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ABSTRACT Blind and Visually Impaired People (BVIP) are likely to experience difficulties with tasks that
involve scene recognition. Wearable technology has played a significant role in researching and evaluating
systems developed for and with the BVIP community. This paper presents a system based on Google Glass
designed to assist BVIP with scene recognition tasks, thereby using it as a visual assistant. The camera
embedded in the smart glasses is used to capture the image of the surroundings, which is analyzed using
the Custom Vision Application Programming Interface (Vision API) from Azure Cognitive Services by
Microsoft. The output of the Vision API is converted to speech, which is heard by the BVIP user wearing
the Google Glass. A dataset of 5000 newly annotated images is created to improve the performance of the
scene description task in Indian scenarios. The Vision API is trained and tested on this dataset, increasing
the mean Average Precision (mAP) score from 63% to 84%, with an IoU> 0.5. The overall response time of
the proposed application was measured to be less than 1 second, thereby providing accurate results in real-
time. A Likert scale analysis was performed with the help of the BVIP teachers and students at the ‘‘Roman
& Catherine Lobo School for the Visually Impaired’’ at Mangalore, Karnataka, India. From their response,
it can be concluded that the application helps the BVIP better recognize their surrounding environment in
real-time, proving the device effective as a potential assistant for the BVIP.

INDEX TERMS Google glass, human–computer interaction, azure cognitive services, microsoft vision API,
ubiquitous computing, visual assistant.

I. INTRODUCTION
According to the World Health Organization, it is estimated
that there are at least 2.2 billion people globally who
have vision impairment or blindness.1 Out of these, around
45 million are blind and in need of vocational and social
support. This population faces many difficulties in perceiving
and understanding their surroundings since more than 80%
of the information entering the brain is visual [1]. Studies
have shown that vision accounts for two-thirds of the activity
in the brain when a person’s eyes are open [2]. The loss of
sight represents a public health, social and economic issue in
developing countries, where 9 out of 10 of the world’s blind
live. It is estimated that more than 60% of the world’s blind
reside in India, sub-Saharan Africa, and China. In terms of
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1https://www.who.int/news-room/fact-sheets/detail/blindness-and-

visual-impairment

regional differences, the prevalence of vision impairment in
low and middle-income regions is estimated to be four times
higher than in high-income regions [3]. The loss of sight
causes much suffering to the affected individuals and their
families. Despite many efforts, population growth and aging
are expected to increase the risk of more people acquiring
vision impairment.

A visually impaired person deals with orientation and
navigation issues daily. These issues can be alleviated
with the help of particular types of equipment that can
provide additional support to the individuals. With the
improvements in computer vision and human-computer
interaction techniques, it is possible to assist Blind and
Visually Impaired People (BVIP) with scene recognition
tasks. With the motivation of helping the BVIP community,
this paper presents an application implemented on Google
Glass2 that acts as a visual assistant to the BVIP.

2https://www.google.com/glass/start/
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Many efforts by several researchers have been made
to design systems that aid the BVIP. Bradley et al. [4]
experimented, testing whether a group of sighted individuals
and visually impaired individuals experience a difference
in physical and mental demands when given directions
to specific landmarks. Battaglia et al. [5] developed an
integrated, modular, and expandable open-source package
called Blind Assistant to show that it is possible to
produce effective and affordable aids for the BVIP. Meza-de-
Luna et al. [6] designed a social-aware assistant using a pair
of smart glasses and a haptic belt to enhance the face-to-face
conversations of the BVIP by providing themwith vibrational
cues from the belt. Chang et al. [7], [8], [9] proposed a
wearable smart-glasses-based drug pill recognition system
using deep-learning for the BVIP to enable them to improve
their medication use safety. The system consists of a pair
of wearable smart glasses, an artificial intelligence (AI)-
based drug pill recognition box, and a mobile phone app.
The smart glasses are used to capture images of the drugs
to be consumed, and the AI-based drug recognition box
is used to identify the drugs in the image. The mobile
app is used to track drug consumption and also to provide
timely reminders to the user. Zientara et al. [10] proposed
a shopping assistant system for the BVIP called the ‘Third
Eye’ that aids in navigation and identification of various
products inside a shop. Similarly, Pintado et al. [11] designed
a wearable object detection device in eyewear that helps to
recognize items from the produce section of a grocery store.

In addition to shopping assistants, researchers have
also developed Electronic Travel Aids (ETA) and obstacle
detection systems to assist navigation. Quinones et al. [12]
performed a needs-finding study to assist in navigation of
familiar and unfamiliar routes taken daily among the BVIP.
They concluded that a device that can act as an assistant is
needed for better navigation. El-taher et al. [13] have done
a comprehensive review of research directly in, or relevant
to, outdoor assistive navigation for the BVIP. They also
provided an overview of commercial and non-commercial
navigation applications targeted at assisting the BVIP.
Lee et al. [14] implemented a guidance system that usesmap-
matching algorithms and ultrasonic sensors to guide users
to their chosen destination. Tapu et al. [15] implemented
an autonomous navigation system for the BVIP based on
computer vision algorithms. Similarly, Vyavahare et al. [16]
used a combination of ultrasonic sensors and computer vision
techniques to build a wearable assistant that can perform
obstacle detection and image description. Laubhan et al. [17]
and Trent et al. [18] designed a wearable Electronic Travel
Aid for the blind, which uses an array of ultrasonic sensors
to survey the scene. Bai et al. [19] proposed a depth image
and multi-sensor-based algorithm to solve the problem of
transparent and small obstacle avoidance. Their system uses
three primary audible cues to guide completely blind users to
move safely and efficiently. Nguyen et al. [20] developed a
way-finding system on a mobile robot helping the BVIP user
in an indoor setting. Avila et al. [21] developed a smartphone

application that helps in localization within an indoor setting.
In this system, 20 Bluetooth beacons were placed inside
an indoor environment. When a BVIP user holding the
smartphone moves through the building, the user will receive
auditory information about the nearest point of interest.
A very similar system was developed by Bie et al. [22] for
an outdoor setting. Finally, Guerreiro et al. [23] developed
a smartphone based virtual-navigation application that helps
the BVIP gain route knowledge and familiarize themselves
with their surroundings before visiting a particular location.
Lupu et al. [24] presented an experimental framework to
assess the brain cortex activation and affective reactions
of the BVIP to stimuli provided by a sensory substitution
device used for navigation in real-world scenarios. The test
was done in 5 different types of experimental scenarios.
It was focused on evaluating working memory load, visual
cortex activation, and emotional experience when visually
impaired people perceive audio, haptic, and multimodal
stimuli. Chang et al. [25] proposed a wearable assistive
system comprising a pair of smart glasses, a waist-mounted
intelligent device, and an intelligent cane to help BVIP
consumers safely use zebra crossings. They used artificial
intelligence (AI) based edge computing techniques to help
the BVIP users to utilize the zebra crossings.

