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ABSTRACT In the 5G core and the upcoming 6G core, the User Plane Function (UPF) is responsible for the
transportation of data from and to subscribers in Protocol Data Unit (PDU) sessions. The UPF is generally
implemented in software and packed into either a virtual machine or container that can be launched as a UPF
instance with a specific resource requirement in a cluster. To save resource consumption needed for UPF
instances, the number of initiated UPF instances should depend on the number of PDU sessions required by
customers, which is often controlled by a scaling algorithm. In this paper, we investigate the application
of Deep Reinforcement Learning (DRL) for scaling UPF instances that are packed in the containers of
the Kubernetes container-orchestration framework. We propose an approach with the formulation of a
threshold-based reward function and adapt the proximal policy optimization (PPO) algorithm. Also, we
apply a support vector machine (SVM) classifier to cope with a problem when the agent suggests an
unwanted action due to the stochastic policy. Extensive numerical results show that our approach outperforms
Kubernetes’s built-in Horizontal Pod Autoscaler (HPA). DRL could save 2.7-3.8% of the average number
of Pods, while SVM could achieve 0.7-4.5% saving compared to HPA.

INDEX TERMS 5G, 6G, core, PDU session, UPF, deep reinforcement learning, Kubernetes, proximal policy

optimization.

I. INTRODUCTION

The fifth-generation (5G) networks and networks beyond 5G
(e.g., the sixth-generation — 6G) will provide the service for
customers in various vertical industries (vehicular commu-
nication, IoT, remote surgery, enhanced Mobile Broadband,
Ultra-Reliable and Low Latency Communication, Massive
Machine Type Communication, etc.) [1]-[8]. The transfor-
mation of network elements and network functions from
dedicated and specialized hardware to software-based con-
tainers has been started [8]. The Third Generation Partner-
ship Project (3GPP) has specified the framework of 5G core
with many network function components based on the Ser-
vice Based Architecture (SBA). These 5G core architectural
elements are implemented in software and executed inside
either virtual machines (VM) or containers in clouds’ envi-
ronment [9]. In the future, 6G networks will likely maintain
the user plane functions of the 5G core as well [8]. It is worth
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emphasizing that virtual machines and containers hosting net-
work functions (termed instances) are executed within cloud
orchestration frameworks that manage and assign the cloud
resource for instances. A Network Functions Virtualization
Infrastructure (NFVI) Telco Taskforce (CloudiNfrastructure
Telco Task Force, CNTT) has defined a reference model,
a reference architecture [10] and reference implementations
based on Openstack [11] and Kubernetes [12].

In operator environments, the instances of network func-
tions should be orchestrated (launched and terminated) in
response to the fluctuation of traffic demands from cus-
tomers. For example, customers initiate requests for PDU
sessions before data communications; the traffic volume of
such requests may depend on the periods of a day. During
peak traffic periods, more instances should be launched and
utilized than regular periods. That is, operators should apply
appropriate algorithms to control the resource usage of net-
work functions.

In this paper, we investigate the application of Deep
Reinforcement Learning (DRL) to the resource management
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TABLE 1. List of notations.

Notations for the environment

Dpin minimum number of Pods in the system

Dmax maximum number of Pods in the system

Lgess maximum number of PDU sessions in the system
Ipend initialization time of a Pod

dbusy number of busy Pods

B maximum number of PDU sessions per Pod
Pb,th blocking rate threshold

A arrival rate of the PDU sessions

M service rate of sessions

AT time between two decisions

Notations for the observations

diree number of idle Pods

dpoot number of booting Pods

don number of running (idle and busy) Pods

Lsess number of PDU sessions

Ifree number of additional sessions the system could handle
Pb probability of blocking

A approximated arrival rate since previous decision
Pb measured blocking rate since previous decision
Notations for the MDP

S set of states in the MDP

A set of actions in the MDP

p transition probability in the MDP

T; the i-th decision time

r, ri immediate reward function, i-th reward at time T;
K reward multiplier

y discounting factor

P probability distribution over a set

s(t), s; state at time ¢, i-th state at time 7}

a(t), a; action at time ¢, i-th action at time 7T;
n, t* policy function, optimal policy
\% value function

(scaling) of User Plane Function (UPF) instances in the
5G/6G core. To our best knowledge, this is the first work
for scaling UPF instances based on DRL. We assume that
UPF instances are controlled by the Kubernetes container-
orchestration framework, so we compare the DRL approach
to Kubernetes’s built-in Horizontal Pod Autoscaler (HPA)
and found that DRL can perform better than the HPA. We find
that the policy generated by the DRL method could make
unwanted decisions occasionally. To remove the randomness
from the policy, we apply a support vector machine (SVM)
to classify actions based on a pre-trained DRL agent. As a
result, we got a deterministic SVM-based policy at a slight
performance degradation that could still perform just as well
or even better than the HPA. Our contributions are as follows:

« We formulate the problem of scaling UPF instances in
a Kubernetes-driven cloud. We apply model-free DRL
to this problem and compare its performance to the
Kubernetes HPA. Through simulations we show that
DRL can outperform the HPA.

o After this, we show that in some cases, more partic-
ularly in case of sudden increases in traffic, the DRL
agent may pick the unwanted action. This is due to the
stochastic nature of the learned policy. We remedy this
by generating a dataset of states with actions as labels
and train a SVM to classify states and actions. We show
that the performance of the SVM-based agent is slightly
worse than the DRL agent when traffic change is slow.
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However, under sudden traffic change, the deterministic
policy of the SVM agent does not take unwanted actions.

In Section II we review the related literature on autoscaling
in clouds, reinforcement learning (RL) methods for scaling,
and resource management in the 5G core. In Section III we
describe the problem of scaling UPF instances in Kubernetes.
In Section IV we formulate a Markov decision problem for
scaling UPF instances and present the Deep Reinforcement
approach. In Section V extensive numerical results are deliv-
ered. Finally in Section VI we draw our conclusions.

