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ABSTRACT Recursive attitude estimation of a rigid body from inertial measurements is a crucial component
of many modern systems and as such, has a rich historical background of proposed techniques. Recent
work has been done on tracking rotations using maximal entropy distributions. However, there has been no
evaluation done on the performance of this approach using real inertial data. In this work, we investigate
the performance and limitations of classical and modern probabilistic Bayesian approaches and provide
a rigorous comparison to attitude estimation on the special rotation group SO(3) using maximal entropy
distributions. The extended Kalman Filter and the unscented Kalman filter are derived as benchmarks in
attitude estimation from low-cost inertial measurement units, commonly found in smartphones. To evaluate
robustness over multiple sampling intervals, we generated synthetic directional inertial measurements from
a typical low-cost 3-axes inertial measurement unit and use the Frobenius Norm as our primary metric.
To further our evaluation, we took advantage of a publicly available dataset where inertial measurements
are recorded from a number of off-the-shelf smartphones and the ground truth is calculated using a Motion
Capture system. Our experiments demonstrate that tracking rotations using maximum entropy distributions
produce a more accurate and robust solution in contrast to alternate proven Kalman approaches.

INDEX TERMS Attitude estimation, extended Kalman filter, inertial measurement unit, rotation group,
unscented Kalman filter.

I. INTRODUCTION
The ability to accurately and recursively estimate the attitude
of a rigid body is a key component in many applications,
including aerial, autonomous and subaquatic navigation [1],
satellite control and space junk estimation [2], [3], as well as
augmented reality and tracking of human and animal body
motions [4]. Due to its vast range of applications, it has been
the subject of extensive research. Over the years, numerous
classic nonlinear estimation algorithms have been put for-
ward to address dynamic state estimation in a nonlinear sys-
tem and an exhaustive summary of these approaches is given
in [5]. Many of the techniques described are computationally
complex and particular to a certain device or application. The
major issue with nonlinear filters is real time computational
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complexity to provide a given estimation accuracy. Real time
computational complexity depends on several factors, which
are explained in [6]. In this work we look at algorithms that
are on the order of d3 for estimating state vectors of dimen-
sion d . Additionally, we look at Bayesian estimators, param-
eterised by rotation matrices that derive attitude perturbation
states in the filter. This is due to Bayesian estimators being
advantageous in their complete stochastic property definition
given by the probability density of the estimated attitude,
particularly the level of confidence [7].

Attitude estimation algorithms typically rely on direc-
tional measurements acquired, for example, from an
inertial measurement unit (IMU). Advancements in micro-
electromechanical technologies have allowed for enough
processing power in present-day mobile and tablet devices
to accommodate an increasing number of sensors. Con-
sumer grade IMUs availability, low-cost, and low power

168806 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7912-8741
https://orcid.org/0000-0001-8926-5539
https://orcid.org/0000-0002-6776-3411
https://orcid.org/0000-0001-6219-2341
https://orcid.org/0000-0002-1288-956X


J. Brotchie et al.: Evaluating Tracking Rotations Using Maximal Entropy Distributions

requirements enable such devices to facilitate real-time appli-
cations and navigation solutions [8], [9].

In this paper we focus on Bayesian estimation algorithms
that use tri-axial measurements from 3 inertial sensors, com-
monly found in smartphones. These embedded sensors make
it possible to leverage the continuously provided information
to estimate the attitude of the rigid sensor body with respect
to the Earth’s local frame. These IMUs typically consist
of a tri-axis accelerometer, gyroscope and magnetometer.
The magnetometer and accelerometer provide noisy direc-
tional measurements with respect to the Earth’s polar North
and gravitational acceleration. The gyroscope provides noisy
measurements of angular velocity. Directional vector obser-
vations can be taken from accelerometer and magnetometer,
whereas the gyroscope provides angular velocities. Integra-
tion of the angular velocitymeasurements unfortunately leads
to increasingly large errors in attitude estimation due to the
sensor bias. A more in depth description of these sensors and
their calibrations is provided in [8]. The modelling of the
accelerometers, rate gyroscopes and magnetometers take into
account the several biases and noise imperfections found in
smartphones. An in depth look into a wide range of IMUs and
their deficiencies can be found in [10].