Other researchers have focused on the design of assistive
systems which help in scene description and analysis.
Ye et al. [26] analyzed how different devices can help the
BVIP in their daily lives and concluded that smartphones play
a significant role in their daily activities. Pēgeot et al. [27]
proposed a scene text tracking system used for finding
and tracking text regions in video frames captured by a
wearable camera. Gonzāles-Delgado et al. [28] proposed
a smart gloves system that helps in meeting some of the
daily needs of the BVIP, such as face recognition, automatic
mail reading, automatic detection of objects, among other
functions. Memo et al. [29] developed a head-mounted
gesture recognition system. Their system uses a depth camera
and an SVM classifier to identify the different gestures
during a human conversation. Barney et al. [30] developed
a sensory glass system that detects obstacles and informs
the user of 3D sound waves. The glasses were fitted with
five ultrasonic sensors placed on the left, upper-left, front,
right, and upper-right parts. Shishir et al. [31] designed an
Android app that can capture images and analyze them for
image and text recognition. B. Jiang et al. [32] designed a
wearable assistance system based on binocular sensors for
the BVIP. The binocular vision sensors were used to capture
images in a fixed frequency, and the informative images
were chosen based on stereo image quality assessment
(SIQA). Then the informative images were sent to the
cloud for further computations. Bogdan et al. [33] proposed
a system composed of a pair of smart glasses with an
integrated microphone and camera, a smartphone connected
with the smart glasses through a host application, and a
server that serves the purpose of a computational unit. Their
system was capable of detecting obstacles in the nearest
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surrounding, providing an estimation of the size of an object,
face recognition, automatic text recognition, and question
answering of a particular input image. Pei et al. [34] proposed
a visual image aid for vocalizing the information of objects
near the user.

Some researchers have designed their smart glasses to
develop applications that assist visually impaired people.
Chang et al. [35] and Chen et al. [36] proposed an assistive
system comprising wearable smart-glasses, an intelligent
walking stick, a mobile device app, and a cloud-based
information management platform used to achieve the goals
of aerial obstacle avoidance and fall detection goals for the
BVIP. The intelligent walking stick provides feedback to
the user with the help of vibrations to warn the user of
obstacles. Furthermore, when the user experiences a fall
event, an urgent notification is immediately sent to family
members or caregivers. In the realm of wearable intelligent
glasses, Chang et al. [37] and Chen et al. [38] have also
proposed a drowsiness-fatigue-detection system to increase
road safety. The system consists of wearable smart-glasses,
an in-vehicle infotainment telematics platform, an onboard
diagnostics-II-based automotive diagnostic bridge, a rear
light alert mechanism in an active vehicle, and a cloud-
based management platform. The system is used to detect
drowsiness and fatigue in a driver in real-time. When
detected, the active vehicle real light alert mechanism will
automatically be flickered to alert following vehicles, and
warning messages will be played to alert the driver.

Although many systems have been proposed and
developed to assist the visually impaired, their practical
usability is very limited due to the application’s wearability
and portability. In this era of high-end consumer electronics,
where multiple sensors are embedded in light, highly
portable smart glasses such as the Google Glass, it is
possible to design an application that addresses the usability
concerns faced by previous applications while also providing
real-time responses to complex problems such as scene
recognition and object detection. Therefore, in this paper,
a Google Glass based real-time visual assistant is proposed
for the BVIP. The rest of the paper is organized as follows.
Section II describes related work done by other researchers
on Google Glass to solve real-world social problems.
In Section III, the proposed application is presented, along
with explaining the different design choices. Here, the
merits of the proposed application are explained in detail.
The various steps involved in using the application are also
provided. In Section IV, the results of the proposed work
and the feedback obtained by the BVIP users are presented.
Finally, the conclusion is given in Section V.

II. RELATED WORK
Google Glass is a brand of smart glasses with a prism
projector for display, a bone conduction transducer,
a microphone, accelerometer, gyroscope, magnetometer,
ambient light sensor, proximity sensor, a touchpad, and a
camera. It can connect to other devices using a Bluetooth

connection, a micro USB, or aWi-Fi connection. Application
development for the device can be done using the Android
development platform and toolkit available for mobile
devices running Android OS.

Since its release, researchers have used the device to design
systems to solve many real-life problems. Jiang et al. [39]
proposed a Google Glass application that is used for food
nutrition information retrieval and visualization. On similar
grounds, Li et al. [40] developed a Google Glass application
that can be used to assess the uniqueness and aesthetics
of a food dish by analyzing its image for visual appeal,
color combinations, and appearance. A few of the researchers
have used the device in the medical field to treat children
with Autism Spectrum Disorder (ASD). For instance,
Washington et al. [41], [42] developed a Google Glass-based
system for automatic facial expression recognition, delivering
real-time social cues to children with ASD, thus improving
their social behavior.

Lv et al. [43] developed a touch-less interactive
augmented reality game using Google Glass. Wang et al. [44]
presented a navigation strategy for NAO humanoid robots via
hand gestures based on global and local live videos displayed
on Google Glass. Similarly, Wen et al. [45] developed a
Google Glass-based system to achieve hands-free remote
control of humanoid robots. Xu et al. [46] used the device
to facilitate intelligent substation inspection by using virtual
video and real-time data demonstration. Widmer et al. [47]
developed a medical information search system on Google
Glass by connecting it to a content-based medical image
retrieval system. The device takes a photo and sends it along
with keywords associated with the image to a medical image
retrieval system to retrieve similar cases, thus helping the
user make an informed decision.

Devices such as Microsoft Kinect and Google Glass have
also been used to help visually impaired people. For instance,
Lausegger et al. [48] developed a Google Glass application to
help people with color vision deficiency or color blindness.
Anam et al. [49] developed a dyadic conversation aid using
Google Glass for the visually impaired. Hwang et al. [50]
implemented an augmented vision system on Glass, which
overlays edge information over the wearer’s real-world view,
to provide contrast-improved central vision to the user.
They used a combination of positive and negative laplacian
filters for edge enhancement. Neto et al. [51] proposed a
wearable face recognition system to aid the visually impaired
in real-time. Their system uses a Kinect sensor to acquire
an RGB-D image and run an efficient face recognition
algorithm. Similarly, Takizawa et al. [52] proposed Kinect
cane - an assistive system for the visually impaired based on
the concept of object recognition.

