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ABSTRACT We introduce device identification using the light fingerprint by a MCU-based deep learning
approach. At first, we observe that minor differences exist for individual components of lighting equip-
ment. The corresponding difference produces a unique phenomenon in the frequency spectrum. Therefore,
we adopt deep learning approaches for developing a mobile phone light fingerprint identification system
and implementing it on a low-cost microcontroller platform. The screen light of the mobile phone is
analyzed to obtain the features of unique light fingerprints. We utilize the convolutional neural network, the
improved multi-class greedy autoencoder and variational autoencoder with domain adaptation techniques
to develop the identification algorithm. Finally, the Bayesian optimization technique is used to optimize the
hyper-parameters of models for implementing in the microprocessor. The corresponding comparisons are
introduced to demonstrate the performance. The multi-class greedy autoencoder algorithm produces results
with an overall accuracy rate and abnormal sample detection rate of 99.67% and 99.85%, respectively. Only
a single model needs to be added or deleted for updating new authentication data and this does not affect the
identification ability of all models. This results in greater flexibility in real-life applications and potential for
expansion to other fields, such as smart buildings and automated robots.

INDEX TERMS Device identification, light fingerprint, machine learning.

I. INTRODUCTION
Recently, the internet of things has introduced new challenges
in device identification and authentication [1], [2]. There-
fore, light fingerprint applications in device identification are
emerging [1]–[3]. Hamidi-Rad et al. [3] introduced a 1MHz
high-frequency light sensor to collect and transform light
source data, and a Raspberry Pi platform was adopted for
sampling and performing Fast Fourier Transform (FFT) data
pre-processing tasks. Convolution neural network (CNN)
and K-nearest neighbors (KNN) algorithms were employed
for evaluation. The experiments were conducted using the
same brand of LEDs, and the results remained reliable.
In the work of Kobayashi [4], the same type of LED was
also tested. A photodiode (PD) was used in this study to
sense the light and input it through the microphone inter-
face of the cell phone. The algorithm performed FFT pre-
processing and then sent the data to a one-dimensional CNN
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for classification. The experimental recognition accuracy was
97% for 48 LED lighting devices of the same type. A PD was
also used to sample the light [5]. The signal was converted to
the frequency domain and the Crest Factor (CF) was used as
the input feature to identify 331 signals experimentally. After
matching, 3000 lamps were tested on site, with an accuracy
of 94.4%. These results demonstrated the reliability of using
the light frequency or luminous intensity as the identification
feature because regardless of the type or number of lamps,
differentiation could be accomplished. In addition, positive
and negative sample imbalances often occur during the train-
ing of machine learning. In [6], owing to the extraction of
the current data of a large number of undamaged machin-
ing tools and the usage of an autoencoder (AE) to fit the
undamaged current data, a reconstruction error arose when
abnormal samples were input. Thus, the purpose of detecting
damaged tools was achieved, producing experimental results
with an accuracy of 95%. In [7]–[10], AE was also used for
fault diagnosis, and it was difficult to collect all the samples
because of variable fault conditions. Therefore, the training
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FIGURE 1. System architecture diagram.

method that only fits the positive sample can achieve either
normal or abnormal results. However, since AE can only
diagnose one condition, the original AE model was improved
so that it could simultaneously classify the light source data
from multiple cell phones.

In this paper, we utilize the CNN and autoencoder to
develop the device light fingerprints identification system
in MCU. At first, we observe that there exists minor dif-
ference for each individual component of lighting equip-
ment. That is, the corresponding difference causes unique
phenomenon in the frequency spectrum for authentication.
Therefore, the deep learning approaches are adopted to
develop amobile phone light fingerprint identification system
and to implement on a low-cost microcontroller platform.
In addition, the Bayesian optimization technique is used to
optimize the hyper-parameters of models to implement in
the microprocessor. Finally, the corresponding comparisons
are shown the performance, the MCGAE algorithm having
results with an overall accuracy rate of 99.67% and the abnor-
mal sample detection rate (TPR) of 99.85%.