Il. RELATED WORKS

About autoscaling in cloud environments,
Lorido-Botran et al. [13] conducted a survey that classifies
existing solution methods into five categories: threshold-
based rules, control theory, reinforcement learning, queueing
theory, and time series analysis. Zhang et al. [14] designed a
threshold-based procedure to scale containers in a cloud plat-
form and then measured the elasticity of their algorithm. In a
hybrid approach, Gervasio et al. [15] combined an ensemble
of prediction models with a dynamic threshold algorithm to
scale virtual machines in an AWS cloud. Ullah ef al. [16]
used genetic algorithm and artificial neural networks to
predict CPU usage in a cloud and then used a threshold-based
rule.

Several works studied the performance of Kubernetes.
Nguyen et al. [17] compared metrics server solutions and
highlighted the effects of various configuration parameters
under both resource metrics. Casalicchio [18] investigated the
autoscaler in Kubernetes and showed that scaling based on
absolute measures might be more effective than using relative
measures.

Reinforcement learning has been used to tackle scaling
and scheduling problems in clouds as well. Horovitz and
Arian [19] used tabular Q-learning to autoscale in cloud
environments. They focused on the reduction of the state and
the action space as they did not use function approximation
for the Q-values. Their experiments scaled web applications
on Kubernetes. They also proposed the Q-threshold algo-
rithm where Q-learning was used to control the parameters
of a threshold rule. We found that Q-threshold has diffi-
culty finding the optimal policy with our reward formula-
tion. This is mainly because this algorithm cannot control
the Kubernetes Pods directly which means actions do not
have direct effect on rewards either. Shaw et al. [20] com-
pared the Q-learning and the SARSA algorithms on virtual
machine consolidation tasks. In these tasks the objective
of the RL agent was to use live migration and place vir-
tual machines on the approriate nodes to minimize resource
usage. Gari et al. [21] conducted a survey of previous RL
solutions for scaling and scheduling problems in the cloud.
Rossi et al. [22] compared the Q-learning, the Dyna-Q, and
a full backup model-based Q-learning to autoscale Docker
Swarm containers horizontally and vertically. They measured
the transition rate between different CPU utilization values to
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estimate the model, however this method is difficult to scale
as it needs to store the number of transitions between every
state. Cardellini ef al. [23] created a hierarchical control for
data stream processing (DSP) systems. On the top-level they
used token-bucket policy, on the bottom level they considered
the threshold policy, Q-learning, and full backup model-based
RL. Schuler et al. [24] used Q-learning to set concurrency
limits in Knative, a serverless Kubernetes-based platform, for
autoscaling.

Some works specifically focus on the 5G core.
Jaré et al. [25] discussed the evolution and virtualization
of network services. They considered the availability, the
dimensioning, and the operation of a Telecommunica-
tion Application Server. Tang et al. [26] proposed a linear
regression-based traffic forecasting method for virtual net-
work functions (VNFs). They also designed algorithms to
deploy service function chains of VNFs according to the
predicted traffic. Alawe et al. [27] used deep learning tech-
niques to predict the 5G network traffic and scale AMF
instances. Subramanya ef al. [28] used multilayer percep-
trons to predict the necessary number of UPFs in the system.
Kumar et al. [29] devised a method for scaling up and scaling
out UPF instances and deployed a 5G core network on
the AWS Cloud. Rotter and Do [9] presented the queueing
analysis for the scaling of 5G UPF instances based on thresh-
old algorithms has been presented. Their queueing model
provides a quick evaluation of scaling algorithms based on
two thresholds.

From the related literature review, it is observed that scal-
ing algorithms reported in most of the literature works so far
control the number of VM, VNEF, container instances with the
use of some thresholds [14], [15], [18], [30]-[33]. However,
to our best knowledge, no work exists on the application of
artificial intelligence methods for the resource management
of UPF instances.

lIIl. THE OPERATION AND SCALING ISSUE OF 5G UPF
INSTANCES

A. 5G UPF

The connection between the User Equipment (UE) and the
Data Network (DN) in 5G requires the establishment of a
PDU session. In this connection the UE first directly connects
to a gNB in the Radio Access Network (RAN), and through
the transport network reaches the 5G Core, which provides
the end point to the DN (see Figure 1) [1]-[4], [34].

The transport network may be wireless, wired, or optical
connection [35] and the 5G core consists of a collection
of various network functions implementing a Service Based
Architecture (SBA). Such network functions are the Access
and Mobility Management Function (AMF), which performs
the authentication of UEs and controls the access of UE to
the infrastructure; the Session Management Function (SMF),
which helps the establishment and closing of PDU sessions
and keeps track of the PDU session’s state; and the User
Plane Function (UPF) [1], [3]. Whereas the AMF and the
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FIGURE 1. The role of the 5G UPF [9]. Each line represents a connection
to a PDU session. An UPF instance may handle mutiple PDU sessions, the
core network may contain multiple UPF instances.

SMF are part of the control plane, the UPF is responsible
for the user plane functionality. UPF serves as a PDU session
anchor (PSA) and provides a connection point for the access
network to the 5G core. Additionally, a UPF also handles the
inspection, routing, and forwarding of the packets and it can
also handle the QoS, apply specific traffic rules, etc. [36].
The control and user plane separation (CUPS) guarantees that
the individual components can scale independently and also
allows the data processing to be placed closer to the edge of
the network.

B. 5G UPF INSTANCES WITHIN THE K8S FRAMEWORK
Kubernetes is an open-source container-orchestration
platform that manages containerized applications on a
cloud-based infrastructure [37]. A Pod is the smallest deploy-
able computing unit for a specific application in Kubernetes
and may contain more containers. Machines on the cloud,
either physical or virtual, are referred to as nodes with a
specific set of resources (CPU, memory, disk, etc.). To deploy
applications, the Kubernetes controller can configure Pods
with a given resource requirement on the nodes and run one
or more containers inside these Pods.

If the 5G core elements are packed into containers that
are organized into Pods, the resource of each Pod and the
execution of Pods are managed by Kubernetes. To establish
UPF, it is a natural choice to map a UPF instance to a Pod.
That is, a Pod runs a single container hosting a UPF software
image. Figure 2 depicts an example cluster with multiple
nodes, each having various Pods that host UPF software
handling PDU sessions. In this paper, such a Pod is called
a UPF Pod and UPF instance.