Kim et al. [53] performed a systematic review of the
applications of smart glasses in various applied sciences, such
as healthcare, social science, education, service, industry, and
computer science. Their study shows a remarkable increase
in the number of published papers on the application of
smart glasses since the release of Google Glass. Further,
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they claimed that the research has been steadily increasing
as of 2021. With this, it can be concluded that Google Glass
has been extensively used for designing applications to solve
problems in various fields. Inspired by its potential, this paper
presents a Google Glass-based application to solve some of
the problems faced by the BVIP community by developing
a scene descriptor using the Custom Vision API provided by
Azure Cognitive Services.3 Themerits and features of Google
Glass that led to its use in the proposed application and the
system design are further explained in the next section.

III. SYSTEM DESIGN
Google Glass is relatively lightweight at 36g, which is quite
comfortable to wear and use for extended periods. It comes
with a head strap to firmly secure the device while it is
in use. The device has a prism projector for a display to
allow the user to view a visual output. It is a Single LCoS
(Liquid Crystal on Silicon) display with a resolution of
640 × 360. In addition, a camera is mounted on top of the
right frame of the Glass. This 5MP photo, 720p video camera
allows the user to capture images and store them in its local
storage. A second key hardware feature is the integrated bone
conduction speaker, which allows transmitting sound directly
into the user’s ear canal without interference from outside
noise. It is beneficial for a device meant to be used both
indoors and outdoors. It also has a microphone to capture
audio and voice input from the user, which is one of the
main user-device interaction mechanisms. A secondary way
to interact is the touchpad present on the side of the device.

The Glass comes with a lightweight dual-core Cortex
A9 (2 × 1 GHz) processor by Texas Instruments, a built-
in PowerVR SGX540 GPU, a 2GB RAM, and an internal
storage capacity of 16GB. The device can perform moderate
computations using these processing and storage capabilities.
It also comes with a 570mAH battery capacity. In terms
of connectivity, the Glass has a micro USB port that can
connect to a suitable development environment for building
and deploying applications on the device. In addition, it can
connect to Bluetooth and is Wi-Fi 802.11g compatible. The
device also has an accelerometer, gyroscope, magnetometer,
ambient light sensor, and proximity sensor. A sample image
of Google Glass is shown in Fig. 1.

In their review of the applications of smart glasses in
applied sciences, Kim et al. [53] found that the most
popular commercial smart glass is Google Glass, followed
by Microsoft’s HoloLens. Their review shows that the
android-based Google Glass is used in various domains of
applied sciences, accounting for more than half of all the
applications reviewed as part of their research. Furthermore,
it is highlighted that since the device has an Android OS,
it is effortless for developers to design and build applications
on it. Moreover, Google Glass weighs only 36g, which is
much lighter than other smart glasses in the market. For
instance, Microsoft HoloLens 2 weighs 566g, EpsonMoverio

3https://azure.microsoft.com/en-in/services/cognitive-services/

FIGURE 1. Google glass.

BT-350 weighs 151g, and Vuzix Blade M100 weighs
372g [53]. Similarly, in their paper on implementing an edge
enhancement application on Google Glass, Hwang et al. [50]
concluded that the device provides a valuable platform for
implementing various applications that can aid patients with
various low vision conditions. It is explained that since the
device is reasonably priced, cosmetically appealing, highly
flexible, and designed in a socially desirable format, it has
a vast potential for further innovation. El-taher et al. [13],
in their systematic review of navigation systems for the
visually impaired, highlighted the importance of portability,
wearability, latency, feedback interface, and user-friendliness
of the application. Google Glass excels in all these critical
design considerations. The device is lightweight, weighing
only 36g, making it highly portable. Its cosmetic appeal,
flexibility, and socially desirable format make it a highly
wearable device. Feedback-interface can be defined as the
means used by the application to convey information to
the BVIP. Google Glass provides an excellent feedback
interface due to the presence of a bone conduction speaker
that renders audio signals to the user without obstructing
any external sound, making it a safe choice for use in both
indoor and outdoor environments. The device also has a
microphone and any application developed on the device can
be controlled entirely using audio-based commands giving
the user excellent flexibility and comfort. The audio-based
interface also helps keep the user experience as unrestricted
as possible while using the device. Hence, due to its superior
usability and features mentioned above, Google Glass was
used in designing the visual assistant.

Finally, one of the critical aspects of a visual assistant
device is low latency and the ability to run in real-time.
In order to achieve this, the Custom Vision API from Azure
Cognitive Services was used to run state-of-the-art deep
learning models for scene description and object detection.
It provides superior response time with excellent precision
and accuracy. In order to further improve its precision on
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Indian scenarios, a newly annotated image dataset consisting
of 5000 images was created, and the Vision API was
trained on this dataset. Finally, the Vision API’s precision
and accuracy were compared against other state-of-the-art
models run on a cloud-based intelligent server. Based on the
performance of the Vision API and the superior usability of
Google Glass, the proposed application was designed using
them.

A. PROPOSAL
Some of the significant issues that restrict the usability of
most wearable assistance systems were identified during
the literature survey. Firstly, the size and weight of the
sensors used in the system directly impact the long-term
wearability, portability, and hence, the usability of the system
without causing health hazards to the user. El-taher et al. [13]
emphasized the importance of portability or weight and
wearability of the device used for assisting the visually
impaired person in their review of urban navigation systems
for the visually impaired. Secondly, one of the most critical
factors that must be considered while designing a system
for the disabled is an intuitive human-computer interaction
interface. The system must be designed such that it is easy
to use with minimal user training. Finally, the response time
from the source of computation must be close to real-time.
Achieving real-time performance on a smart glass is very
challenging since the algorithm’s complexity directly impacts
the device’s response time unless the algorithm runs on a
powerful machine, which is heavy and bulky and hence
not portable. On the other hand, reducing the complexity
of the algorithm leads to less accurate results. Therefore,
it is essential to consider using cloud computing platforms
with a fast response time for such systems. The following
design choices are used to address the problems mentioned
above, thereby improving the usability of the proposed visual
assistant system.

1) Google Glass is selected as the core of the visual
assistant system. The camera present in the device
captures images of the surroundings, which are sent
to a mobile app for further processing. Most of the
previous applications that serve the purpose of visual
assistants have bulky sensors and cameras attached,
which are difficult to wear and are not portable. Given
the superior portability, wearability, and flexibility of
the device, the use of Google Glass will significantly
improve the usability of such systems.