The remainder of this study is organized as follows.
Section II introduces the system structure, includes hardware
specification and data acquisition. The proposed device iden-
tification algorithm and model optimization are presented
in Section III. Section IV introduces the corresponding
experimental results. Finally, the conclusions are presented
in Section V.

II. SYSTEM STRUCTURE
A. HARDWARE SPECIFICATION
The proposed authentication system architecture using the
light fingerprint of a mobile phone is shown in Figure 1,
where a PD is used to sense the external light source. A sim-
ple amplifier circuit is used to moderately scale the signal
detected by the PD, which is then sampled by the artificial
intelligence (AI)model installed in theMCU.After sampling,
the MCU-based AI model can directly perform the subse-
quent recognition tasks.

The hardware specifications of the main components for
this light fingerprint recognition device were a PD- S6967,
amplifier- OPA1612A, and MCU- Renesas RX65N. Thus,
the components of the device were simple and inexpensive.
The PD (type: S6967) was selected as the sensor for the light
source with spectral response range [320 nm, 1060 nm]. After
converting the sensed light source into a voltage signal, the
voltage range was adjusted by the amplifier circuit. The low
noise amplification property of OPA1612A ensured that the

FIGURE 2. Hardware diagram of the proposed approach.

small light source features were preserved after amplification.
The choice of the MCU was more flexible. Here, the Renesas
RX65Nwith 2MBof ROMand 640KBof RAMwas adopted
to meet the current experimental needs. We successfully
realized the technique of converting the artificial intelligence
models into C code. The Renesas RX65N is a lower cost
MCU that can be selected for actual implementation.

Figure 2 shows the hardware diagram of the proposed
approach, where ¬ denotes the photodiode and a simple
shield is used to fix the distance between the phone and
the sensor, ­ denotes the knob for adjusting the DC level
and magnification, and ® is the UART interface for data
collection.

In this study, we first verified the unique features of the
light fingerprint, reliability of light fingerprint recognition,
and flexibility of the plural light fingerprint recognition sys-
tem. According to our previous experiences in converting
and constructing models in MCUs, the AI models were
finally implemented by low-cost MCUs. The processes of
the MCU implementation included sampling, FFT transfor-
mation, data preprocessing, AI prediction, and control. First,
we confirmed the sample acquisition in which the light source
was close and sufficiently bright and the MCU triggered the
sampling after the PD responded to the voltage change. After
sampling, the samples were converted to frequency domain
using FFT. Subsequently, the FFT image was re-sized for the
AI-model. Finally, the AI Model was trained for prediction.

Herein, the autoencoder (AE) and CNN were utilized
to establish the proposed MCU-based AI model. In the
AE model, we compared the reconstruction error of each
sample model to achieve the individual threshold in the
database. If the threshold is reached, we can identify whether
the light fingerprint is the one with a known identity. The
threshold was determined during the training process and
defined in the MCU for identifying the light fingerprint. The
CNN model employs a much simpler identification method.
The confidence score calculated by the model was compared
with the default minimum score. If the score exceeded the
default minimum score, it was judged to be a cell phone in
the database. Hence, the light fingerprint of mobile phones
outside the database can be excluded.
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FIGURE 3. Sampling spectrogram of different iPhones.

B. DATA ACQUISITION
To implement the AI algorithm in MCU, the memory size
and computation time of AI model should be considered.
Therefore, in the early stage of data collection, a higher spec-
tral resolution and wider spectrum range were adjusted with
the oscilloscope to confirm the feature range and select the
appropriate spectrum range. In this study, the sampling rate
and number of sampling points were 200K sample/second
and 16K points, respectively. According to the sampling the-
orem, the spectral features from 0 Hz to 100 KHz can be
obtained with a resolution of 12.2 Hz between frequencies.
The actual sampling results (frequency spectrum) are shown
in Figure 3 for different models of the iPhone. Figure 3 shows
that, the distribution of the spectral features, 500 Hz, 8 KHz,
45 KHz, and 90 KHz, are common and obvious for all models
of mobile phones. These features are generated from the sam-
pling circuit and the same component modules used inside the
phone. We observed that these features appeared steadily and
differences existed between non-iPhone series phones and
iPhone series. These have been described in this work.