5G networks may serve various subscribers with differ-
ent types of demands. Therefore, PDU sessions may have
different requirements. To ease the operation, operators may
apply a practical approach to limit the number of PDU session
types. For each PDU session type a UPF instance type is
created with identical resource requirement.

C. THE PROBLEM OF SCALING UPF PODS
The purpose of scaling UPF Pods is to save the resource
consumption of the system. A scaling function changes (start

VOLUME 9, 2021



H. T. Nguyen et al.: Scaling UPF Instances in 5G/6G Core With Deep Reinforcement Learning

IEEE Access

Node Node

PDU
Session

#sessions: 1

FIGURE 2. An example cluster with 4 nodes, hosting don = 13 UPF Pods
respectively, handling a total of /sess = 27 PDU sessions. Each Pod may
handle multiple PDU sessions. It may also happen that a Pod does not
handle any sessions and becomes idle in the node.

new Pods, or terminate existing ones) the number of UPF
Pods depending on the number of PDU sessions required by
UEs. On the one hand, if the number of UPF Pods is too low,
the QoS degrades since we do not have enough UPF Pods to
handle new incoming PDU sessions. On the other hand, if the
number of UPF instances is too high and the load is low, a lot
of reserved resource increases the operation cost. Therefore,
a trade-off between the QoS and the operation cost is to be
achieved.

For each type of PDU sessions, we assume that at least
Dpin Pods are initiated, Dp,x Pods can be started, each
Pod simultaneously could handle maximum Lgs sessions.
Each Pod takes fyeng time to boot, and their termination is
instantaneous. Let dy,(f) denote the number of running Pods
in the system at time ¢. Therefore, Dpmin < don(f) < Dmax
holds and the limit for the number of sessions in the system
1S DmaxLsess- Let Liess(2) denote the number of sessions in the
system at time ¢. Then we have 0 < lgss(#) < DmaxLsess-
Additionally, let us define a free slot as an available capacity
for a session and denote their number with Ieq(2) at time 7.
Obviously, lfree(t) + lsess(t) = DmaxLsess-

A PDU session can only be created if there is free capacity
in the cluster, that is /fee(t) > 0. In this case new PDU
sessions are assigned to the appropriate UPF Pods by a load
balancer. If I = 0 and there is no capacity left, the session
and the UE’s request is blocked. We denote the blocking rate,
the probability of blocking a request, with p,.

The list of basic notations is summarized in Table 1.

D. K8s HPA

Kubernetes autoscaler is responsible for the scaling function-
ality. Figure 3 shows the interactions between the autoscaler
and other components. A metrics server monitors the resource
usage of Pods and provides the autoscaling entity with statis-
tics through the Metrics API. The autoscaler computes the
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necessary number of Pod replicas and may decide on a scaling
action. The adjustment of the replica count can be done
through the control interface.

The Horizontal Pod Autoscaler (HPA) is Kubernetes’s
default scaling algorithm. It uses the average CPU utilization,
denoted by p, as an observation to compute the necessary
number of Pods, denoted by dyesired(?) at time z. It has two
configurable parameters: the target CPU utilization pgarge; and
the tolerance v. The equation used by the HPA is

daesiear) = [donu) PO ] ()
Ptarget

where dy, () is the number of Pods at time ¢. The HPA then
checks whether dyesired(?)/don(t) € [1 — v, 1 + v]. If it is
not, the HPA issues a scaling action to bring the replica count
closer to the desired value. The above described procedure
is executed periodically with AT interval. This time interval
can be set through Kubernetes configurations.

IV. SCALING UPF PODS WITH DRL

The application of the built-in Kubernetes HPA needs the
appropriate values of pager and v. A system operator may
go through an arduous process of trials and errors to find
the configuration that could minimize the Pod count while
maintaining QoS levels. Instead, in this paper, we pro-
pose the application of Deep Reinforcement Learning (DRL)
to set the Pod count dynamically depending on the traf-
fic, without the assistance of an operator. The DRL agent
observes the system and determines the correct action output
through the continuous improvement of its policy. In what
follows, we present our approach regarding the design of the
DRL agent.

A. FORMULATION OF THE MARKOV DECISION PROBLEM
Before applying a reinforcement learning algorithm we need
to formulate the problem as a Markov decision problem
(MDP). This means we need to define the state space S, the
actions space A, and the reward functionr : Sx AxS — R.
A complete definition of the MDP would also require the
state transition probability p : § x A x § — [0, 1] and
the discounting factor y € [0, 1]. Here p is a probability
that the system enters a next state when an action happens
at the current state, and such a transition results in real
value reward r. To avoid the specification of the p transition
function as in a model-based formulation (like in [22]), we
decided to use a model-free RL method. Also, y is implicitly
contained in other hyperparameters as we will see later.

In the MDP framework an agent interacts with the environ-
ment described by the MDP. At the decision time # it observes
the state s(tf) € S and following its policy 7 : § — A it
makes an action a(t) € A. As a result the agent receives a
reward r(¢) and at the next deicision time it can observe the
next state.

Let us denote the i-th decision time with 7; i = 0, 1, .. .).
In our case the time between two decisions is AT, that is
Tiy1 —T; = AT (i = 0, 1,...). Furthermore, we will also
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FIGURE 3. Autoscaler control loop. The metrics server collects statistics from the Pods, which are then sent
to the autoscaler as an observation. The autoscaler may make a decision to scale and sends the number of

replicas through the Scale interface.

denote the state, the action, and the reward at time 7; with a
lower index i (e.g. s(T7) = si).

The state s; at time 7; should contain all the information
necessary for an optimal scaling decision. In our case

si = {don(T). dooor(T), less (T leT). AT} . @)

where A is the measured arrival rate since the previous deci-
sion at time 7;_1.

The action space consists of three actions: start a new
Pod; terminate an existing Pod; no action. The agent
may only start new Pods if there is a capacity for it in the
cluster, that is, don(t) + dboot(t) < Dmax, Where dpooi(?) is the
number of Pods still booting at time ¢. These booting Pods
exist because when we start a new Pod, it enters a pending
phase while it starts up its necessary containers. We assume
this phase lasts #yeng time. Also, the agent may only terminate
Pods if don(t) > Dmin. We assume this termination is grace-
ful, which means that the Pod waits for all of its PDU sessions
to close before shutting down. Obviously in this case the Pod
is scheduled for termination and does not accept new PDU
sessions.