2) The application is designed to have a very intuitive
interaction interface. Users can interact with it using
a voice command that triggers the camera to capture
an image and send it to the mobile app and the Vision
API for further processing. The result from the Vision
API is sent back to the Google Glass device, which
is then converted to sound using the bone conduction
transducer. The completely hands-free, voice-activated
approach leads to superior user-system interaction and

helps keep the user as unrestricted as possible while
using the application.

3) The Custom Vision API provided by Azure Cognitive
Services is used for performing the necessary
computation on the image captured by the device.
With the help of a cloud-based API, complex vision
algorithms can be run on the image with almost real-
time responses since the algorithm runs on powerful
machines on the cloud. The use of cloud-based APIs
prevents the need to carry a bulky computer for
processing, thereby boosting the system’s portability.
The API can categorize the image into 86 categories
and can be trained on custom datasets. It can further
assign tags to the image and generate captions
describing the contents in human-readable sentences.

A comparison of the proposed approach with existing
assistive systems for the BVIP is shown in Table 1.
The usability and functionality provided by the various
applications are also shown. There are no applications that
use Google Glass for scene description tasks in real-time on
Indian scenarios. Further, the proposed application provides
better portability and wearability in scene description tasks
while providing a real-time response and a completely
hands-free interaction interface. The key contributions of the
proposed work are,
• The development of an augmented reality application
for real-time scene description using Google Glass as an
edge device and Azure Vision API for the BVIP.

• The creation of an annotated image dataset consisting
of objects used by the BVIP in Indian scenarios
and environments. The annotations correspond to the
86 class labels supported by the Vision API.

• Optimizing the performance of the Vision API by using
the newly created annotated image dataset and using the
custom vision4 option provided by the Vision API.

Fig. 2 gives an overview of the proposed approach and the
various components involved in it. The BVIP user wearing
Google Glass captures the image of his/her surrounding
by using the camera present on the device with the help
of the voice command - ‘‘OK, Glass; Describe Scene.’’
The captured image is compressed and sent via a Wi-Fi
connection to the smartphone device of the user. Upon
receiving the image, the smartphone app decompresses the
image and invokes the Vision API to generate captions and
identify the various objects in the image. The smartphone
app then processes the API’s response to extract the captions
and the objects identified. This text response is sent back
to Google Glass via the same wifi connection. Finally,
Android’s text to speech API is used to convert the text
response into sound using the bone conduction transducer
present in the device. In the following subsections, the
proposed application developmentmethodology and the user-
system interaction design is described in detail.

4https://azure.microsoft.com/en-us/services/cognitive-services/custom-
vision-service/#overview
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TABLE 1. Comparison of the proposed application with existing assistive applications for the BVIP.

B. PROPOSED APPLICATION DEVELOPMENT
METHODOLOGY
According to the official documentation byGoogle,5 the three
major design patterns for developing software on Google

5https://developers.google.com/glass/design/patterns

Glass, also called Glassware, are Ongoing Task, Periodic
Notifications, and Immersions. Ongoing tasks are long-
running applications that remain active even when users
switch focus to a different application within the device.
A stopwatch app is an excellent example of an ongoing task.
Users can switch to a different application while running
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FIGURE 2. System overview.

the stopwatch app without stopping the timer. The Periodic
Notifications design pattern is used to develop applications
where the user is notified of any new information to be
displayed. Examples of applications that use the Periodic
Notification design pattern include a news app, an SMS
reader, or an email reader. The Immersion design pattern is
used whenever the application requires complete control of
the user experience. These applications stop when the user
switches focus to a different app. Any gaming application
is an excellent example of an Immersion Pattern. The
proposed visual assistant requires complete control of the
user experience, and hence the Immersion Pattern is chosen
to design the application.

The system design diagram is shown in Fig. 3. The system
can be divided into three major sections: the app on the
Google Glass device, the smartphone, and the Vision API.
The BVIP user interacts directly with the app on Google
Glass. On receiving a user voice command, the camera image
handler built into the app uses the camera present on the
smart glasses to capture the image of the user’s surroundings.
This image is compressed and then sent to the smartphone
using a socket connection over the internet. The image is
compressed to reduce the size of the data to be sent over
the internet, thereby reducing the application’s response time.
Socket programming is a way of connecting two nodes. One
node (server) listens on a particular port at an IP, while the
other node (client) reaches out to the server node on the same
port to form a connection. In this system, the application on
the Google Glass is the client, and the application on the
smartphone forms the server side of the socket connection.

Upon receiving the image from Google Glass, the server-
side application on the smartphone decompresses the image.
The captions of the decompressed image are then generated
by using the Vision API. The response from the API is
received in a JSON format by the Cognitive Services API
interface built on the smartphone app. JSON stands for
JavaScript Object Notation. It is an open standard data
interchange format that uses human-readable text to store and
transmit data objects consisting of attribute-value pairs and
arrays. The smartphone app processes the JSON response to
extract the captions and the objects identified in the image.

The processed response is then sent back to the client-side
application onGoogle Glass over the same socket connection.
Finally, on receiving the text response from the smartphone,
the app on the Google Glass device uses a text to speech
API provided by Android to convert the text to audio signals,
which is rendered as sound by using the bone conduction
speaker present on the device. The BVIP user hears this sound
output.

The version of Glass used in developing the proposed
system is the Glass Explorer Edition. It comes with a
custom Glass OS and Software Development Kit developed
by Google. Glass OS or Google XE is a version of
Google’s Android operating system designed for Google
Glass. The operating system version on the Explorer Edition
device was upgraded from XE 12 to XE 23 since Android
Studio, the integrated development environment (IDE) used
for developing the app, supports XE 23, and the SDK
documentation available online is also for XE18+. The OS
version was upgraded by flashing the device, which was done
by programming the bootloader of the Glass.

Kivy,6 an open-source python library, was used for
developing the socket server application on the smartphone.
It is a cross-platform library for the rapid development of
applications that make use of innovative user interfaces. It can
run on Windows, OS X, Android, iOS, and Raspberry Pi.
Hence, the server-side of the application can be started on
any smartphone, laptop computer, or Raspberry Pi. However,
to increase portability and ease of use, smartphones were
chosen for the proposed system. The Azure Vision API used
to identify the various objects and generate captions of the
captured image provides excellent results in real-time. It can
be used to categorize objects into 86 different categories.
The performance of the API was evaluated against Flickr8k
[54] and Microsoft COCO [55] datasets. Different standard
evaluation metrics, namely, BLEU, METEOR, ROUGE-L,
and CIDEr, were used to evaluate the API, and the evaluation
results are shown in Table 2. The response from the API is
returned in JSON format. We process the JSON and return
the description of the image and the various objects in the

6https://kivy.org/#home
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TABLE 2. Evaluation metrics of the Azure Vision API against Flickr8K and Microsoft COCO datasets.