As the integration of gyroscope measurements yields poor
estimations, accelerometer and magnetometer measurements
are used to update error calculations and compensate for the
drift. The generalised problem for attitude estimation from
IMUs is in the combination of these sensors to provide an
optimal solution in the form of an optimal state estimator.
Optimal state estimators have been proposed where mea-
surements are mixed with both kinematic and dynamic mod-
els [5], [8], [9]. Most of the complexity in attitude estimation
lies in the nonlinearity of attitude change and as such requires
a non linear estimator. Previous work on attitude estimation
with smartphones in [8] and [9], has provided a number of
state-of-the-art nonlinear estimators in this space that fit our
computational complexity requirements.

The non linear state estimators looked at in this work are:
the extended Kalman filter (EKF), the unscented Kalman
filter (UKF) and tracking attitude using maximum entropy
distributions on the rotation group SO(3), developed by
Suvorova et al. [11] - henceforth referred to as the SO(3)
filter. We generated synthetic IMU measurements at vary-
ing sampling rates and utilise the publicly available OXIOD
smartphone dataset [12] to thoroughly compare and contrast
each estimation solution. Improving our state estimation from
consumer IMUs could promote significant advances in prac-
tical applications such as indoor navigation and localisation,
inertial odometry and augmented/virtual reality, amongst oth-
ers. The major contribution of this paper is to provide a rigor-
ous comparative evaluation of attitude estimation algorithms
in literature in contrast to tracking rotations using maximal
entropy distributions in terms of robustness and accuracy.

The rest of the paper is arranged as follows: the background
fundamentals of attitude estimation from IMU data via an
EKF, UKF or SO(3) filter used in this work is given in

Section II. Detailed mathematical descriptions are given in
Section III, IV and V for the respective filters. The experi-
mental results are presented in Section VI alongside a dis-
cussion. Finally, we draw some conclusions and delineate
potential future work in Section VII.

II. BACKGROUND
A Kalman-based filter has long been the de facto standard
for attitude estimation algorithms and their commercial appli-
cations [5]. The extended Kalman filter (EKF) was the pio-
neering real-time attitude estimator and its inception proved
integral in live spacecraft attitude estimation [2], [3]. The
pervasiveness of the EKF solution is a testament to its effec-
tiveness, however, there are a number of disadvantages.

To account for the nonlinear aspects of rotational kine-
matics, the EKF predicts the states of the system under the
assumption that its observation model and process model are
locally linear and then expands upon these using Jacobians.
Since the rotation group onSO(3) has three dimensions, most
attitude determining EKFs use lower-dimensional parameter-
isations [5], [13]. The low dimensionality can lead to imple-
mentation difficulty when expanding the Jacobians, as certain
attitudes are singular or discontinuous. These singularities
cause the EKF error covariance matrix to shrink rapidly in
size. Once this matrix is sufficiently small, the EKF has to be
re-initialised, causing the estimations to drift over time [3],
[5], [14]. Additionally, the calculation of the Jacobian matrix
in an EKF is a cumbersome process and is not guaranteed to
exist or may not have a finite value [15]. Quaternion based fil-
ters have been developed to overcome some deficiencies [2],
[16], as quaternion based parameterisations do not exhibit
singularities in representing attitude.

Several extensions have been built on the framework of
the EKF - most notably the unscented Kalman filter. The
UKF is an improvement to the EKF and it generalises the
Kalman filter for both linear and nonlinear systems [17]. The
UKF builds around the premise that with a fixed number
of parameters, approximating a Gaussian distribution should
be far simpler than approximating some arbitrary nonlinear
function. Introduced in [18], the UKF has been implemented
for attitude estimation in [14], [19] with much success. It has
several advantages over the EKF, namely a lower expected
error as it avoids the derivation of Jacobians as well as being
valid for higher order expansions. The UKF uses sigma points
to capture the characteristics of a Gaussian distribution. How-
ever, the regenerative step of the sigma points can be a major
limitation in the propagation of state uncertainty [20].