The reward function is shown in (3).

—kppi i Ppi > Ppn
ri = n 3
—don(T})  if ppi < poih

Here pp; is the measured blocking rate since the previous
decision in the time interval [7;—1, T;) and pp, s is the blocking
rate threshold set by the QoS level that we should not exceed
in the long term. The coefficient « is a scalar that scales
the blocking rate to numerically put it in range with the dg,
value. The intuition behind this reward function is that if
the measured blocking rate exceeds the threshold, we need
to minimize the blocking rate; and if it does not exceed the
threshold, we want to minimize the number of Pods.
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For the list of notations used to describe the MDP see
Table 1.

B. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a method that applies an
agent to interact with an environment. The agent observes the
system states and rewards as results of subsequent actions.
To apply a RL-based agent in the control loop illustrated
in Figure 3, we propose an approach where a specific state
contains the number of active and booting UPF Pods, the
number of PDU sessions in the system, and an approximation
of the arrival rate. These information about the states can be
obtained either from monitoring the SMF and AMF functions
of the 5G core, or from the SMF and AMF functions.

The RL agent uses the observations gathered between two
scaling actions to update and improve its policy. This means
that learning happens online during the operation of the clus-
ter. Also, the neutral network in the RL agent can be pre-
trained with the use of captured data and simulation as well.

The goal of RL is to find the policy m that maximizes
tha value function V7 (s), the long-term expected cumulated
reward (4) starting from the state s. Note, that the optimal
policy does not depend on the starting state.

Si=3s5 4)

oo
V() =Ex | Y v rik
k=0

In this paper we used proximal policy optimization
(PPO) [38] as the RL algorithm with slight modifications,
similar to our previous work [39]. The method is presented
in Algorithms 1 and 2.

The PPO is an actor-critic algorithm [40]. It uses a param-
eterized policy (s, #) as an actor to select actions, where
0 is the parameter vector. The algorithm also approximates
the value function with V (s, w) parameterized with the w
vector. This value function is used to calculate the advantage
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AGAE using the generalized advantage estimator (GAE) [41].
If we consider a batch of advantages in a vector Agag of size
Npatch + 1, the j-th element of the vector can be computed by

Nbatch—j—l
AGAEj = Z AoagSict J=0,1,..., Noatch- (5
1=0
Here AgAE is a weight hyperparameter which implicitly con-
tains the discounting factor y, and §; is the j-th element of the
temporal difference error batch § and is calculated by

9 = TDta.rget,j — V(sj, @), (6)
where the j-th temporal difference target is
TDtarget,j =7rj— P+ V(S//'s w). @)

Note, that we use bold to signify vector values and the lower
index j to signify vector elements, that is, TDyargetj» Sj, 1j, and
s; are the j-th element of the batches TDyyger, S, T, and .
In contrast to the original PPO algorithm, here in (7) we used
the average reward scheme, where 7 is the average reward that
we keep track of through the soft update

Noaten—1
Fe(l—ap)F+ar Y 1j/Noauch, ®)
j=0
where o is the update rate hyperparameter.
The advantage and the TDyyget are used to evaluate the
policy. During its operation the algorithm tries to improve the
policy by updating 6 and ® repeatedly using

® < @+ 0y TDgrger © Vo V (S, @)

0 < 0 + oy Vy min{r¢(0) © AGAE,
clip(re(8), 1 — &, 1 + &) © Agag}
+&H(w([s, 0)). )]

In (9) the o, and oy are the learning rates of the gradient
descent steps and ¢ is the clipping ratio of the PPO. The
vector r¢(#) is the probability ratio and its j-th element can
be computed by

r1(0); = m(ajls;, 0)/mola ), (10)

where 7 (aj|s;, #) and o4, j are the probabilities of action a;
in state s;. Note, that the difference between the two prob-
abilities is that the former depends on # which can change
throughout epochs during an update (as seen in Algorithm 1),
whereas g, which is stored in the batch, represents the
probability of action a; when it was executed by the agent.
This means that at the start of the update 7 (aj|s;, 8) = modj>
but after the first epoch 6 is changed by (9) and the equality
does not hold anymore. The operation © is the elementwise
product. We also added entropy regularization

H(r(]s.8) =~ ) n(dls.0)logn(dls.8) (1)
adeA
with a weight of £.

In Algorithm 1 we can see the Store and Update procedures
of the algorithm used. The purpose of the Store function is to
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Algorithm 1 Proximal Policy Optimization Update in the i-th
Decision Epoch

1: procedure STORE(s;, a;, w(-|s;, @), i, Si+1)

2: Append (s;, a;, w(-|si, 0), ri, si+1) to batch.
3: end procedure

4: procedure UPDATE( )

5: if size of the batch < Npatch then return
6: end if

7: Get batch s, a, g, I, 8’ of size Npatch.

8: Update 7 using (8).

9: for k epochs do
10: Compute AGAE and TDyyrger using (5-7).
11: Compute r¢(#) using (10).

12: Update @ and 6 using (9).
13: end for
14: Clear batch storage.

15: end procedure

save the (s;, a;, w(-|s;, @), i, siy1) trajectory samples into a
batch for batch updates. Here 7 (-|s;, #) denotes the vector of
probabilities for all actions in state s;.

The Update procedure shows us the method used for
improving the policy. It is only executed if the number of
samples has reached Npacch. It approximates the mean reward
7 and then it makes gradient descent steps k times. In each
step it updates the policy 7 by updating 6 and w.

Algorithm 2 RL Training Loop
1: Initialize system, and get initial state sp.

Initialize learning parameters of Agent.

i< 0

for Ni.in steps do
Get action from agent: a;, <— Sample 7 (s;, 9).
Execute action ¢; to scale the cluster.
Observe the new state s;+; and performance mea-

sures after AT time.