FIGURE 3. System design.

image in text format back to the device. Fig. 4 shows a sample
image from theMicrosoft COCO [55] dataset, and the caption

FIGURE 4. Sample image.

generated by the API is ‘‘A bedroom with a bookshelf and a
mirror.’’

From Table 2, it is observed that the performance metric
scores can be significantly improved. The Azure Vision API
is trained and tested on images obtained from non-Asian
countries. Hence, the API can be fine-tuned and customized
to Indian scenarios by using Azure Custom Vision API. This
feature enables training and testing the Vision API on local
image datasets, thereby making the API more robust to local
settings. Here, several images were added to the training
dataset for better performance. A new image dataset was
compiled centered around the daily routine of the BVIP. The
images were annotated with class labels already supported
by the Vision API. There are 86 different class labels,
and a minimum of three images for each category was
collected. The BVIP subjects were surveyed to understand
their routine, and it was found that they extensively used the
following categories: keys, remote, medicine, mobile phone,
prescription glasses, and umbrella. A minimum of 50 images
was collected for each of the six categories and was used
for training the API. The standard annotation procedure is
followed, and it is discussed in the Results and Analysis
section.

C. USER-SYSTEM INTERACTION
The system is designed in such a fashion to make the user-
system interaction entirely audio-based, thus providing the
best user experience to a BVIP. Google Glass has a sensor
that can detect whenever a user wears it, and the device is
configured such that it automatically turns on whenever the
user wears the device. The Home screen shown in Fig. 5
is displayed as soon as the user wears the device. Once the
device is worn, the following steps are to be followed.
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FIGURE 5. Home screen.

FIGURE 6. Describe scene: Invocation screen.

• Step 1: Say, ‘‘OK, Glass.’’ The device recognizes the
command and takes the BVIP user from the home
screen to the menu screen, containing the list of vocal
invocations for various applications installed on the
device. It also sends a beep sound so that the user can be
assured that the command is recognized and executed.
The menu or voice invocation screen is shown in Fig. 6.

• Step 2: Say, ‘‘Describe Scene’’. One of the voice
commands present on the invocation menu is for starting
the virtual assistant. The voice command is ‘‘Describe
Scene.’’ Upon execution of the command, the main
activity screen of the application is displayed on the
device. This screen is shown in Fig. 7. Once the
application starts and the main activity screen is visible,
the camera intent is activated. The camera captures the
image of the surroundings in front of the user. The
captured image is shown in Fig. 8.

After capturing the image, the device sends it to the socket
server, running on the user’s smartphone. The description of
the image and the various objects present in it are recognized
using the Vision API. The generated response is sent back to
the Google Glass in text format and is converted to speech by
using the bone conduction transducer present in the device.
The captions and objects detected are also displayed on the
device, as shown in Fig. 9 and Fig. 10, respectively.

Figs. 5, 6, 7, 8, 9, and 10 are used to explain the flow of
the application to the readers. The user can use the device
without seeing the screen. To summarize, the user has to use
the voice command ‘‘OK, Glass’’ followed by ‘‘Describe

FIGURE 7. Main activity screen.

FIGURE 8. Image captured using the camera on glass.

FIGURE 9. Caption response.

FIGURE 10. Objects detected response.

Scene’’ to launch the application. Thus, a wearable assistant
for the visually impaired was developed by using only voice
commands to interact with the application.

VOLUME 9, 2021 166359



H. Ali A. et al.: Google Glass Based Real-Time Scene Analysis for Visually Impaired

FIGURE 11. User-system interaction diagram.

A detailed user-system interaction diagram is shown in
Fig. 11. It displays the various steps in order of occurrence
while using the app. Firstly, the socket server application
is started on the smartphone. This server application waits
for a client connection from the Google Glass device. The
server-client connection is firmly established on receiving a
connection request from the smart glasses. This connection
remains intact for all interactions between the Google Glass
and the smartphone. Next, the BVIP user interacts with the
application with the voice command described earlier: ‘‘Ok
Glass, Describe Scene.’’ As shown in the interaction diagram,
the voice command triggers a series of steps on the smart
glasses and the smartphone, starting with capturing the image
in front of the user and sending it to the smartphone app. Here,
after processing the received image, captions are generated,
and the objects in the image are identified by using the Vision
API. The output of the API is sent back to the application
on Google Glass via the smartphone app, and this output is
eventually heard by the BVIP user wearing the device.

IV. RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
The experimental results and tests were done on a Google
Glass Explorer Edition, which comes with a dual-core Cortex
A9 (2 × 1 GHz) processor by Texas Instruments, a built-
in PowerVR SGX540 GPU, a 2GB RAM, and an internal
storage capacity of 16GB. It has a 570mAH battery capacity
and is Wi-Fi compatible. The smartphone application was

built on a OnePlus 7 phone running Android 10 OS, with a
Snapdragon 855 processor, 6 GB RAM, and 128 GM ROM.
Application development on both devices was done using
Android Studio, an Interactive Development Environment for
building Android applications.

The accuracy and precision of Azure Custom Vision API
were measured against other state-of-the-art vision models
on a Dell G7 laptop computer with an Intel Core i7-9750H
CPU running at 2.60GHz and a 16GB RAM. It runs on
a Windows 10 OS with an NVIDIA GeForce RTX 2060
GPU and 8GB video memory. For measuring the proposed
system’s latency and for testing the application on the BVIP, a
4G network was used, which was provided by a local internet
service provider. Table 3 shows the attributes used for training
the Custom Vision API.

B. ANNOTATION
Five different annotators are used in this study, and at
least two different annotators are used to annotate each
image by identifying the different objects present in it. Each
annotation includes the bounding box and the class label
of the identified object. The annotation process followed is
the standard procedure for annotation described in [56]. The
Custom Vision API has an interface that loads the annotated
images and provides tools to place the bounding box and the
class label. Once the annotation is done for each image, all
the corresponding bounding box coordinates and the class
labels present in that image are stored in the API’s internal
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TABLE 3. Training setup for the custom Vision API.

database. The annotators were informed about all 86 class
labels supported by theAPI. Theywere also providedwith the
definition (the smallest rectangle with vertical and horizontal
sides surrounding an object) and documentation of bounding
boxes. All the annotators were previously familiar with the
concept of object localization and classification, and hence no
further training was provided. Though the class labels were
clear in most cases, the tight bounding box in the case of
multiple overlapping objects was an issue, and annotators’
reliability is also measured. Since the number of annotators
is more than two, quadratic-weighted Cohen’s κ (κw), and
the leave-one-labeler-out agreement was used as shown in
Equation 1, where, pij are the observed probabilities, eij= piqj
are the expected probabilities and wij are the weights (with
wji = wij). The annotators reliably agree when discriminating
against the recognized class label with Cohen’s κ = 0.94.