Alternate estimations for the probabilistic distribution of
attitude uncertainty on the manifold have been studied,
despite being relatively unpopular in comparison to the afore-
mentioned techniques [7]. Work on attitude estimation on
the special orthogonal group is seen in [7], [11], [21]–[24].
In this body of work, the specific form of probability density,
the matrix von Mises-Fisher (vMF) distribution, is used to
represent the uncertainties in the state estimates. The vMF
distribution is defined by 9 parameters when applied to the
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special orthogonal group SO(3) and, as such, is comparable
to the Gaussian distribution in R3, which is completely rep-
resented by the three dimensional mean and six dimensional
covariance (used in our Kalman variants). We are grateful for
Dr Sofia Suvorova’s early discussions on the background for
this work. Following [11], [23], we use the maximal entropy
distributions on the rotation group - the von Mises- Fisher
distributions - as a model for the priors in tracking rotations
in the SO(3) filter. To the best of our knowledge, tracking
rotations from real inertial measurements in this manner,
is absent in literature. This work presents a novel evaluation
of tracking rotations using maximum entropy distributions,
from real and synthetic inertial measurements. We leverage
popular Kalman filters as benchmarks.

III. SO(3) FILTER
The group of rotations in three dimensions is the special
orthogonal groupSO(3). Attitude of an object in three dimen-
sional space can be represented by an element of the special
orthogonal group that corresponds to its rotation from some
arbitrary initial state. The vMF distribution is the maximal
entropy probability over these rotations. Any attitude estima-
tion approach starts with the definition of the state vector that
defines the time varying system and then to propagate this
state by computing the posterior distribution of the rotating
body.

A. MEAN AND CONCENTRATION MATRICES ON SO(3)
The state of the system is represented by a rotation matrix,
an element of the special orthogonal group SO(3), where

SO(3) =
{
R ∈ R3×3

|RTR = I3; det[R] = 1
}

(1)

where I3 is 3-dimensional identity matrix.
The matrix von-Mises Fisher distribution on SO(3) is

defined as follows.
Definition 1: A random rotation matrix, R ∈ SO(3),

is distributed according to a vMF distribution if its proba-
bility density function is defined on SO(3) as

p(R) = p(R|A) = α(A) etr
(
ATR

)
(2)

where etr (·) = exp (tr (·)), matrix A ∈ R3×3, encompasses
said location (rotational mean) and measure of spread (con-
centration) and α(A) ∈ R is the normalization factor such
that

∫
SO(3) p(R;A)[dR] = 1. [dR] denotes integration with

respect to the Haar measure on Lie group SO(3). Further-
more, we denote R ∼ vMF(A).
Proposition 1: The product of two matrix vMF distribu-

tions can be written into a matrix vMF distribution after
normalization, i.e.

p(R; Ã) = β(A1,A2)p(R;A1)p(R;A2) (3)

where β(A1,A2) is the normalizer.
Proof:

p(R;A1)p(R;A2) = α(A2) etr
(
AT
2R
)
α(A1) etr

(
AT
1R
)

= α(A2)α(A1) etr
(
(A1 + A2)

T R
)

, α(A2)α(A1) etr
(
ÃTR

)
Therefore, there exists β(A1,A2) such that∫

SO(3)
β(A1,A2)α(A2)α(A1) etr

(
ÃTR

)
[dR] = 1 (4)

The matrix A can be decomposed as the product A =
R̂TA0 = R̂TV6VT , see [25], where R̂ is the polar com-
ponent and A0 = V6VT is the elliptical component, also
known as the concentration matrix. Equivalently, we have
R ∼ vMF(R̂TA0). It is important to note that if A is sin-
gular, this decomposition may not be unique. Function α(A)
can be calculated in terms of an asymmetric version of the
hyper-geometric function 0F1

(
3
2 ;

1
46

2
)
, where6 is a matrix

of eigenvalues of the concentration matrix.
The first moment is given by

E = Vf (6)VT R̂, (5)

where f (6) is a diagonal matrix with entries fi defined by

∂

∂κi
log 0F1

(
3
2
;
1
4
62
)
, for i = 1, 2, 3 (6)

A closed-form and approximate method to calculate f (6) can
be found in [23].

