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ABSTRACT More and more individuals and enterprises outsource data and applications to cloud servers in
recent years. Since the public cloud servers are not completely trusted, users usually encrypt important data
before sending it to cloud servers. As a result, ciphertext retrieval technology has gradually become a research
hotspot. In the existing related schemes, there are some defects such as not supporting ‘‘multiple owners’’
mode and multi-keyword retrieval, having low retrieval efficiency, accuracy and security, and difficult data
updating. Hence, we propose an efficient Ciphertext Retrieval scheme based onHomomorphic encryption for
Multiple data owners in hybrid cloud (CRHM), in which the public cloud server and the private cloud server
cooperate to perform the ciphertext retrieval. In CRHM, an encrypted balanced binary index tree structure
and a homomorphic encryption method based on large integer operations are designed to support ‘‘multiple
owners’’ mode and multi-keyword ranked retrieval. The security analysis shows that CRHM can effectively
guarantee the privacy and security of user file and retrieval, and the performance evaluation demonstrates
that compared with the existing related schemes, CRHM has high efficiency in the index generation and
retrieval processes, while keeps relatively high retrieval accuracy.

INDEX TERMS Hybrid cloud, ciphertext retrieval, homomorphic encryption, balanced binary index tree.

I. INTRODUCTION
With the rapid development of cloud computing [1], more
and more individuals and enterprises outsource data and
applications to cloud servers, so as to obtain many benefits
brought by cloud services. In recent years the hybrid cloud
has gradually become one of the main modes of cloud com-
puting, and is also the further development direction of cloud
computing [2], which integrates both the public cloud and
the private cloud. Typically, public clouds are responsible for
storing large-scale data, and private clouds are responsible
for handling sensitive data. The main application scenarios
of hybrid cloud technology are on-cloud disaster recovery,
cross-cloud backup, and proprietary distributed storage ser-
vices. However, the public cloud server providers are usually
not completely trusted, they may snoop and analyze some
important privacy information stored by users. The data needs
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to be encrypted before outsourcing to the public cloud server,
but at the same time, it brings new challenges such as data
access and operation difficulties.

The traditional retrieval scheme based on plaintext is no
longer applicable, and the ciphertext retrieval technology
has developed rapidly. There are already many ciphertext
retrieval methods, such as the searchable symmetric encryp-
tion retrieval [3], [4], the searchable asymmetric encryption
retrieval [5]–[7], the single keyword retrieval [8]–[10], and
the multi-keyword retrieval [11]–[14], etc., which make the
ciphertext retrieval technology gradually mature and more
suitable for data retrieval in cloud environment.

Song et al. [4] first proposed a ciphertext retrieval scheme
based on symmetric encryption, which is the beginning of
the ciphertext retrieval. Boneh et al. [7] proposed an asym-
metric retrievable encryption scheme for the first time, this
scheme only supports the linear matching of single keyword,
which will disclose the privacy information of users in the
retrieval process. Zhou and Wornell [10] proposed a partial
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homomorphic encryption scheme over integer vectors, which
improves the efficiency and security of retrieval, and sup-
ports the relevancy ranking of single keyword retrieval.
Cao et al. [11] proposed a multi-keyword ciphertext retrieval
scheme for the first time, to achieve the sorting of retrieval
results, this scheme adopted the kNN algorithm, and cal-
culated the inner product similarity between index vector
and query vector. Li et al. [12] improved the secure kNN
algorithm and built a B+ index tree to achieve efficient query.
Fu et al. [13] proposed a personalized multi-keyword cipher-
text retrieval scheme, which builds a user interest model for
individual users by analyzing their search history with the
help of semantic ontology WordNet to rank files.