AN A R

8: Compute reward r; from the measurements using (3).
9: AGENT.STORE(s;, aj, 7 (+|si, 0), ri, Si+1)

10: AGENT.UPDATE( )

11: I<—i+1

12: end for

The procedure used to train the RL agent can be seen
in Algorithm 2. First, if the system is not initialized yet,
we need to start it up. For the RL agent we need to set
the hyperparameters and initialize the # and w vectors with
random values and set the value of 7 to 0.

After the initialization we run Ny, steps and in each step
we execute a scaling action a; received from the agent based
on the observed state s;. We observe a new state and then store
the observations using the Store procedure, then improve the
agent’s policy with the Update procedure.

C. NEURAL NETWORK APPROXIMATION
The 5-tuple that represents the state s; of the system creates a
5-dimensional state space. Even though in practice the values

165897



IEEE Access

H. T. Nguyen et al.: Scaling UPF Instances in 5G/6G Core With Deep Reinforcement Learning

7TNoOp
TlScaleOut

TlScaleln

FIGURE 4. The neural network for policy ry. The network receives the
state as an input and outputs the probabilities of each action for that
given state. Connections represent the weights in . Nodes in the
intermediate hidden layer represent the application of a non-linear
activation function.

in the state are directly or indirectly bounded by the number
of maximum Pods Dy,x and the arrival rate is also bounded
by the maximum arrival rate imax, the state space can grow
so large that it would be impossible to fit the policy or the
value function in a computer’s memory. Therefore we used
a neural network with one hidden layer of 50 hidden nodes
to approximate the policy 7 and the value function V. This
means that # and w represent the parameter set of these neural
networks. Figure 4 shows us a neural network that accepts
the state as the input and ouputs the probabilities (ycop,
Tscaleouts TscaleIn) Of the possible actions. In the hidden
layer, the rectified linear unit (ReLU) function is applied.
For the policy 7, we used the softmax function in the output
layer. The parameters # and @ were started with the Xavier
initialization. For the update steps, we used the stochastic
gradient descent method.

For numerical stability we normalized most of the input
values into the range [0, 1]. This means, that we divided the
don and dpoor Values by Diax and also divided the lgess and lfree
values by Lgegs. As for i, we do not have a maximum value
for the arrival rate. Luckily for this normalization process we
do not need to know this exact number, we only need that the
order of magnitude of the normalized A is close to the other
input value’s order of magnitude. We chose to divide A by
500 assuming the maximum arrival rate is close to this value.

To find the best DRL agent we conducted a hyperparameter
search during training. We identified the reward multiplier «
and the entropy regularization factor £ as the hyperparameters
the DRL agent was more sensitive to. We used grid search
fork € {3, 5, 10, 13, 15,20} and & € {0.01, 0.05} to find the
adequate hyperparameter values. We found the other hyper-
parameters to have less influence on the overall performance
of the DRL agent. In these cases we used values that are
often used in the literature, such as [38]. Table 2 shows us
the hyperparameter values we used for the DRL agent. For
the entropy parameter we chose & = 0.01 and for the reward
multiplier we chose ¥ = 13. Note, that since we use GAE
to estimate advantages, the discount factor y is implicitly
incorporated into the Agag hyperparameter. Table 2 presents
the list of hyperparameter values used for training the DRL
agent.
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TABLE 2. DRL hyperparameters.

neural network hidden layers 1
hidden layer node count 50
learning rate (ag, @) 0.0001
epochs (k) 5
batch size (Npach) 32
reward averaging factor (ar) 0.1
PPO clipping parameter (€) 0.1
GAE parameter (AGag) 0.9
reward multiplier (k) | 3,5, 10, 13, 15, 20
entropy regularization factor (&) 0.01, 0.05
random initialization Xavier uniform
activation function ReLU

We used PyTorch 1.5.1 [42] to implement the DRL model
and used an NVIDIA GeForce RTX 2070 (8GB) GPU for
training.

D. DRL WITH CLASSIFICATION

It is possible to use RL with non-stochastic policies that
enforce actions with the probability equal to one for a spe-
cific observation. For example, the application of the deep
Q-learning, also known as deep Q-networks (DQNs) [40],
may result in a greedy policy, which is demonstrated in
Section V. Moreover, we find that DQN leads to the
over provisioning of the resource in our numerical study.

The PPO method learns and finds a stochastic policy where
the action space has a probability distribution for a given state.
The DRL agent takes action based on the learned distribution.
In general, it is expected that the agent recommends the
launch of new Pods when d,, is low and . is high, and
suggests the termination of Pods when d,, is high and A is
low. However, the agent may advise an unexpected action
with low, but non-zero probability due to the nature of a
stochastic policy. For example, when a sudden increase in
traffic is detected as illustrated in Figure 5, the agent begins
starting up Pods to lower the blocking rate. We would expect
the agent to start new Pods until the blocking rate is below
the threshold, however, from time to time the agent termi-
nates a Pod incorrectly. If the algorithm could decrease the
probability of the bad actions to O and increase the proba-
bility of the good action to 1 in every state, we would get
a deterministic policy. However, this cannot happen, due to
the entropy regularization which prevents the PPO algorithm
from reducing the probability of an action to zero. This is
a necessary measure to guarantee that all actions remain
possible in all states so that the agent would have a possibility
to explore the whole state space during training. The noisy
behavior of the DRL agent can also be seen in Figure 6 that
plots the action versus X and don.

It is worth emphasizing that there may be outlier points
in the dataset, e.g. where the arrival rate is very low and the
Pod count is very high. If these points are labeled correctly,
they do not influence the separating line. However, in case of
mislabeling, these points can shift the decision boundary into
an unwanted direction. Therefore we need a classifier to clean
the dataset by removing these outlier points. We did this by
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(a) At step 480 the arrival rate suddenly increases to SOO%.
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(b) The DRL agent follows the traffic increase by starting
new pods, but it sometimes terminates existing ones due to
its stochastic policy.
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(c) The blocking rate spikes along with the traffic increase but
reduces quickly as new pods are started.