B. LIKELIHOOD FUNCTION AND PRIOR DENSITY
The Bayesian framework proposed in [23] assumes that the
posterior density of the rotation matrix at time k , i.e. Rk ,
is vMF distributed:

p (Rk |Zk−1, · · · ,Z1) = α(Ak ) etr
(
R̂T
k AkRk−1

)
(7)

where Zi is the measurement at time i, Ak is concentration
matrix and R̂T

k is a mean. Obviously, the Ak and R̂T
k should

be dependent on Zk .
For the state transition, it is assumed that, at time k , the

attitude Rk is transited from Rk−1 through another random
rotation matrix Pk ∼ vMF(P̂Tk Bk ), where P̂

T
k is a mean and

Bk = UBk6BkU
T
Bk

is a concentration matrix of the dynamics.
The state dynamics transition probability is then written in
terms of the distribution matrix, Pk

p(Rk |Rk−1) = α(Bk ) etr
(
P̂Tk BkRkRk−1

)
(8)

The prior distribution of Rk is then given by

p (Rk |Zk−1, · · · ,Z1)

=

∫
SO(3)

p(Rk |Rk−1)p(Rk−1|Zk−1, · · · ,Z1)[dRk−1]

(9)

= α(Bk )α(Ak−1)
∫
SO(3)

etr
(
P̂Tk BkRkRk−1

)
. . .

. . . etr
(
R̂T
k−1Ak−1Rk−1

)
[dRk−1] (10)
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This resultant integral is intractable and is therefore
approximated with a vMF distribution to allow for a recursive
process to estimate the attitude over time. SinceRk is assumed
to be distributed by a vMF, then its first moment can be
estimated as the product of two vMF variates, Eq. (5)

Êk =
(
UBk f (6Bk )U

T
Bk P̂k

)
(
UAk−1 f (6Ak−1 )U

T
Bk−1R̂k−1

)
(11)

where
(
UBk f (6Bk )U

T
Bk
P̂k
)

corresponds to P̂Tk Bk while(
UAk−1 f (6Ak−1)U

T
Bk−1

R̂k−1

)
corresponds to R̂T

k−1Ak−1.
Equivalently, (11) can be polar decomposed to

Êk = UCk−1 f (6Ck−1)U
T
Ck−1Qk (12)

so we then have the distribution, Rk , approximated by

p(Rk |Zk−1, · · · ,Z1) = α(Ck ) etr
(
QT
k CkRk

)
(13)

where Qk is the mean, Ck = UCk−16Ck−1U
T
Ck−1

is the
concentration matrix.
To summarise, in order to find the vMF distribution R ∼

vMF(R|R̂TA) approximating the distribution of a rotation
matrix R w.r.t Z, we first compute the polar decomposition
of Z to obtain the modal matrix R̂.

C. MEASUREMENT MODEL AND BAYESIAN UPDATE STEP
The measurements, Zk , are assumed to be distributed in
accordance with a vMF. As such, the likelihood function at
time k is

`(Zk |Rk ) = α(XMZTk ) etr
(
XMZTk Rk

)
(14)

where the matrix X is columned by the gravity and magnetic
reference vectors (in a global coordinate system) and M is
a matrix with diagonals that correspond to the measurement
concentration parameters. From Proposition 1, we know that
the posterior distribution is still vMF distributed. Specifically,
recall the proposed form of the posterior distribution, we have
following result via Bayes’s rule

p(Rk |Zk ,Zk−1, · · · ,Z1) ∝ `(Zk |Rk )p(Rk |Zk−1, · · ·,Z1)

= etr
(
XMZTk Rk +QT

k CkRk

)
= etr

((
XMZTk +QT

k Ck

)
Rk

)
= etr

(
R̂T
k AkRk

)
⇐⇒ Rk |Zk ,Zk−1, · · · ,Z1 ∼ vMF(R̂T

k Ak ) (15)

where the new parameters R̂k and Ak are computed as the
polar decomposition of matrix XMZTk + QT

k Ck - as done in
Eq. (5).