κw = 1−

∑
i,j wijpij∑
i,j wijeij

(1)

Here, the standard error (se) is calculated using Equation 2.

sew =
1

1− pe(w)

×

√∑
i,j pij[vij−uij(1−κw)]2−[κw−pe(w)(1− κw)]2

n
(2)

where,

vij = 1−
wij
wmax

pe(w) =
∑
i

∑
j

vijpiqj

uij =
∑
h

qhvih +
∑
h

phvhj

Accuracy Comparison: Cohen’s κ is computed to
compare the accuracy of the Vision API against human
annotations [56], [57]. The results are shown in Table 4,

TABLE 4. Cohen’s κ for train-test results of annotated images.

where it can be observed that the average κ value varies from
0.91 for the API’s classification of 80 class labels to 0.94 for
the six other class labels (keys, remote, medicine, mobile
phone, prescription glasses, and umbrella) of the considered
Vision API. The classification accuracy reduces if there are
multiple overlapping objects in the images. Also, we observe
that the human annotation results vary in line with the API
classifications, which vary between 0.91 and 0.96 for the
Vision API class labels. From Table 4, it is observed that the
API classification of class labels performs equally well when
compared to inter-human annotations.

C. DATA AUGMENTATION
The collected data for training contains 86 different class
labels with a minimum of 3 images for each category,
and for a few class labels such as keys, remote, medicine,
mobile phone, prescription glasses, and umbrella, more than
50 images per class are collected and annotated. Though the
total number of images considered is more than 540, the
variants of images considered are fewer as the images are
taken from cameras with three different angles, i.e., front
view, side view, and top view. Only these three angles were
considered since all other variants can be generated using
data augmentation. So, data augmentation is used to increase
the training data tenfold, thereby increasing its robustness
[58], [59]. The data augmentation techniques used are
given below. Furthermore, the augmentation values used
for the data augmentation are given in Table 5. After data
augmentation, the total number of annotated images is 5000.
• channel_shift_range: Random channel shifts of the
image.

• zca_whitening: Applies ZCA whitening to the image.
• rotation_range: Random rotation of image with a degree
range.

• width_shift_range: Random horizontal shifts of the
image with a fraction of total width.

• height_shift_range: Random vertical shifts of the image
with a fraction of total height.

• shear_range: Shear intensity of the image where the
shear angle is in the counter-clockwise direction as
radian.

• zoom_range: Random zoom of the image where the
lower value is 1-room_range and upper value is
1+zoom_range.

• fill_mode: Any of constant, nearest, reflect or wrap.
Points outside the boundaries of the input are filled
according to the selected mode.

• horizontal_flip: Randomly flip the inputs horizontally.
Table 5 shows the details of different data augmentations
performed on the dataset.
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TABLE 5. Types of data augmentation used.

TABLE 6. COCO object detection results comparison using different
frameworks and network architectures vs Azure Custom Vision API. mAP
is reported with COCO primary challenge metric (AP at
IoU=0.50:0.05:0.95.)

TABLE 7. Comparison of Accuracy Results of different models vs Azure
Custom Vision API.

D. PERFORMANCE EVALUATION
After training with the newly annotated image dataset, the
Custom Vision API’s performance was compared against
other deep learning computer vision frameworks, and
the results are presented in Table 6. The mean Average
Precision (mAP) value was computed on the MS COCO
dataset using COCO primary challenge metric.7 It is
calculated by taking the average of multiple IoU (Intersection
over Union as shown in Equation 3) values ranging from
0.5 to 0.95 with a step of 0.05. The number of operations
and parameters involved in the calculation is also given in
Billion Mult-Adds and Million Parameters, respectively. The
results show the API performing better than other state-
of-the-art vision models such as SSD 300, Faster-RCNN
300, and Faster-RCNN 600. Similarly, the performance of
the API on the ImageNet dataset [60] is given in Table 7.
From the results, it can be concluded that the API has better
performance than most state-of-the-art models for computer
vision.

IoU =
Area of Overlap
Area of Union

(3)

7https://cocodataset.org/#detection-eval

TABLE 8. Latency results.

The mAP of the Vision API is calculated on the newly
computed dataset of 5000 annotated images before and after
training the Custom Vision API on the new dataset. It is
observed that the mAP value increases from 63% to 84%with
IoU > 0.5 after training the Custom Vision API.
The application’s latencywasmeasured for two resolutions

of the captured image - 224*224 and 512*512 pixels and
the results are shown in Table 8. The time measured can be
classified into three different categories:

1) Smartphone Time: the time taken on the smartphone
app

2) Glass Time: the time taken on the Google Glass device
3) Edge Time: the time the Vision API takes to generate

the captions for the captured image, identify the objects
present in it, and return the results over the Wi-Fi back
to the smartphone.

For both the resolutions, the application has a response time
of less than 1 second. All the latency values were measured
on a 4G network.
Comparison with other computer vision and image

recognition APIs: There are several APIs such as Watson,
Clarifai, Imagga, and Parallel dots. Though few APIs have
better mAP values than Azure Vision API for the standard
datasets [61], the customizable option provided by the Azure
Vision API, of using images belonging to various other
categories which are not present in the standard datasets
makes the Azure Vision API a better choice. Apart from
that, this API also has computer vision features such as
blob detection & analysis, building tools, image processing,
multiple image type support, reporting/analytics integration,
smart camera integration and also supports the integration
with Microsoft Azure Cloud network and various other
virtual and augmented reality tools like Microsoft Kinect and
so on. All of these make this API a better choice than the rest.

E. LIKERT SCALE ANALYSIS
With the help of students (50) and teachers (5) at the Roman
and Catherine Lobo School for the Visually Impaired
at Mangalore, Karnataka, India, the application was tested,
and its usefulness to the BVIP community was determined.
The students who took part in the study belonged to the age
group of 12 to 15 years and were in their high school years.
They were under the supervision of their teachers during the
study, who were 30 to 50 years old. After demonstrating
how to use the device, the students were asked to use it in
their school environment to identify and recognize different
areas within the school boundary, such as their classroom,
dorm, and playground. Objects like chairs, windows, doors,
beds, and stairs were some of the different indoor objects
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identified using the device. Some of the students who used
the device in the playground within the school premises
were able to identify outdoor scenes, which included trees,
swings, pet cats, and dogs. Using the description given
by the device, the students could accurately identify their
current locationwithin the school. After performing the study,
to determine the application’s usefulness, a set of hypotheses
was formulated, along with corresponding questionnaires for
each of these hypotheses. The feedback and answers to the
questions were recorded and presented in the form of charts.
The following hypotheses were formulated for the study:

1) User training period is minimal: As already
described in the section, there are two voice commands
to use the application. The first voice command is
‘‘OK Glass,’’ followed by the second command,
‘‘Describe Scene.’’ The voice commands were found
very intuitive by the users. The most significant
advantage of the proposed system is that the user does
not require any visual cues to use the application.