To illustrate the differences observed in the same model
of mobile phones, we collected several iPhone X1 to obtain
the corresponding spectral features, as shown in Figure 4.
Figure 4 demonstrates the useful features in each area of the
sampling spectrum. Each spectrum in Figure 4 is averaged
from 100 light fingerprint data of the same phone. Com-
pared with the spectrum of other iPhone series phones, the
spectral features of the same model are similar. However,
slight differences still occur at 34 KHz, 48 KHz, 60 KHz,
82 KHz, and 90KHz. If the variation phenomenon of light
is steady, they can be considered as effective features for dis-
tinguishing various cell phones for authentication. Therefore,
if these differences can be effectively fitted and reconstructed
using AE, the reconstruction error will vary after inputting

FIGURE 4. Frequency features of different iPhone X1.

FIGURE 5. Schematic representation of the AE.

the same model of different cell phones into the model of
each cell phone. The corresponding threshold can then be
identified to distinguish between individual cell phones.

III. DEVICE IDENTIFICATION AND MODEL OPTIMIZATION
A. DEVICE IDENTIFICATION USING DEEP LEARNING
Autoencoders (AE) are usually utilized to learn efficient
data coding in an unsupervised learning manner [7]–[11].
Its application includes both feature extraction and sample
variation diagnosis. It can be broadly divided into two steps,
namely data compression and data decompression, as shown
in Figure 5. The training aims at making the outputs equiva-
lent to the inputs as much as possible and continuously reduce
the reconstruction loss between inputs and outputs. In addi-
tion, AE retains data correlation even some information is
lost during compressing and uncompressing. Thus, if samples
with larger variation are input, the model is unable to effec-
tively recover these samples. Therefore, the reconstruction
error increases and this property forms the diagnosis ability
described in this study.

If samples not belonging to one of the classes in the original
training set are input when ANN, CNN, and other machine
learning models are performing the task of classification,
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FIGURE 6. Architecture of the MCGAE.

the output will be incorrect, i.e., misclassified as one of the
categories. In contrast, the training method of AE, which only
fits one type of sample, effectively avoids the aforementioned
situation. In general, since the AE detection algorithm cannot
support multi-class tasks, therefore, this study improves and
extends for a multi-class problem. As shown in Figure 6,
a set of AE models are trained independently for each type of
sample, and a set of thresholds for reconstruction errors are
defined during the training process according to the training
conditions. In the actual application, the samples are input
to each AE model for individual reconstruction error calcu-
lation, and compared to the threshold defined in the training
process. If one of the models exhibits a reconstruction error
lower than the default threshold, it is identified as this cate-
gory. Therefore, the estimation of the threshold value is also
an important part of this method. In addition, we use a greedy
algorithm, called multi-class greedy autoencoder (MCGAE),
to search for the optimal threshold,. The greedy algorithm
treats all reconstruction errors as thresholds and calculates
the accuracy. Therefore, we can obtain the accuracy corre-
sponding to each reconstruction error or determine the proper
threshold automatically.

B. MODEL OPTIMIZATION
Here, we describe the optimization of the AI model.We intro-
duce the data collection, list of cell phone models involved in
the experiment and their corresponding numbers are listed in
Table 1. Nineteen mobile phones were used in our experi-
ments, including eight iPhone X1 models and some iPhone
and Android phones. In addition to identifying the differ-
ences in features between different phone models, we also
explored the ability to distinguish between the same phone
models. However, the hyper-parameter affects the accuracy
of AI model, several approaches are proposed to optimize
model, grid search, random search, and surrogate-based opti-
mization [6], [11], [12]. To obtain the highest accuracy with
the smallest model parameters, the Bayesian optimization
method was used to search for the best parameters when com-
paring the models studied in this work. Bayesian optimiza-
tion (BO) is an approach that used Gaussian process to build
a probabilistic model corresponds to the hyper-parameter.
By iteratively evaluating based on current model and updat-
ing, BO has the ability to build the distribution and objective
values when much more information is given [13], [14].

TABLE 1. List of cell phone models.