IV. EXTENDED KALMAN FILTER
An EKF was used to estimate the attitude alongside the
SO(3) Filter. In this section we outline how the filter was
built [3], [5], [16], [26]. The rotation of an object in motion

can be defined by Euler angles, represented by roll φ, pitch
θ and yaw ψ . The angular rate is defined by ωx , ωy and ωz
along x, y and z axis respectively. We then have φ̇θ̇

ψ̇

 = T(φ, θ, ψ)

ωxωy
ωz

 (16)

where

T(φ, θ, ψ) =


1

sφsθ
cθ

cφsθ
cθ

0 cφ −sφ
0

sφ
cθ

cφ
cθ

 (17)

and sx = sin(x), cx = cos(x).
Now to construct Kalman filter, the following model is

considered

xk =
[
vk
bk

]
=
[
φk , θk , ψk , bx,k , by,k , bz,k

]T (18)

where vk = [φk , θk , ψk ]T and bk =
[
bx,k , by,k , bz,k

]T is the
gyro bias. Therefore, the states xk = [vk ,bk ]T at time k are

vk = vk−1 + Tk−1 (uk−1 − bk−1)1t (19)

bk = bk−1 (20)

where Tk = T(vk ) and uk is the gyro measurement. The
transition model is

xk = g(xk−1,uk−1)+ wk−1 (21)

where g(·) is the nonlinear function defined in (19) and (20)
and wk is the noise term with mean zero and covariance Q.

The measurement model is

zk = h(xk , vk ) =
[
RT
k ra

RT
k rm

]
+ vk (22)

where h(·) is the nonlinear function, RT
k is rotation matrix, ra

and rm are nominal gravitational acceleration and magnetic
field vector, and vk+1 is Gaussian noise term with mean zero
and covariance C.

The EKF is therefore given by

x̂k|k−1 = g(x̂k−1,uk−1)

Bk|k−1 = Ak−1Bk−1|k−1AT
k−1Qk−1

Sk = HkBk|k−1HT
k +MkCMT

k

Kk = Bk|k−1HT
k

(
HkBk|k−1HT

k + Ck

)−1
x̂k|k = x̂k|k−1 +Kk

(
zk − h

(
x̂k|k−1

))
Bk|k = (I−KkHk)Bk|k−1 (23)

where Ak−1 =
∂gk
∂x

∣∣∣
x̂k−1|k−1,uk−1

, Hk−1 =
∂h
∂x

∣∣∣
x̂k−1|k−1

and

Mk−1 =
∂h
∂v

∣∣∣
x̂k−1|k−1

.

Remark 1: A visual example to illustrate the main differ-
ence between EKF and SO(3) tracker is shown in Fig. 1. Due
to the linearization process of the EKF (left), Ak−1xk−1 is on
the tangent plane of point xk−1 and has an error with desired

VOLUME 9, 2021 168809



J. Brotchie et al.: Evaluating Tracking Rotations Using Maximal Entropy Distributions

FIGURE 1. A visualisation of the EKF (left) and SO(3) tracker (right)
estimation processes.

g(xk−1,uk−1), where g(xk−1,uk−1) is transition model and
Ak−1 is linearization of function g. Whereas in the SO(3)
tracker (right), the local linearization process is not involved
and the distribution is located directly on the unit-sphere.

V. UNSCENTED KALMAN FILTER
The unscented Kalman filter is a powerful tool when the
underlying models are nonlinear. Based on the work in [27],
we complete theUKF formulation here. The quaternion based
UKF can be found in [28].

At time k , the UKF is, i = 1, · · · , d .

