters.

IX. SIMULATION RESULTS
This section presents the simulation results relating to the
evaluation criteria. TDMA is adopted in this paper. TDMA is
a channelization technique that divides a channel’s bandwidth
into many stations on a time basis. Each station is assigned a
time slot, and it may only transmit data during that time slot.

A. POWER CONSUMPTION
Power consumption is used as a measure of the quality of
the sink assignment based on the assumption that a specific
number of packets/messages were sent per node. We feel
that assessing the energy consumed by the network on the
basis of a specific number of messages sent from each node
to the selected SNs is a justifiable method to use. It also
allows investigation of all of the routes from all of the sensor
nodes to the assigned SNs. The reason behind this set of
experiments is not to exhaust the network until it dies, but
to look at the network while it is operating and compute
the average consumed energy under the operation of the
proposed algorithms. Fig. 7 shows the energy consumption
of 500 sensor nodes, where LEACH is used as a clustering
and routing protocol. Fig. 7 (a), (b), and (c) depict the
energy consumption for 5, 10, and 15 FNs, respectively. It is
noticeable that the four algorithms reveal a slight difference in
terms of energy consumption.WNS results in the best level of
energy consumption in all of the cases, followed by EBA and
MHHO. The results obtained for HHO are also encouraging,
showing only 5% more consumption than WNS, 4% more
than EBA, and 3% more than MHHO.

Fig. 8 shows the energy consumption for 500 sensor nodes,
where MST is used as a clustering and routing protocol.
The energy consumption increases for all of the algorithms
because of the routing algorithm used. WNS still obtained
the best results in all of the cases at an average of 43%.
It is worth mentioning that when FNs equal 15, the MHHO
performs almost the same as HHI with only 3% difference.
An investigation into why there was an increase of energy
consumption showed that MST fixes the routes all of the
time and some of the nodes die due to energy depletion.
A resending process takes places in such cases in addition
to the sink positions that are set differently by the different
algorithms.
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FIGURE 6. Representation of small-scale networks.

Fig. 9 presents the same information from a different point
of view, where the consumed energy is presented for the four
algorithms with a different number of FNs, namely 5, 10,
and 15. It is evident that HHO level of energy consumption
increases as the number of FNs increases; especially when
LEACH is used as a routing algorithm. WNS performs well
with both LEACH and MST in all of the cases with only

FIGURE 7. Consumed energy of 500 nodes using LEACH.

FIGURE 8. Consumed energy of 500 nodes using MST.

a small difference in the energy consumption figures when
MST is used. The MHHO also shows a reasonable level of
energy consumption inmost of the cases with both the routing
algorithms.

The energy consumption results were confirmed using a
different number of nodes, specifically 1000 and 5000 nodes.
Fig. 10 elaborates on the energy consumption, when
1000 nodes are deployedwith different FNs. Fig. 10 (a) shows
the energy consumption, when LEACH routing is used; and
Fig. 10 (b) shows the energy consumption, when the MST
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FIGURE 9. Consumed energy of 500 nodes using both LEACH and MST from a different point of view.

FIGURE 10. Consumed energy of 1000 nodes using both LEACH and MST.

algorithm is used. Both figures confirm that WNS led to
the best results, followed by EBA and MHHO. The MHHO
energy consumption level was close to HHO with only 1%
difference.

Fig. 11 shows the energy consumption for a large-scale
network with 5000 nodes with different FNs, namely 5, 10,
and 15. As it can be noticed from Fig. 11(a) and Fig. 11(b),
although the results look similar to the ones obtained
using other networks (e.g., Fig. 10) the difference between
the energy consumption of algorithms increases with the
increasing number of FNs. For instance, the difference
between WNS and HHO is, on average, 8% and reaches 10%
when 15 FNs are used.

B. THE NLT
The NLT was examined for all the algorithms. As stated
above, the NLT is the runtime from the start of the simulation
until the first node dies. Some researchers calculate the

FIGURE 11. Consumed energy of 5000 nodes using both LEACH and MST.

lifetime of the network from the start of the simulation until
the last node dies; however, if this definition were used the
measurements in this study would not be accurate since some
of the monitored areas are left without coverage; and in some
cases, one node stays alive in the network for a long time after
the others have died.

Fig. 15 shows the lifetime of the 500 nodes network with
different FNs, namely 5, 10, and 15. As it can be observed
from Fig. 15(a), the WNS algorithm gives the largest lifetime
in the three cases followed by EBA. The performance of
MHHO and HHO lags far behind that of the WNS. The
difference is almost 8% on the average. The difference
became significant, whenMSTwas used (Fig. 15(b)) yielding
an 11% increase, on the average.

The same results were confirmed, when 1000 nodes are
used, as shown in Figs. 16 and 17. The difference between the
algorithms increased to 11% on the average between WNS
and HHO in both LEACH and MST. The performance of
four algorithms (WNS, EBA, MHHO and HHO) remained
the same in terms of lifetime. It is worth mentioning that
the difference in NLT between the algorithms got smaller as
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FIGURE 12. NLT of 500 nodes using both LEACH and MST.

FIGURE 13. NLT of 1000 nodes using both LEACH and MST.

the number of nodes increased when using both LEACH and
MST.

C. PACKET LOSS
The idea behind the packet loss is to compute the ratio
between the sum of the received packets by all of the FNs
to all of the packets sent by the sensor nodes. This ratio is

FIGURE 14. NLT of 5000 nodes using both LEACH and MST.