FIGURE 5. Trained DRL agent during sudden traffic increase. The system
is initialized with 50 Pods and the DRL agent immediately starts removing
unused ones. At step 480 the traffic suddenly increases and the agent
reacts by increasing the Pod count. Due to the stochastic nature of the
policy, a Pod may be terminated even when the blocking rate is above the
threshold level.

considering every point an outlier for which
|don/Dmax — )A\/Xmax| > 04, (12)

where imax is the maximum of the measured arrival rate
during the experiment. With this we removed every point that
is not on the main diagonal strip of the scatter plot.

We apply the DRL agent to generate labels by taking a
set of states and mapping actions to each state. The resulting
dataset of size Ngaa Was then used to create a linear support
vector machine (SVM) classifier that maps actions to states.
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The linear SVM 1is a machine learning model that can
find the separating hyperplane in a dataset between two
classes [43]. In our case, the set of actions .4 contains three
types of actions which would require a multiclass classifica-
tor. We can circumvent this with the one-versus-rest strategy
and build separate models for each action type. In this case
we label the corrseponding action a with +1 if it belongs to
the given action type, otherwise we label it with —1. We will
denote the modified action label with a.

Using the set of states S as the feature set, for a state s; € S
we are looking for the separating hyperplane f(s;) = w’ s; +
wo = 0, where w and wy are the parameters of the SVM. This
would give us the classification rule

a; = sign(wTsi + wo). (13)

Note that multiple hyperplanes may be found. So we pick the
one with the largest margin M, which is the distance between
the hyperplane and the data point closest to the hyperplane.
Two cases are distinguished.
« If the data is separable, that is, a hyperplane exists that
can separate the actions labeled with +1 from the actions
labeled with —1, the optimization problem is

min ||w]|
W, wo
subject to &,-(wTsi +wo)>1, i=1,2,..., Ngaa-

(14)

« If the dataset contains overlaps and it is not separable
we need to find the separating hyperplane that allows
the least amount of points in the training set to be clas-
sified incorrectly. This can be achieved by introducing
the slack variables ¢; and modifying the optimization
problem into

min [|w]|

W, W

s

subjectto  ai(w!s;i +wo) > 1—¢;

G>0, Y &<C, i=1,2,..., Naaa,
(15)

where C, called the cost parameter, is a tuneable hyper-
parameter of the SVM. The smaller C is, the more points
are allowed to be misclassified, resulting in a higher
margin.
Algorithm 3 presents the training procedure of the SVM. The
algorithm requires the parameters and the hyperparameters of
the simulation environment and the DRL method. It returns
the SVM model parameters w and wo and also returns the
accuracy of the model on the test set which is a performance
measure of the SVM.

After the initialization of the agent and the environment,
the algorithm starts training the agent for Nyain steps. This
training loop is almost identical to the one in Algorithm 2.
The difference is that in the last Ngaa steps the agent stores
the states in a list Lgqes for the dataset later.
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FIGURE 6. Selected actions at given i and don values. We see more terminate actions when the arrival rate is low and the number of pods high and

more start actions in the opposite case.

When the training of the DRL agent is finished, its policy
is used to evaluate the states in Lgpes. The resulting actions
are then saved in the list Lacs. These two lists together form
the dataset we use to train the SVM. The dataset is cleaned by
removing the outlier data points. Then it is split into training
(clain - £tainy and test (L5, £50) sets. The training set
is used to train the SVM model, whereas the test set is used
to determine the accuracy of the trained model. At the end
of the procedure we get the SVM model parameters and the
accuracy on the test set.

We run this algorithm multiple times to perform a
grid search on the C hyperparameter of the SVM, which
means each run we use a different C value. Finally,
we pick the model with the highest accuracy on the test
sets.

In order to asses the SVM classfier, we also experimented
with another classification method, logistic regression which
describes the log-odds of each class with a linear function.
For more on this classifier, see [43]. In this case, Algorithm 3
can be modified by replacing the SVM model with a logistic
regression model.

165900

We used the scikit-learn 0.24.2 [44] library to imple-
ment the SVM and the logistic regression models. For
the logistic regression, we used the default hyperparame-
ters. For the SVM hyperparameter values see Section V-B.
For the list of notations used by the algorithms see
Table 3.

E. SYSTEM MODELING
We built a simulator program that emulates a multi-node
cloud environment and implemented the DRL agent in
Python with the help of pytorch. The simulator program
contains a procedure that generates the arrival of a UE as a
Poisson process with arrival rate A(¢) at time #. Upon arrival a
PDU session is initiated if there is available capacity among
the pods. Otherwise the UE’s request is blocked. The UPF
handling the PDU session and its traffic is chosen at random.
We assume the length of a session is random and distributed
exponentially with rate u.

Note that in practice we do not know the exact arrival
rate function in advance. To show how the DRL algo-
rithm can cope with this, we divided the DRL experiments
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Algorithm 3 Training an SVM Classifier
DRL

Input: Environment  and
Table 1 and 3).

Output: SVM model (w, wp) and its accuracy

. Initialize Pod count to Dpip.

: Initialize @ and w of the Agent with random values.

¢ Lstates < {4}, Lacts < {9}

: /] Training agent and collecting states.

i< 0

: for Nypin steps do
a; < Get action from the agent in state s; (based on

the neural network).

8: ri, Si+1 < Execute action ag; and get reward and the
next state.

9: Store history and Update agent using the
AGENT.STORE and AGENT.UPDATE procedures in
Algorithm 1.

10: if i > Niain — Ndata then

11: Append state to Lgates-

12: end if

13: i<—i+1

14: end for

15: 1«0

16: for Nya, steps do

17: Evaluate DRL agent on state Lges[i] to get action.

18: Append action to Lycs.

19: I<—i+1

20: end for

21: Remove outlier points according to (12).

22: Separate lists into train .and test sets: Lgates —
Lies Litates’ Lacts = Lagis's Lagis-

23: W, wo < Train SVM using LI4% as features and Liqn

as labels and run a grid search on hyperparameter C.

24: Get accuracy of the model using L35, and LS58.