The above schemes all follow the ‘‘single owner’’ mode,
which means that users retrieve data in the outsourcing
dataset belonging to only one certain data owner. In fact,
different data owners have different fields of expertise, and
there are large quality differences in the outsourcing data of
multiple data owners, so users usually expect to retrieve high
quality data from all the datasets of multiple data owners
at the same time, which is ‘‘multiple owners’’ mode [15].
Obviously, the retrieval accuracy of ‘‘multiple owners’’ mode
schemes is higher than that of ‘‘single owner’’ mode schemes.
Subsequently, Peng et al. [16] proposed a multi-keyword
ranked retrieval for multiple data owners over encrypted
cloud data. The tree-based indexes are generated by differ-
ent data owners and merged in the cloud server to improve
retrieval efficiency. Yin et al. [17] proposed a secure joint
multi-keyword ranked retrieval for multiple data owners over
encrypted cloud data, where elliptic curve algorithm is used to
calculate the similarity score of index vector and query vector
to achieve top-k retrieval. In the above two schemes, each
data owner needs to encrypt its own files and indexes, and the
efficiency of creating indexes is relatively low. Guo et al. [18]
proposed a secure multi-keyword ranked retrieval for mul-
tiple owners on cloud server, in which a trusted agent is
introduced to manage key distribution, and a grouped bal-
anced binary tree is built to achieve efficient query. However,
although the asymmetric scalar-product-preserving encryp-
tion used in this scheme can easily implement searchable
encryption, its security risk is relatively high. Moreover,
it needs to regenerate all the security indexes every time the
indexes need to be updated, which is inefficient. To sum
up, at present there is no multi-keyword ciphertext retrieval
scheme with high efficiency, high accuracy, and high security
for ‘‘multiple owners’’ mode in the cloud environment. Thus,
it is of great significance to research on designing such a
scheme.

Based on the above research works, in this paper we
propose an efficient Ciphertext Retrieval scheme based on
Homomorphic encryption for Multiple data owners in hybrid
cloud (CRHM). In CRHM, the public cloud server and
the private cloud server cooperate to perform the cipher-
text retrieval process. CRHM supports ‘‘multiple owners’’
mode and multi-keyword ranked retrieval. In addition, it does
not disclose any privacy information related to data files,

keywords and indexes to the public cloud server and
users. Compared with the existing related schemes, CRHM
improves the retrieval efficiency significantly while keeps
relatively high retrieval accuracy. Our main contributions are
as follows:
• We construct CRHM based on the characteristics of
hybrid cloud, in which the public cloud server pro-
vides sufficient computing and storage resources to store
ciphertext files and security indexes, and implement
operations of ciphertext retrieval. The private cloud
server performs the generation of security indexes and
trapdoors for users to ensure the security and privacy of
the retrieval, so that users can get rid of the heavy tasks.

• We collects the popularity information of documents
belonging tomultiple data owners to obtain the weighted
indexes as scheme [17], so it can provide ideal ranking
results that are not only relevant to the query data, but
also of high-quality from multiple owners. The differ-
ence is that we partition and group the files, and we
encrypt the weighted indexes and then construct an
encrypted balanced binary index (EBBI) tree to generate
and store security indexes for each partition of files. The
EBBI tree structure can greatly improve the efficiency of
index generation and retrieval. Furthermore, this struc-
ture makes the index update operation more convenient.

• We design a novel ciphertext retrieval method based on
homomorphic encryption. The method realizes secure
and efficient multi-keyword ciphertext ranked retrieval
in hybrid cloud by using additive homomorphism of
large integer modular operation.

II. PRELIMINARY KNOWLEDGE
A. DYNAMIC WEIGHT MODEL
The traditional TF-IDF model [19] is widely used in
the ciphertext retrieval system of ‘‘single owner’’ mode.
However, it is not useful in the ciphertext retrieval system of
‘‘multiple owners’’ mode. Guo et al. [18] designed a dynamic
weight model to obtain the weighted indexes of files which
belong tomultiple data owners. In general, if the files of a data
owner are more popular and professional in a subject, they
should be retrieved preferentially when data users retrieve
with keywords about this subject, so that the evaluation of
files should not only consider the correlation with query
keywords, but also consider the quality of files of multiple
data owners.