FIGURE 15. Packet loss of 500 nodes using both LEACH and MST.

computed over the lifetime of the network. This is an indicator
of the efficiency of our proposed algorithms in delivering the
requiredmessages to the edge of the fog networks. The results
are summarized in Figs. 15, 16, and 17. As it can be seen in
Fig. 15, 500 nodes were deployed in the monitored fields with
a different number of FNs. The packet loss overall reached
10% in the worst case and 3% in the best case. As it can be
noted in Fig. 15 (a) and Fig. 15 (b),WNS resulted in a range of
3% to 5% packet loss while EBA packet loss ranged between
4% and 6%. MHHO packet loss was only 1% different from
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FIGURE 16. Packet loss of 1000 nodes using both LEACH and MST.

FIGURE 17. Packet loss of 5000 nodes using both LEACH and MST.

EBA’s and only 2% from HHO’s. Fig. 16 shows the pocket
loss for a 1000 node network deployed in the monitored
field. Fig. 16 (a) examines the packet loss following the use
of LEACH and Fig. 16 (b) examines the network packet
loss with MST routing. It is noticeable that there is no huge
difference in the packet loss from the previous experiments
carried out with 500 nodes. The packet loss increased by
almost 1% in connection with both LEACH andMSN routing
algorithms. Interestingly, as indicated in Fig. 17, in a large-
scale network (e.g., 5000 nodes) the packet loss does not
increase substantially from the previous deployment with
1000 nodes. There is only an exceedingly small difference
in packet loss (0.5%). These results confirm the energy loss

FIGURE 18. Average localization percentage of 500, 1000, and
5000 nodes using both LEACH and MST.

of 1000 networks presented in Fig. 11, where the energy loss
difference was also minimal.

D. LOCALIZATION ERROR
The localization error is an indicator of how efficient the
algorithms are in finding a sink node connected to each of the
FNs. The results of this set of experiments are summarized
in Fig. 18. This time, the results are presented differently,
with the four algorithms each being compared with each
different number of FNs, namely 5, 10, and 15. The results
show the average over the different number of nodes, namely
500, 1000, and 5000 nodes. It is evident that the performance
of the algorithms differs according to the required number
of FNs. However, in most of the cases, WNS satisfied the
localization requirements 100% of the time, but with 15 FNs
MST was deployed. The performance of EBA was between
90% and 100% accurate while the performance of MHHO
ranged between 85% and 92% accuracy which is also a
reasonable performance. The performance of HHO fell in the
range of 70% and 100% accuracy.

X. DISCUSSION
This section presents a discussion on the results obtained
following an investigation of the logs of experiments. First,
WNS emerged as the optimal solution as it scans the deployed
nodes one by one and retains only the best nodes that
meet the set parameters. EBA bases its selection on the
weight multiplied by each parameter. Therefore, increasing
the weight of one of the parameters affects the performance
of the algorithm. In the previous set of experiments, the
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weights were even across all of the parameters and were not
prioritized. However, even after normalizing the parameters,
there are some parameters that might bias the algorithm sink
assignment.

A. SOME INFLUENTIAL FACTORS
The performance of HHO depends on the number of
iterations implemented. In the experiments, the number of
iterations was limited to 1000 due to the time taken by
the algorithm to finalize the results, especially with large-
scale networks (5000 nodes). The algorithm performance
and conversion rate increased with the number of iterations.
Further more, the algorithm operation was affected by
other parameters e.g., initialization, function evaluation, and
position update as follows:

O(HHO)

= O(initialization)+ O(evaluation)+ O(position update)

= O(N )+ O((tmax) (N ) (Cof))+ O((tmax) (N ) (d))

= O(N (1+ tmax (Cof + d))) (29)

where N is the population size; Cof is the function evaluation
cost; d is the optimization problem dimension; and, tmax
is the maximum number of iterations. Therefore, HHO
performance is clearly affected by those parameters. This fact
reflects the performance of the HHO algorithm in all of the
experiments. To soften the complexity of HHO, the MHHO
was used with a smaller number of nodes to be examined. The
nodes examined were limited to the ones selected as CHs.
Another important variable was the type of routing algorithm
used, in this case either LEACH or MST. The LEACH works
in rounds where in each round new CHs are chosen. This
balances the network energy. In the experiments, the number
of rounds is limited to 100ms of the simulation running time.
In the case of MST, the routes are chosen once and remain
fixed during NLT. This means that when the energy of some
of the nodes depletes with time, some routes break up. This
explains why the performance of MST is lower than that of
LEACH in terms of consumed energy, lifetime, and packet
loss. However, localization depends mainly on the proposed
algorithms.

B. LIMITATIONS OF OUR WORK
The limitations of our proposed framework falls in the
following points:
• For WNS approach, selecting the appropriate window
size needs trial and error experiments which might not
be practical.

• The complexity of HHO algorithm might increase with
the number of hawks and iterations.

• More studies are needed to handle the communication
issues between the sensor nodes and the sink node
as well as between the sink nodes and the edge
network.

XI. CONCLUSION
We proposed a novel framework for both fog and cloud
computing considering large-scale networks. The focus
was on investigating the energy efficiency of the external
networks falling outside the fog network. Four different
algorithms for energy saving in WSNs were proposed based
on the smart positioning of SNs as near as possible to
the FNs. The algorithms sought to locate the SNs that
satisfied the parameters of high energy nodes, located nearby
the FNs, node degree, and node processing capabilities.
Different algorithms were used including Pareto Optimality,
EBA with weights normalization, and MHHO. An exten-
sive set of experiments was conducted. Different criteria
were used for the evaluation to show that the proposed
algorithms were superior to HHO. Future work in this
area could focus on trying different routing techniques
and involving different types of nodes, including mobile
nodes, vehicle nodes, computer nodes and other types of
devices.
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