25: return w, wg, accuracy

parameters  (see

into two phases, a training phase and an evaluation phase.
In each of these phases we used a different function for
the arrival rate, Ayain and Aeval, respectively. We can think
of the training phase as a pre-training stage where we
initialize the DRL agent and train it with a predefined
arrival rate function. Whereas in the evaluation phase we
apply the pre-trained agent on an environment with a new
traffic model. So learning also happens in the evaluation
phase, but the agent does not need to go through a cold
start.

We trained the DRL agent on a sinusoidally varying arrival
rate

hcain(f) = 250 + 250 sin (%I) (16)

for Niain amount of simulation steps. With this func-
tion the agent can explore a wide range of traffic inten-
sity. For evaluation we used an equation from [45] which
was determined for mobile user traffic. We scaled it
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TABLE 3. Notations used by the algorithms.

Notations for the HPA

Jo) mean utilization (e.g. CPU)

Prarget target utilization of the HPA algorithm

v tolerance of the HPA algorithm

ddesired desired Pod count provided by the HPA
Notations for the DRL

Amax maximum measured arrival rate

Atrains Aeval training and evaluation phase arrival rate functions
Nirains Neval | number of training and evaluation steps

0, w policy and value network parameter vector
Nbpatch batch size

7 mean reward

aRr mean reward soft udpate rate

k number of epochs in PPO

TDrarget temporal difference target

o TD-error

A A advantage, estimate of the advantage

g, A, learning rate of the policy and the value network
€ PPO clipping parameter

AGAE GAE parameter

H entropy regularization function

& entropy coefficient

Notations for the SVM

Nyata size of the dataset used for tarining the SVM
L;{?‘l‘;/‘/‘;sctts list containing the training/test set of states/actions
W, W SVM parameters

i SVM slack variable

C margin parameter of the SVM

to our use case to get
Aeval(f) = 330.07620 + 171.10476 sin (%r + 3.08)
Yz 1
+100.19048 sin (gt + 2.08)

+31.77143 sin (%t + 1.14) (17)

and ran Ney, amount of simulation steps with it. This scaling
makes the peak traffic 500 PDU requests/s. To visualize Aain
and Aeyqr in (16) and (17), we plotted Figures 7a and 7b that
demonstrate the arrival rates measured (1) during the training
phase and the evaluation phase for a 36 hour time period.

We set the blocking threshold p, s, = 0.01 and ran the DRL
algorithm under various fpend values. For each #yenq value we
ran 8 simulations and took the average of dyy, and pp, for the
evaluations phase.

V. NUMERICAL RESULTS
A. SCENARIOS
For the numerical evaluations, we assumed that

« UPF instances run in phyiscal servers [46] with the Intel
Xeon 6238R 28 core 2.2 GHz processor and 4 x 64 GB
RAM;

« each UPF session conveys video streaming data;

« eight cores on each server are allocated for OS and the
container management system;

« Each UPF instance occupies one core and 2GB RAM
and serve maximum 8§ simultaneous video streams;

« booting time is not negligible and is fixed and identical
for each UPF pod.
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(a) The measured arrival rate A during the training phase when
traffic was generated according to Ay, in (16).
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(b) The measured arrival rate A during the evaluation phase
when traffic was generated according to Aeya in (17).

FIGURE 7. Arrival rates measured during the training and the evaluation
phase for a 36 hour period.

TABLE 4. Cloud environment parameters.

the max. number of sessions per Pod (B) 8
service rate (u) 1/s
minimum number of Pods (Dmin) 2
maximum number of Pods (Dpax) 100
initialization time (fpend) | 0.25, 5, 10's
time between decisions (AT) 1s
blocking rate threshold (pp, ¢1) 0.01

Parameter values for the cluster used during the simula-
tions can be found in Table 4.

Besides the PPO algorithm, we also experimented with
deep Q-networks (DQNs) which use a deterministic, greedy
policy in the evaluation phase. We found that DQN had
difficulties learning the optimal policy. Figure 8 shows us a
comparison between the evaluation of a trained DQN and a
trained PPO agent. We can see that while the PPO could adapt
well to the varying arrival rate in (17) and found a balance
between the Pod count and the blocking rate, the DQN could
not keep the Pod count as low and overprovisioned the Pods.

We also have to note that the DQN seemed to be much more
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(a) Number of Pods (don) during the evaluation phase, using
DQN or PPO. We can see that the Pod count follows the traffic
change showed in Figure 7b. However, the policy learned by
the DQN does not perform as well as the PPO’s policy as it
starts way more Pods at higher traffic.
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(b) Blocking rate (p,) during the evaluation phase, using DQN
or PPO. The blocking rate occasionally breaks the py, ;, = 0.01
threshold with the PPO agent when traffic is high, but the long
time average is still below the threshold. In the case of the
DQN the blocking rate is zero.
FIGURE 8. Performance measures. DQN starts a lot more Pods during
high traffic (the tendency is to use the maximum Pod count Dmax = 100).
Meanwhile the blocking rate with DQN is always zero which is a clear
sign of overprovisioning.

unstable as in many cases it failed to even learn a policy that
would adapt to traffic changes, whereas the PPO algorithm
could find a good policy throughout every run. For this reason
we ruled out the use of DQN and focused on PPO instead.

Results for the PPO are included in Table 5. The values
displayed are averaged through 8 runs. Each run took approx-
imately 120-150 minutes. We can see that the DRL agent
could keep the blocking rate p;, below the threshold 0.01 in
each case.

For the HPA algorithm, we assumed that handling a
CPU session requires 100% of a CPU core. This means
that the utilization of a UPF Pod is proportional to the
number of PDU sessions it handles. We set the tolerance
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FIGURE 9. Decision boundary learned by the SVM classifier. The agent terminates a Pod if it is in a state below the boundary line and starts a new

Pod if it is above.

v = 0.025 and searched for the parameter prarge that could
still maintain the blocking rate below the threshold. Each run
consisted of Neya evaluation steps. The range of the search
was (6.0, 6.25, ..., 9.75) and the result was prarger = 0.875.
We included the results in Table 5.

Comparing the results in Table 5 we can see that at lower
fpend Values the DRL agent could maintain fewer UPF Pods
and the do, was reduced by 3.8%. At higher #,enq values this
improvement percentage decreased but still, the DRL agent
was more efficient in using the UPF Pods. The reason for the
decrease is that when fpenq is high, it takes much longer for
a Pod to start, which means that in order to keep p, below
the threshold, the DRL agent cannot terminate that many idle
Pods.