χ0,k−1|k−1 = xk−1|k−1 (24)

1χ i,k−1|k−1 = d1/2pi (25)

χ i,k−1|k−1 = xk−1|k−1 +1χ i,k−1|k−1 (26)

χ i+d,k−1|k−1 = xk−1|k−1 −1χ i,k−1|k−1 (27)

where pi is i-th column of
(
Pxx,k−1|k−1 +Qk

)1/2, Pxx,·|· is
covariance matrix of x·|·.
Then the weights are

w0 =
1
d
, wi = wi+d =

1
2d

(28)

The prediction step and measurement update step are given
as follows

xk|k−1 =
2d∑
i=0

wig
(
χ i,k−1|k−1

)
Pxx,k|k−1 =

2d∑
i=0

wi
(
χ i,k|k−1 − xk|k−1

) (
χ i,k|k−1 − xk|k−1

)T
yk|k−1 =

2d∑
i=0

wih
(
χ
k−1|k
i

)
Pk|k−1yy =

2d∑
i=0

wi
(
h
(
χ
k−1|k
i

)
− yk|k−1

) (
h
(
χ
k−1|k
i

)
− yk|k−1

)T
+ Ck

Pk|k−1xy =

2d∑
i=0

wi
(
χ
k|k−1
i − xk|k−1

) (
h
(
χ
k−1|k
i

)
−yk|k−1

)T (29)

where Pxy,·|· is covariance matrix of x·|· and y·|·.

Finally, the correction step is

Sk = Pk|k−1xy

(
Pk|k−1yy

)−1
xk|k = xk|k−1 + Sk

(
zk − yk|k−1

)
Pk|kxx = Pk|k−1xx − SkP

k|k−1
yy STk . (30)

VI. EXPERIMENTS
In this section we illustrate the approaches presented in the
previous sections with synthetic and real IMUmeasurements.
The simulated measurements were generated to best mimic
a typical IMU found in a modern smartphone, where white
gaussian measurement noise standard deviations were given
by 0.01G, 0.1 rad/s and 0.4µT for each axis of the accelerom-
eter, gyroscope and magnetometer, respectively [29]. Doing
this synthetically gives us access to the ground truth over the
exact same rotations with the ability to vary our sampling
rate. Our experiments involve 1000, 10 second long, Monte-
Carlo simulations over multiple sampling rates. The OXIOD
dataset is used to evaluate each estimation solution on a large
set of real world data, comprising of multiple smartphones,
users and activities. The combination of experiments were
designed to best demonstrate each algorithm’s robustness and
applicability.

A. ATTITUDE ESTIMATION: SYNTHETIC DATA
The most valuable performance metric in the proposed
attitude estimation systems is the estimation error while
the sensor is in dynamic motion, where there is no rest
time for the filters to reinitialise without compromising
the current estimate. We have simulated measurements
from IMUs, comprising of a triaxial accelerometer, gyro-
scope and magnetometer. The simulation was implemented
with the following setup: a simultaneous rotation around x
and y axis at 6.28 rad/s with the covariance of measure-
ment noise for each respective sensor defined as σa =
[0.0361, 0.0455, 0.0330], σg = [0.008, 0.0065, 0.0086],
σm = [0.0011, 0.00098, 0.00098]T [28], and the sampling
rate at 10Hz, 100Hz and 1000Hz. The simulation results are
shown in Fig. 2 - 10. The Frobenius norm of the differences
between reference and estimate are given, as follows

L(t) = 3− tr(R̂(t)RT (t)), (31)

where t denotes the time, R̂(t) is the estimates of the attitude
at time t and R is rotation matrix of the reference attitude.
These are displayed in Fig. 4, 7 and 10 and provide a visually
simple, 3-dimensional performance depiction where L(t) cor-
responds to the closeness between the attitude estimation and
truth.

Figures 2, 3, 5, 6, 8, 9 show how each approach’s individual
Euler parameter errors and estimates are evaluated through
the aggregated simulations. The error plots in Figures 2, 5
and 8 best depict how each approach handles each estimation
parameter, and how this progresses as the sampling interval
decreases. It follows from the comparison of these figures that
the performance of the SO(3) and UKF are not as sensitive
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FIGURE 2. (top) Yaw, (middle) pitch and (bottom) roll estimation errors in
the EKF, UKF and SO(3) at 10Hz.