In order to accurately calculate the weights of keywords,
first the Jaccard similarity coefficient [20] is used to evaluate
the degree of correlation between different keywords. The
correlation coefficient Sx, y between each two keywords can
be defined as follows:

Sx,y =

 β.
L(dx ∩ dy)
L(dx ∪ dy)

x 6= y

1 x = y
(1)

In formula (1), dx and dy represent the file set containing
keyword x and file set containing keyword y respectively,
L (dx ∩ dy) represents the number of files containing both x
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and y, L (dx ∪ dy) represents the number of files containing at
least x or y, and β (β ∈ [0,1)) represents a variable parameter,
which is used to adjust the correlation results of keywords.
Obviously, the more files containing both x and y, the more
relevant the two keywords are. Next, a correlation matrix S
can be constructed which contains the correlation coefficients
of each two keywords in the dictionary. Then, the popularity
information of files is collected to obtain the popularity infor-
mation of data owners for different keywords. The popularity
information of files can be extracted from the information
such as the number of files downloaded, browsed, and ref-
erenced. Finally, through a series of computing operations
on the plaintext indexes of the files, the correlation matrix S
and the popularity information of data owners, the weighted
indexes of the files are generated.

B. HOMOMORPHIC ENCRYPTION
Homomorphic encryption is a kind of encryption method
with special natural features, and this concept was first pro-
posed by Rivest et al. in the 1970s [21]. Compared with
the general encryption method, homomorphic encryption not
only realizes the basic encryption operation, but also allows
a variety of computing functions over ciphertexts, since by
homomorphic encryption, first computing on the ciphertexts
and then decrypting the result is equivalent to first decrypting
the ciphertexts and then computing on the result. Homomor-
phic encryption technology can be used to handle ciphertext
for users without key, and in the process of operation any
information about plaintext is not disclosed [22]–[24]. This
feature is of great significance to protect the security of infor-
mation and improve the efficiency of information processing.
More and more research efforts are put into the exploration of
its theory and application. More specifically, if an encryption
function f satisfies f (a)+ f (b) = f (a+b), we say that f has
additive homomorphism, and if it satisfies f (a) ∗ f (b) = f
(a ∗ b), it has multiplicative homomorphism.

III. SCHEME DESIGN AND IMPLEMENTATION
A. SCHEME OVERVIEWE
There are four entities in CRHM:

1) Public Cloud Server (PuCS). PuCS is operated by large-
scale enterprises, which can provide users with large storage
space and data processing capacity.

2) Private Cloud Server (PrCS). PrCS is built by small and
medium-sized enterprises, which is used to handle important
security operations for users.

3) Data Owner (DO). DO refers the data provider who
uploads files to PuCS, there are multiple DOs with expertise
in various fields.

4) Data User (DU). DU refers the user who requests to
retrieve files from PuCS.

Figure. 1 shows the system framework of CRHM, in which
the system execution steps are as follows:

1) DO encrypts every one of his files using a symmetric
encryption algorithm respectively, sends the ciphertexts of
files to PuCS, and sends the plaintexts of files to PrCS.

FIGURE 1. The system framework of CHRM.

2) PrCS randomly partitions all the files from all DOs. For
each file partition, PrCS extracts keywords from the files in
the partition, constructs a partition dictionary based on the
keywords, and generates the plaintext indexes for all files in
the partition. After that, PrCS uses the dynamic weight model
to calculate the weighted indexes for all files in the partition
and creates a balanced binary index tree to store the weighted
indexes. Then, PrCS uses a homomorphic encryption method
to encrypt all indexes in the nodes of the tree to get the
security indexes, that is, an EBBI tree is constructed, which
stores the security indexes. Finally, PrCS sends the EBBI tree
of each partition to PuCS.

3) DU sends query data to PrCS.
4) PrCS extracts keywords from the query data, generates

a trapdoor according to the partition dictionaries and sends it
to PuCS.

5) PuCS searches in all the EBBI trees according to the
trapdoor to find a certain number of top ranked ciphertext files
and return them to DU.

6) DU contacts DO to get the symmetric key and decrypts
the ciphertext files to obtain the plaintext files.