2) No extra effort is required to use this device daily:
The device is fairly simple to use. The navigation
through the device is entirely audio-based. Each of the
two voice commands is followed by a beep sound, and
the result is the audio-based description of the scene.
On receiving the description, the user can recognize
a different screen by starting over. Finally, the voice
recognition software provided by Google was found to
be very effective.

3) The application helps the user to understand the
scene: Since the application generates captions of
whatever scene the person is looking at, it was
hypothesized that the application would help the user
better understand their surroundings.

4) A null and alternate hypothesis was also formulated:
• Null Hypothesis: A visually impaired person
would not prefer to use the application.

• AlternateHypothesis:Avisually impaired person
would prefer to use this application every day.

Questionnaires were formulated to evaluate the above
hypotheses. The questions are as follows:

Hypothesis 1: User training period is minimal.
1) Were you able to effectively use this application

yourself after three or fewer trials/walkthroughs?
2) While trying this application, did you feel confused at

any point?
3) After a prolonged period of not using the application,

would you use it with the same efficiency you are using
now? (Would you be able to remember how to use the
device ?)

Hypothesis 2:No extra effort is required to use this device
daily.

1) Do you consider wearing this device irritating/
troublesome?

2) How many times (out of five) is your voice recognized
by the device?

FIGURE 12. Hypothesis 1 Question 2.

3) Would you prefer to use this application instead of
having a guide? If not: Would you prefer to use this
application when your guide is not available?

Hypothesis 3: The application helps the user to understand
the scene.

1) Do you think the device identified all the objects in the
scene?

2) Do the identified objects help in better understanding
the scene?

3) Are the objects correctly identified?
Hypothesis 4:
Null Hypothesis: A visually impaired person would not

prefer to use the application.
Alternate Hypothesis: A visually impaired person would

prefer to use this application every day.
1) What do you use to walk in and around your

neighborhood? Cane, Guide, Other.
2) Would you prefer a guide or would you rather walk

alone?
3) Do you have access to the internet in your area?
4) How would you rate the response time of the

application?
5) How likely are you to use this application every day?
6) How comfortable are you with the audio-based

interface?
7) Are you able to hear the output from the device?
8) How well do you think the description given by the

application matches the actual scene (As described by
the guide)?

9) Would you prefer voice-based or touch-based
navigation?

A Likert Scale Analysis on the usability of the application
was performed using user feedback and responses to
the above questions. The following pie charts depict the
responses to some of the questions received from the users.

Inference: Fig. 12 gives the percentage of people who
felt confused while trying the device. As can be seen, the
majority of the users did not feel confused. This question is
concerning Hypothesis 1: User training period is minimal.
The less confused the user in his(her) first attempt at using
the application, the smaller the training period.
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FIGURE 13. Hypothesis 2 Question 2.

Inference: Since the application is entirely audio-based,
the users’ voices must be correctly recognized. From Fig. 13,
it can seen that the users’ voice commands are being
recognized most of the time correctly. This question is
concerning Hypothesis 2: No extra effort is required to
use this device daily. The fewer times the user has to repeat
the voice command, the lesser the effort put into using the
application.

Inference: From Fig. 14, it can be concluded that the
objects identified from the image helped the user better
understand the scene. Thus, the object detection model
complements the image captioning model. This question is
concerning Hypothesis 3: The application helps the user to
understand the scene.
Statistical Analysis: To further understand the four

different hypotheses, fifty-five subjects were compared with
independent sample t-test and χ2-squared tests on various
parameters such as age, gender, the severity of visual
impairment, and intellectual level. The differences between
groups on parametric data such as chronological age and age
of onset of blindness were evaluated with an independent
sample t-test, and the non-parametric data such as gender
and severity of blindness were evaluated with the χ2-squared
test. School records included age, gender, the severity of
visual impairment, and intellectual level. The severity of
visual impairment was categorized as ‘total blindness,’
‘near blindness,’ ‘profound vision loss,’ and ‘severe vision
loss.’ Similarly, the intellectual level was classified into
‘normal,’ ‘borderline,’ or ‘mental retardation.’ Age included
‘chronological age’ and ‘age of onset of visual impairment.’
There was no statistically significant difference between the
groups in terms of age (18.86 ± 3.05), age of onset (8.81 ±
20.85 months), and gender (χ2

= 0.02, d.f. = 1, P = 0.95)
w.r.t the four hypotheses: training period, the effort required
to use the device, application’s impact in scene understanding
and the inclination to use this application every day. Also,
there was no significant difference in severity of blindness
for the four hypothesis categories (χ2

= 10.24, d.f. = 2,
P = 0.15). However, we found a significant difference for
the intellectual level (χ2

= 36.11, d.f. = 3, P = 0.001) as
the students with borderline and mental retardation found

FIGURE 14. Hypothesis 3 Question 2.

it difficult to understand and use the application. For this
complete statistical analysis, the significance level was set
with P < 0.05.

F. SIGNIFICANCE
The proposed approach was compared with existing state-
of-the-art solutions, and the details are shown in Table 1.
Previously, devices like smartphones, Bluetooth beacons, and
Raspberry Pi were used to develop diverse solutions. The
proposed approach attempts to tackle the problem by using
Google Glass. Keeping BVIP users in mind, the application
was designed to be wholly audio-based, and the user does not
require any visual cues to use the device. Another significant
improvement is that the user does not need to carry any bulky
hardware while using the proposed system. The hardware
used here is Google Glass, which is very similar to any
regular reading glasses in size and shape, and a smartphone
which makes the application highly portable and easy to use.
Hence, the proposed system is highly wearable, portable, and
provides accurate results in real-time.

A Likert Scale Analysis on the usability of the application
was performed. Positive feedback and response were
received from the users, as shown in the charts in
Figures 12, 13, and 14. It can be concluded from the response
that the application can be used effortlessly on a daily basis
to understand the BVIP user’s surroundings. It can be further
concluded that the BVIP require minimal to no training to use
the device, and they prefer to use the application as a visual
assistant.