FIGURE 3. (top) Yaw, (middle) pitch and (bottom) roll estimations in the
EKF, UKF and SO(3) at 10Hz.

FIGURE 4. Frobenius norm of the EKF, UKF and SO(3) rotation matrices
at 10Hz.

to the measurement frequency as the EKF. The SO(3) filter
clearly separates itself from the Kalman approaches in its
yaw estimation, where again we see the EKF struggle to keep
up and accumulate errors over time. The average distance in
the SO(3) group between estimate and truth for each filter,
L(t), (Figures 4, 7 and 10) provides an easily comprehensible

FIGURE 5. (top) Yaw, (middle) pitch and (bottom) roll estimation errors in
the EKF, UKF and SO(3) at 100Hz.

FIGURE 6. (top) Yaw, (middle) pitch and (bottom) roll estimations in the
EKF, UKF and SO(3) at 100Hz.

FIGURE 7. Frobenius norm of the EKF, UKF and SO(3) rotation matrices
at 100Hz.

visualisation of performance comparison. From our simula-
tions at 10Hz in Figure 4, it is evident that the process model
of the SO(3) tracker, defined on the sphere directly using a
vMF distribution, is advantageous when compared to Kalman
process models which are defined on the tangent plane. This
is due to the position of the Normal distribution in Euclidean
space. As a result, when the time between samples increases,
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FIGURE 8. (top) Yaw, (middle) pitch and (bottom) roll estimation errors in
the EKF, UKF and SO(3) at 1000Hz.

FIGURE 9. (top) Yaw, (middle) pitch and (bottom) roll estimations in the
EKF, UKF and SO(3) at 1000Hz.

FIGURE 10. Frobenius norm of the EKF, UKF and SO(3) rotation matrices
at 1000Hz.

the Kalman filters will introduce additional uncertainty due
to the linearization process, when compared to the SO(3)
tracker. The Frobenius norm values for the SO(3) tracker
(from Equation (31)) are small throughout and do not accu-
mulate over time. From the progression of Figures 4 to 7 and
then 10, it is clear that the performance of EKF and UKF

becomes more and more comparable with the SO(3) as the
sampling rate increases. This coincides with the theoretical
property of the Kalman filters, in which the local linearization
improves due to the shorter intervals between measurements.
Additionally, we can see that the SO(3)’s performance is
improved accordingly. Our simulations at 10Hz exemplify
the difference in the approaches in attitude estimation using
low-cost sensors. Best visualised in Fig. 2 and Fig. 4, the
EKF struggles in the initialisation and starts drifting almost
immediately. In contrast, we see that both theUKF andSO(3)
remain constant throughout. However the SO(3) converges
much more quickly and provides a more accurate estima-
tion. In summary, when our measurement frequency is f =
1000Hz, the performance of all trackers are reasonably close
to each other but when f = 10Hz, the performance of SO(3)
is a significantly better solution. It is important to note that
despite each of the Kalman approaches convergence to a
more comparable solution as the sampling time increases, the
SO(3) still remains superior.

B. ATTITUDE ESTIMATION: REAL DATA
The OXIOD dataset is a publicly available at [12] and aims
to reproduce everyday activities using off-the-shelf consumer
phones and Motion Capture as a means of ground truth. The
dataset contains 158 sequences totalling more than 42km
in total distance. The data collection was designed to best
represent the varying complexity of motions of phone-based
IMUs in everyday usage, utilising four different off-the-shelf
consumer phones and five different users. The scenarios in the
dataset describe the user over three different motion modes:
slow walking, walking at a regular pace and running - all
with phone in hand. Further scenarios have the user walking
at a regular pace with the phone in a handbag, pocket or
trolley. We have compared each approach over each scenario,
using error variance as our performancemetric, for each Euler
angle. The variance is given by:

σ 2
=

∑n
i=1(αk − α)

2

n− 1
(32)

where αk is the estimate error at point k , α is the mean error
and n is the number of estimates.