B. THREAT MODEL
In CRHM, we assume that PuCS is semi-trusted, that is,
it executes programs honestly without tampering with the
instruction sets from DO and DU, however, it also snoops
data content contained in the user file and retrieval process
as much as possible. We assume that PrCS is secure and
reliable, which performs data operations with high security
requirements for DO and DU. As described in literature [25],
CRHM is also based on two threat models: 1) Known
Ciphertext Model, in which PuCS can only obtain cipher-
text files, security indexes, trapdoors and keyword searching
results, and record the search results; 2)KnownBackground
Model, that is based on known ciphertext model, and in
which PuCS can further collect some additional background
information such as the keyword frequency and distribu-
tion, which are used to analyze the correlation between
the secure indexes and the received trapdoors to infer the
keywords.
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Function 1 Plaintext Index Generation
Input: The File set Fi = {fi,1, fi,2, . . . , fi,r} of partition Pi
Output: The plaintext index set Ii of Fi
1. Generate a partition dictionaryDpi = {Di,1∪Di,2∪ . . .∪
Di,r} for Pi, where Di,j (j ∈ {1, 2, . . . , r}) is the keyword
list of each file fi,j in Fi;
2. Generate a plaintext index set Ii = (Ii,1, Ii,2, . . . , Ii,r )T of
Fi based onDpi, where Ii,j (j ∈ {1, 2, . . . , r}) is the plaintext
index of each file fi,j in Fi; the length of Ii,j is equal to d ,
which is the number of keywords in Dpi, and each bit of
Ii,j depends on whether each keyword inDpi appears in fi,j,
if a keyword appears, the corresponding bit is 1, otherwise
it is 0;
3. Return Ii.

C. ALGORITHM DESIGN
The algorithm of CRHM includes five functions. For a file
partition Pi which contains a file set Fi, Function 1 generates
a plaintext index set Ii of Fi.

Using the dynamic weight model, Function 2 generates
a weighted index set Ĩi of Fi according to Ii, the partition
dictionary Dpi, and the popularity information of files in Fi.
Function 3 generates a balanced binary index tree τi of Fi

based on Ĩi.
Function 4 generates an EBBI tree τ ∗i of Fi based on τi.
In Function 4, we design a formulawith additive homomor-

phism to get the security index, Ct = B ∗t K1+ K ∗1 K ∗2 qt .
In Function 5, it is also used to calculate the trapdoor. Because
of its additive homomorphism, Function 6 can rank the
files by calculating the correlation scores. For one retrieval,
Function 5 generates a trapdoor Ti for Pi according to the
query data and Dpi.
According to τ ∗i and Ti, Function 6 implements file

retrieval in Pi, and the top k ciphertext files with the highest
scores are selected.

D. EXECUTION STEPS
CRHM consists of five steps: data preprocessing, weighted
index generation, security index generation, ciphertext
retrieval and dynamic update, which are described as below.

1) Data preprocessing. Each DO sends the plaintext file set
to PrCS, then uses a symmetric encryption algorithm (AES or
DES) to encrypt each plaintext file respectively and sends the
ciphertext file set to PuCS.

2) Weighted index generation. PrCS receives the file sets
sent by DOs, and divides all files into m partitions randomly
(m = log2n, n is the total number of files). The purpose of
file partition is to improve the efficiency of index generation
and retrieval, and provide convenience for data update. How-
ever, the larger the number of file partitions is, the shorter
the length of partition dictionary is, which will lead to the
decline of retrieval precision. Here files are divided into log2n
partitions to improve the retrieval efficiency significantly and