G. LIMITATIONS
While testing, certain limitations of the application were
identified. Firstly, the proposed system is highly dependent
on a strong internet connection and works if and only if there
is an internet connection available in the area. The latency
of the application was found to vary significantly due to
fluctuations in the network speed. Secondly, the device is
relatively expensive in developing countries and is not easily
affordable. Finally, the battery on the Google Glass was able
to run only for 4 hours per charge while using the application
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continuously. However, the short runtime problem can be
overcome by adding an external power pack.

A few other improvements were identified while collecting
feedback from the BVIP students and teachers. For instance,
a few users commented on the ability of the device to
understand regional accents, stating that the voice command
was not recognized in certain instances. The statistics are
shown in Fig. 13. Another feedback received on very similar
grounds was that the audio output from the device can
be personalized such that the voice output has a regional
accent. The users explained that this would help make
the application feel more personalized to the user, given
that Indian accents are now available on various electronic
gadgets. One BVIP user commented on the audio output
being affected in boisterous environments, such as noisy
traffic junctions or construction sites. However, this problem
was mitigated by switching to Bluetooth earphones instead
of the bone conduction transducer, in which case the audio
output was not affected by external sounds. The BVIP users
explained that the application on Google Glass provides more
comfort and usability when compared with smartphone apps
for the visually impaired.

V. CONCLUSION
The use of Google Glass to assist the BVIP community is
demonstrated by developing an application that acts as a
visual assistant. The system is designed to be highly portable,
easy to wear, and works in real-time. The experimental
results of the Azure Vision API show a mean Average
Precision value (mAP) of 29.33% on the MS COCO
dataset and an accuracy of 73.1% on the ImageNet dataset.
A dataset of 5000 newly annotated images is created to
improve the performance of scene description in Indian
scenarios. The Custom Vision API is trained and tested
on the newly created dataset, and it is observed that it
increases the overall mAP from 63% to 84% with IoU >
0.5 for the created dataset. The overall response time of the
proposed application was measured and is less than 1 second,
thereby providing accurate results in real-time. The proposed
application describes the scene and identifies the various
objects present in front of the user. It was tested on the BVIP,
and their response and feedback were recorded, and a Likert
scale analysis was performed. From the analysis, it can be
concluded that the proposed system has an excellent potential
to be used as an assistant for the BVIP.

The computer vision API from Azure Cognitive Services
can add more functionalities to the proposed application.
The capabilities of other APIs can be explored to add more
functionalities such as text extraction and reading using Read
API and face detection and recognition using Face Service.8

The application can be enhanced by adding more features,
such as lane detection, fall detection, pit detection, obstacle
avoidance, and shopping assistant, thereby creating a one-
stop assistant for the BVIP. Google Glass has embedded

8https://azure.microsoft.com/en-us/services/cognitive-services/face/

FIGURE 15. Hypothesis 1 Question 1.

FIGURE 16. Hypothesis 1 Question 3.

sensors that can achieve these functionalities with little to no
need for external sensors. Further, there exists a possibility of
moving the application entirely to Google Glass by removing
the dependency on the smartphone. Currently, the smartphone
device is used to process the captured image before making
the API calls to the CustomVision API, which can be avoided
by using theAndroid SDK forVisionAPI9 directly onGoogle
Glass.
Declaration: The experimental procedure and the entire

setup, including Google Glass given to the participants, were
approved by the Institutional Ethics Committee (IEC) of
NITK Surathkal, Mangalore, India. The participants were
also informed that they had the right to quit the experiment
at any time. The collected data, i.e., video recordings, audio,
and the written feedback of the subjects, was taken only after
they gave written consent for the use of their collected data
for the research experiment.

APPENDIX A
RESULTS OF LIKERT SCALE ANALYSIS
The following pie charts are obtained by performing the
Likert Scale Analysis on the usability of the application.
In order to perform the analysis, we formulated four types
of hypotheses and generated corresponding questionnaires to
evaluate these hypotheses. We asked these questions to the

9https://github.com/microsoft/Cognitive-Vision-Android
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FIGURE 17. Hypothesis 2 Question 1.

FIGURE 18. Hypothesis 2 Question 3.

FIGURE 19. Hypothesis 3 Question 1.

BVIP students and teachers at the Roman and Catherine
Lobo School for the Visually Impaired, Mangalore,
Karnataka, India.

A. HYPOTHESIS 1: USER TRAINING PERIOD IS MINIMAL
In order to evaluate the first hypothesis, a description of
the proposed application was given to the users, along with
an explanation of how to use the device. After trying the
application, the BVIP users were asked the questions shown
in Figs. 15, 12 and 16. As can be seen from the responses in
the graphs, most of the users found the application easy to use
and were able to use the application effectively after a single
walk-through.

FIGURE 20. Hypothesis 3 Question 3.

FIGURE 21. Hypothesis 4 Question 1.

FIGURE 22. Hypothesis 4 Question 2.

B. HYPOTHESIS 2: NO EXTRA EFFORT IS REQUIRED TO
USE THIS DEVICE ON A DAILY BASIS
The second set of questions were asked to determine if the
users found the device to be usable on a daily basis. For
this, the questions shown in Figs. 17, 13 and 18 were asked.
Most of the users were comfortable using the device regularly,
but a few of them found the device irritating as overusing
the application sometimes led to the device’s heating. The
voice recognition system provided by Google Glass was
effective except for a few cases where the users had to repeat
the commands a few times for the device to recognize the
command.
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FIGURE 23. Hypothesis 4 Question 3.

FIGURE 24. Hypothesis 4 Question 4.

FIGURE 25. Hypothesis 4 Question 5.

C. HYPOTHESIS 3: THE APPLICATION HELPS THE USER
TO UNDERSTAND THE SCENE
The third set of questions were focused on the actual use
case of the application: Scene Description. The questions
asked are as shown in Figs. 19, 14 and 20. As can be seen
from the responses displayed in the charts, most of the BVIP
users agreed that the objects identified helped them better
understand the scene.

D. HYPOTHESIS 4
Null Hypothesis: A visually impaired person would not
prefer to use the application.

FIGURE 26. Hypothesis 4 Question 6.

FIGURE 27. Hypothesis 4 Question 7.

FIGURE 28. Hypothesis 4 Question 8.

Alternate Hypothesis: A visually impaired person would
prefer to use this application every day.

The final set of questions were asked to determine if the
visually impaired person would prefer to use the application.
Various questions were asked to evaluate this hypothesis as
can be seen from Figs. 21 to 29. The questions were asked
to determine the current lifestyle of the visually impaired
individuals and if the use of the application would help them
in better scene analysis. From their responses, it can be
concluded that the majority of the users found the application
effective, portable, and easy to use.
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FIGURE 29. Hypothesis 4 Question 9.
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