By leveraging the true attitude representations using the
genetic algorithm [30], we were able to calculate optimal
covariance parameters for each filter to evaluate their situ-
ational best-case solution. Our results are presented in Fig-
ures 11-13.

In Figure 11, the variance for the Euler pitch estimate
is given for each approach and activity. Given the results
in Section VI-A, it would follow that the SO(3) and UKF
produce comparable solutions and the EKF trails with a larger
variance. It can be seen that this is largely the case, with
an exception when the phone was placed in the pocket of
the user. This is possibly due to the EKF having the chance
to reinitialise when the device aligned with the gravitational
vector. The variance of our roll estimates (in Figure 12)
are even more in-line with our theoretical expectations and
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FIGURE 11. Variance of pitch obtained from the EKF, UKF and SO(3), for
each aggregated scenario in the OXIOD dataset.

FIGURE 12. Variance of roll obtained from the EKF, UKF and SO(3), for
each aggregated scenario in the OXIOD dataset.

simulated results, where we see the SO(3) perform best,
followed closely by the UKF and then the EKF. Again,
in Figure 13, the yaw estimates mirror those from our Monte
Carlo simulations, in which the SO(3) tracker significantly
outperforms the Kalman variants.

We can numerically quantify the robustness of each
approach by looking at the mean variance over the entire
dataset. The mean variance of the pitch estimates for the
EKF, UKF and SO(3) are 0.38, 0.38, 0.37 respectively. Roll
mean variances 0.72, 0.65, 0.65 and finally yaw, 2.34, 1.27,
0.93. Averaging over these results for each approach gives
1.15, 0.77, 0.65 for the EKF, UKF and SO(3), respectively.
It is evident from these measures that SO(3) outperforms the
Kalman filters, with significant improvement in yaw estima-

FIGURE 13. Variance of yaw obtained from the EKF, UKF and SO(3), for
each aggregated scenario in the OXIOD dataset.

TABLE 1. Computation comparison.

tion in particular. With an exception noted in the scenarios
where the phone was placed in the pocket of the user, where
we see the EKF compute a better pitch estimate.

C. PROCESSING TIME
Since battery saving is a crucial component in a smartphone,
processing time is paramount to its applicability. Table 1
reports the number of rotation matrices generated per second
using Matlab. The larger the number, the better the perfor-
mance of the algorithm. Computationally, the EKF outper-
forms the SO(3) and UKF. The second line indicates the ratio
of the time spent in each algorithm compared to the EKF.

Overall, in our experimental setting, we observe that each
algorithm can be executed on smartphones at 100Hz. It is also
of special interest to note that in cases where battery life is of
particular importance, the ability of the SO(3) to sample less
frequently than the Kalman algorithms without sacrificing
much accuracy could allow for further power reductions.
However this will need to be further investigated.

VII. CONCLUSION
In this work, we have evaluated popular attitude estima-
tion algorithms: the traditional Extended Kalman filter and
Unscented Kalman filter and using maximal entropy dis-
tributions on the rotation group SO(3). We tested their
performance using simulated IMU measurements, emulated
from a typical smartphone over varying frequencies, and a
large, publicly available dataset. We showed that the SO(3)
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outperforms the EKF and UKF estimations under most test
conditions, with the largest discrepancies coming from low
rate sensor data and yaw estimation. It is well known that the
EKF is a sub-optimal and biased estimator due to the errors
introduced in the linearization and the resultant calculation
of the Jacobian. We showed that both Kalman variants are
more sensitive to the change of sampling rate than the SO(3)
tracker, due to the different modelling methods. Our evalu-
ations on the real dataset prove the SO(3) filter is not only
a better estimate solution, but also more robust. Adoption of
the SO(3) filter to process inertial measurements for attitude
estimation in smartphones could improve not only attitude
reliant applications such as augmented/virtual reality and
navigation, but also improve battery life due to its ability to
produce accurate estimations at reduced sampling intervals.
We look to improve on this solution and future work will aim
to optimise the mean and covariance estimates in the SO(3)
filter, as well as reformulating gyroscope bias estimation with
sigma point or particle estimation.
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