Function 2Weighted Index Generation

input: The plaintext index set Ii = (Ii,1, Ii,2, . . . , Ii,r )T

of file set Fi, the partition dictionary Dpi, the popularity
information of files in Fi
Output: The weighted index set Ĩi of Fi
1. Calculate a correlation coefficient between every two
keywords in Dpi using formula (1);
2. Generate a correlation matrix Si which contains the
correlation coefficients of each two keywords in Dpi; Si
is a symmetric matrix with the same number of rows and
columns, which is the number of keywords in Dpi, and
each element in Si is the correlation coefficient between
the corresponding keywords;
3. For each data owner Ol :
4. Generate a popularity vector PVl = (PVl,1, PVl,2, . . . ,
PVl,t ), in which t is the number of files ofOl inFi, and each
element is the popularity information such as download
amount and click rate of the corresponding file of Ol ;
5. Calculate an average popularity vectorAPl = (PVl ·Il)αl ,
in which Il = (Il,1, Il,2, . . . , Il,t )T , where each element is the
plaintext index vector of a file of Ol in Fi, αl = (αl,1, αl,2,
. . . , αl,d ), and each element is the reciprocal of the number
of files which contain the corresponding keywords in Dpi,
the operator "" represents the product of the corresponding
elements of the two vectors;
6. Calculate an original weight vector W raw

l = APl ·
Si = (W raw

l,1 ,W
raw
l,2 , . . . ,W

raw
l,d ), in which each element

represents the original weight of Ol to a keyword in Dpi;
7. End for
8. Calculate a maximum weight vectorWmax = (Wmax [1],
Wmax [2], . . . ,Wmax [d]), in which each element represents
the maximum original weight to each keyword in Dpi
among different data owners;
9. NormalizeWmax = (1, 1, . . . , 1);
10. For each data owner Ol :
11. Calculate a normalized weight vector Wl = (Wl,1,

Wl,2, . . . ,Wl,d ), in whichWl,t =
W raw
l,t

Wmax [t]
, t ∈ {1, 2, . . . , d};

12. For each file fi,j in Fi, if fi,j is owned by Ol , calculate a
weighted index of fi,j as Ĩi,j = WlIi,j;
13. End for
14. Construct a weighted index set Ĩi = (Ĩi,1, Ĩi,2, . . . , Ĩi,r )T

of Fi;
15. Return Ĩi.

ensure high retrieval precision simultaneously. Then, PrCS
uses Function 1 to generate the partition dictionary and the
plaintext index set of each partition.

PrCS collects the popularity information of files, and calls
Function 2 to generate theweighted index set of each partition
based on the plaintext index sets, partition dictionaries and
popularity information. Then the weights of DO to key-
words are calculated, based on which the weighted indexes
of files of DO are generated. Thus, the weighted indexes can
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Function 3 Balanced Binary Index Tree Generation

Input: The weighted index set Ĩi of file set Fi
Output: The balanced binary index tree τi of Fi
1. For each weighted index Ĩi,j in Ĩi:
2. Generate a leaf node u;
3. u.id← a unique identifier of u;
4. u.fid← the identifier of the corresponding file fi,j;
5. u.val← the value of Ĩi,j;
6. Add u in a queue que;
7. End for
8. For each leaf node u in que:
9. Select a leaf node u′ which satisfies the inner product of
u.val and u′.val is the maximum among all other nodes in
que;
10. Generate a parent node v for u and u′;
11. v.id← a unique identifier of v;
12. Generate a new index Ĩv, each bit of which is the larger
value of the corresponding elements of u.val and u′.val;
13. v.val← the value of Ĩv;
14. Delete u and u′ in que;
15. Add v in que;
16. End for
17. For each parent node v in que:
18. Select a parent node v′ which satisfies the inner product
of v.val and v′.val is the maximum among all other nodes
in que;
19. Generate an upper parent node w for v and v′;
20. w.id← a unique identifier of w;
21. Generate a new index Ĩw, each bit of which is the larger
value of the corresponding elements of v.val and v′.val;
22. w.val← the value of Ĩw;
23. Delete v and v′ in que;
24. Add w in que;
25. End for
26. Continue to deal with all the upper parent nodes in que
using the steps 17-25, until a root node is generated;
27. Return the generated balanced binary index tree τi.

represent the quality of files, and high-quality files will be
obtained when retrieval is performed on them.