Herein, the BO is briefly introduced as follows. At first,
denote f to be a black-box function without closed-form
expression and it is expensive to evaluate. The goal of opti-
mization is to solve the following problem

x∗ = argmin
x∈χ

f (x), χ ∈ <d (1)

where x denotes the hyper-parameters. We here use the BO
to find the global optimum by constructing Gaussian process
model for f (x) and then exploits to make decisions to next
evaluate the function. The pseudo-code of BO procedure is
introduced as follows and the optimized algorithm is imple-
mented with ‘‘Hyperopt’’ tool [15].

Algorithm of Bayesian Optimization
Input: initial dada D0, iterative number
1: for t = 1, 2, . . .do
2: Find xt+1 ∈ <d by optimizing the acquisition

function xt+1 = argmin
x∈χ

f (x)

3: Evaluate yt+1 = f (xt+1) and augment data
Dt+1 = Dt ∪ (xt+1, yt+1)

4: end for
Output: xmax, ymax

The corresponding searching parameters for the CNN
structure optimization are shown in Table 2. In this optimiza-
tion, the number of searching parameters was 200 cycles and
the optimization of the objective function aimed at estimat-
ing the highest accuracy rate of the testing set. The other
training parameters were: the number of convolution layers
was 2, activation function of convolution layers was set to
ReLU, number of training sessions was 1000, learning rate
was 0.001, number of batch optimizations was 100, and
output activation function was ReLU.

In the AE method, the MCGAE framework shown in
Figure 6 was applied. We trained the model variational
autoencoder (VAE) using the same training dataset [16], [17].
To reduce the overfitting in the training set, the ‘‘Domain
adaptation (DA)’’ concept was utilized to enable the model to
focus on the real features of the sample without overfitting the
small noise in the training set [18], and the difference between
the accuracy of the model after training and the accuracy of
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TABLE 2. Hyperparameter searching range for CNN.

the actual online test was reduced. Therefore, in this study,
we tested the effect of CNN models along with MCGAE,
VAE, DA-AE, and DA-VAE for comparison.

Table 3 shows the hyperparameter optimization ranges
for MCGAE, VAE, DA-AE, and DA-VAE, respectively. The
Bayesian optimization technique was also adopted for hyper-
parameter tuning. In the hyperparameter search range of these
experiments, the model was designed by setting ‘‘Number of
hidden layers’’ and ‘‘Maximum of nodes in the hidden layer’’
in a 100% incremental or 100% decremental manner every
other layer. This method effectively controls the model size
and adds a dynamic dropout layer with Hyperparameter tun-
ing 200 times. The other training parameters were assigned
as follows: Learning rate 0.001, Epoch 1000 times, Dropout
rate 0.2, and Optimizer Adam. Note athet the DA methods,
DA-AE and DA-VAE, whose structural design is presented in
Figure 7. The testing data was viewed as the target domain.
The new debugging parameters werethe part of the domain
classifier, which contained the maximum number of nodes,
layers, and activation function. In the models of MCGAE,
VAE, DA-AE, and DA-VAE, the greedy algorithm was used
to automatically test all threshold values to find the one with
the highest accuracy rate.

C. IMPLEMENTATION OF AI MODEL INTO MCU
Most of the recently AI model were implemented in PC or
cloud computational system. This results high-cost and com-
munication loss problems, therefore, we here introduce the
implementation of AImodel into microcontroller unit (MCU)
for device identification. The trained model should be trans-
lated to C code. Themost common approaches relate tomodel
conversions for AI model frameworks such as Caffe 2, Ten-
sorFlow Lite for microcontroller, and Arm NN for deploying
trained models and inference engines on MCUs [19]. There
are software tools that take pre-trained AI models for MCUs
by converting them into C-code. This paper utilizes Renesas
RX65NMCU for implementation, therefore, the correspond-
ing e-AI translator is adopted [20], that is, e-AI converses the
trained AI model into C-language code for RX65N MCU.
Moreover, the tool also performs the calculations of the mem-
ory size and amount of calculation required by AI model are
also estimated, and the multiply and accumulation number
calculation when the AI model operates.

TABLE 3. Hyperparameter searching range.

FIGURE 7. Domain adaptation learning architecture diagram [18].