B. IMPROVING PERFORMANCE WITH ACTION
CLASSIFICATION

In a given state there is a small probability, that the DRL
agent makes a bad decision. For example, Figures 5 and 6
show a scenario where the system is initialized with 50 Pods
and the DRL agent immediately starts removing unused ones.
At step 480 the traffic suddenly increases and the agent
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TABLE 5. Mean number of Pods and average blocking rate with the DRL
and the HPA algorithms. Percentages show improvement compared to the
HPA algorithm.

[ fpend | don DRL) [ pp (DRL) [ don (HPA) | ppp (HPA) |
255 | 46.598 (3.8%) | 0.009338 48.446 | 0.006300
5s | 46.908 (3.2%) | 0.009125 48.452__| 0.007300
10s | 47.129 (2.7%) | 0.008800 48.456_ | 0.007425

reacts by increasing the Pod count. Due to the stochastic
nature of the policy, a Pod may be terminated even when
the blocking rate is above the threshold level. Note that such
actions could be beneficial during training because the agent
should explore the state space. Therefore, we provide an
approach to minimize such unwanted actions. We took the
sample of states and used the actions as labels to create a
dataset. Using this dataset we trained an SVM classifier with
linear kernel. We also considered other kernel types such as
polynomial or radial basis function kernels but found their
training times significantly longer and also less accurate than
the linear kernel. Algorithm 3 presents the procedure we used
for training. We set the size of the dataset Ng,a = 450000 and
used 80% of the data for training and 20% of the data for
testing. For the hyperparameter search we considered C €
{0.1, 1, 10, 40, 100}.
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(a) The mean arrival rate increases to 500% at timestep 480
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(b) don starts at 50 which drops due to unused Pods. Then
it increases steadily when the traffic increases. During this
period, Pods are not terminated unlike under the DRL agent
due to the deterministic policy.
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(c) The blocking rate starts dropping as the number of Pods
increases.

FIGURE 10. SVM trained agent during sudden increase in traffic. The
agent uses a deterministic policy and does not terminate Pods, when they
are needed.

Besides the full state description, we also considered a
reduced state description where s(f) = [don(t), )A\(t)‘J to
alleviate the curse of dimensionality during training of the
SVM. With the full state space, training took approximately
12 minutes, whereas with the reduced state space, the training
time was about 9 minutes.

Figure 9 shows the decision boundary learned by the SVM
classifier and Figure 10 plots the behavior of the agent using
the SVM classifier for the sudden increase of traffic. We can
see that the agent behaves in a more consistent way than PPO
and starts new Pods while the number of the Pods is not high
enough to meet the blocking rate criterium.
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TABLE 6. Mean number of Pods and average blocking rate with the SYM
classifier. Percentages show improvement (decrease of don) compared to
the HPA algorithm at the same f,¢pq value.

l tpend [ don [ Db l
0.25 | 46.442775 (4.1%) | 0.010400
5 48.425250 (0.1%) | 0.003250
10 47.959200 (1.0%) | 0.004013

TABLE 7. Mean number of Pods and average blocking rate with the
logistic regression classifier. Percentages show improvement (decrease of
don) compared to the HPA algorithm at the same fj¢pq value.

l Ipend [ don [ Pb l
0.25 46.990392 (3.0%) 0.005427
5 48.493830 (—0.1%) | 0.002906
10 48.213733 (0.5%) 0.003216

We ran Algorithm 3 for various #yeng values. Each experi-
ment was carried out 8 times and we took the average of the
mean number of Pods and the mean blocking rate through-
out the runs. Table 6 shows us the results. We can see that by
using the SVM classifier we could still keep the blocking rate
below the pp, ;, = 0.01 threshold. However, we get slightly
higher mean pod counts than when using the DRL agent only.

To investigate the choice of a classification model, we con-
ducted experiments with a logistic regression model as a
classifier. In Table 7 results show that the logistic regression
classifier could also keep py, below the threshold pj, 5 = 0.01.
Incorporating the classifiers could save the resource usage
(the mean number of Pods) compared to the HPA algorithm.
Furthermore, the SVM model outperforms the logistic regres-
sion one when both the models are trained using the same
generated dataset. The decrease in do, was lower with the
logistic regression at higher #yeng.

VI. DISCUSSIONS AND CONCLUSION

We have investigated the autoscaling of UPF Pods in a 5G
core running inside the Kubernetes container-orchestration
environment. An extensive numerical study shows that the
application of deep Q-networks (DQNs) results in a greedy
policy. Therefore, we proposed a DRL based on the PPO
method to find a stochastic policy. We have shown that DRL
can outperform the built-in HPA algorithm.

Note that the DRL agent may recommend an unexpected
action with a tiny probability due to the nature of a stochastic
policy. Such unexpected actions with the low probability
value are due to outlier points in a dataset collected during
the training, which drives the agent in an unwanted direction.
Therefore, we need a classifier to clean the dataset by remov-
ing these outlier points. A study shows that the incorporation
of the classifier could save the resource usage (the mean num-
ber of Pods) compared to the HPA algorithm. We have also
investigated two classification models (the logistic regression
model and SVM) and found that the SVM model outperforms
the logistic regression one when both the models are trained
using the same generated dataset. We have shown that our
approach outperforms Kubernetes’s built-in Horizontal Pod
Autoscaler (HPA). DRL could save 2.7-3.8% of the average
number of Pods, while SVM could achieve 0.7—4.5% saving
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compared to HPA. It is worth emphasizing that training a
classifier can create a deterministic policy that reacts better
to sudden changes in traffic. In exchange, the performance
degraded compared to the DRL agent when we evaluated it in
an environment with slower traffic change. The degradation
was slight, though, and the performance was still better than
with the HPA most of the time. One major drawback, however
is that Algorithm 3 cannot be run online. Therefore, it would
be applied when the DRL policy is stable enough with avail-
able datasets. Otherwise, the DRL with PPO is suggested.
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