IV. EXPERIMENTAL RESULTS
To facilitate the discussion, ‘‘normal samples’’ will be used
in this section to denotes the cell phone samples involving
training, and ‘‘abnormal samples’’ indicates the cell phone
samples not participating in training. An ‘‘abnormal sample’’
is a cell phone sample that did not participate in the training.
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FIGURE 8. Training results of the CNN model.

The True Positive Rate (TPR) of abnormal samples is also a
very important part of this application. Therefore, in addition
to the accuracy rate as the target of training, improving the
TPR of abnormal samples is also essential.

In the CNN model, ReLU was chosen as the output activa-
tion function and a set of threshold scores was determined for
each category according to the training results. The training
results are shown in Figure 8, which shows the predicted con-
fidence scores for each category of samples input to the CNN
model. The terms ‘‘Sample’’ and ‘‘Output Value’’ denote the
sample of each model and output category of the model,
respectively. For each version, 100 testing set samples were
tested and the results were averaged and plotted on the graph.
The accuracy of the testing set was 100%, and the confidence
scores of each category were very clear, without overfitting.

Based on the above CNN results, only the predictive
effect of normal samples was tested. However, the perfor-
mance of abnormal samples was also the focus of this study.
Figure 8 shows the results of testing on the trained CNN
model with abnormal samples, using the light fingerprint
data from six untrained phones as the abnormal samples. The
prediction result of the Sony model in Figure 9 shows that
the confidence score of the iPhone X1 is higher than 0.6,
and the confidence scores of the iPhone 7 and iPhone 8 Plus
are also predicted to be very high. In comparison with the
results of Figure 8, where the confidence scores of all samples
are approximately zero except for the category of correct
samples, the performance of CNN in detecting abnormal
samples in the non-training set is relatively poor.

The detailed results of each algorithm in the AE-related
method are summarized in Table 4. In this experiment,
MCGAE performs the best after comparing the algorithms.
MCGAE uses the most original AE structure and exhibits
better ACC and TPR in both training and testing sets than
other deformation methods, indicating that there is no sig-
nificant difference between the training and testing sets in
this application. The VAE and DAmethods attempt to reduce

FIGURE 9. Test results for the abnormal sample using the CNN model.

TABLE 4. Summary of results for AE-related methods.

overfitting and increase generality by restricting the model
and adding an adversarial structure to the model, which may
affect the overall accuracy of the model. However, if there is
a large discrepancy between the performances of the training
and testing sets, it is possible to exert its effect and improve
the accuracy of the testing set. As our experiences, we can
observe that there is hardly variation in training and testing
error using different Autoencoder methods due to domain-
adaptation learning. It also demonstrates the effectiveness.

V. CONCLUSION
This study utilizes various Artificial Neural Network algo-
rithms. The comparative algorithms developed for the light
fingerprint identification system include CNN, AE, and VAE,
as well as the introduction of DA to reduce the distribution
distance between the source and target domains to reduce the
overfitting of the models. All models were finally installed
on the Renesas RX65N MCU. Therefore, during the training
process, GS or Bayesian parameter optimization methods
were used to optimize the search. The model with higher
accuracy and lower memory requirement was selected from
the search results for subsequent evaluation.

FFT was used as the pre-processing algorithm for the data
to compare the effectiveness of machine learning models
such as CNN, MCGAE, VAE, DA-AE, and DA-VAE. In this
experiment, the Bayesian method was used to optimize the
hyperparameters. Among the five algorithms, CNN is a clas-
sification algorithm. In the training and validation sets, a
100% recognition rate can be achieved. However, since it
could not be effectively detected on the untrained testing

VOLUME 9, 2021 168139



C.-W. Hung et al.: Device Light Fingerprints Identification Using MCU-Based Deep Learning Approach

samples, it did not meet the requirements of this appli-
cation. The other four algorithms were variations of the
AE algorithm. Among them, MCGAE exhibited the best
performance with a 99.85% detection rate of abnormal sam-
ples and a 99.67% overall accuracy rate. The feasibility of
artificial intelligence to identify light fingerprint anomalies
was verified through the empirical results in this paper,. The
concept of light fingerprint can be applied applications of
authentication.
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