3) Security index generation. For improving the retrieval
efficiency, PrCS calls Function 3 to generate a balanced
binary index tree for each partition, whose leaf node stores the
identifier and the weighted index of each file. An example of
balanced binary index tree is shown in Figure. 2. Assume that
there are 7 files in partition Pi which belong to 3 DOs, files
fi,1, fi,2, fi,3 belong to O1, files fi,4, fi,5 belong to O2 and files
fi,6, fi,7 belong to O3. Besides, we assume that the number
of keywords in partition dictionary Dpi is 5. PrCS generates
7 leaf nodes for these files and constructs a balanced binary
index tree τi according to Function 3. Then PrCS encrypts
τi using Function 4. In Function 4, all the indexes in the
nodes of τi are encrypted as the security indexes, and the
structure of τi is kept unchanged, so that an EBBI tree τ ∗i is

Function 4 EBBI Tree Generation
Input: The balanced binary index tree τi of file set Fi
Output: The EBBI tree τ ∗i of Fi
1. Generate a security key SK= (K1,K2),K1 andK2 are two
random large integers and shared key respectively, K1 �

K2;
2. For each index Ĩu of nodes in τi:
3. For each bit bt of Ĩu:
4. Encode bt as Bt = [1000 ∗ bt + A], in which A is a
constant integer and [] is rounding operation;
5. Select a random large prime number qt , qt � K1;
6. Encrypt bt as Ct = B ∗t K1 + K ∗1 K ∗2 qt ;
7. End for
8. Obtain the security index Ĩ ∗u = (C1, C2, . . . , Cd );
9. End for
10. For each node u in τi:
11. u.val← the value of Ĩ ∗u ;
12. End for
13. Return the EBBI tree τ ∗i .

Function 5 Trapdoor Generation
Input: The query data, the partition dictionary Dpi
Output: The trapdoor Ti for partition Pi
1. Generate a query vector Qi based on the query data and
Dpi, the length of Qi is equal to d , and each bit of Qi
depends on whether each keyword in Dpi appears in the
query data, if a keyword appears, the corresponding bit is 1,
otherwise it is 0;
2. For each bit bt ′ of Qi:
3. Encode bt ′ as Bt ′ = [1000 ∗ bt ′ + A], in which [] is
rounding operation;
4. Select a random large prime number q′t , qt

′
� K1;

5. Encrypt bt ′ as Ct ′ = Bt ′ ∗ K1 +K ∗1 K ∗2 qt ′, in which A,
K1, K2 are the same as those in Function 4;
6. End for
7. Obtain the trapdoor Ti = (C1

′, C2
′, . . . , Cd ′);

generated, in addition, τi and τ ∗i are isomorphic. In this way,
PrCS generatesm EBBI trees form partitions, and sends them
to PuCS for storage.

4) Ciphertext retrieval. When DU needs to retrieve files,
he sends the query data to PrCS, PrCS calls Function 5 to
generate a trapdoor Ti for partition Pi and total m trapdoors
are combined to form a new integrated trapdoor Tq. PrCS
sends Tq to PuCS, and PuCS performs retrieval in allm EBBI
trees in parallel according to Function 6. When retrieval is
finished, PuCS gets totalm∗k scores, then selects top k scores
from them, and returns the corresponding ciphertext files to
DU. At last, DU contacts DO to get the symmetric encryption
keys and decrypts the ciphertext files. In Function 6, PuCS
calculates the correlation score Scu between Ti and the secu-
rity index Ĩ ∗u in τ ∗i by shared key K2. Here Scu is a kind of
similarity score and is proportional to the actual score Scu′.
The proportion coefficient is the square of private key K1.
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Function 6 Retrieval
Input: The trapdoor Ti for partition Pi, the EBBI tree τ ∗i
of file set Fi, the shared key K2
Output: The top k ciphertext files in Pi with the highest
scores
1. Traverse τ ∗i with the deep-first search strategy beginning
from the root node of τ ∗i :
2. When traversing to a leaf node u:
3. Calculate the inner product Ru of Ti and the security
index Ĩ∗u in u as:
Ru = Ti · (C1,C2, . . . ,Cd ) = (C ′1,C

′

2, . . . ,C
′
d ) ·

(C1,C2, . . . ,Cd ) = C ′1 · C1 + C ′2 · C2 + . . .+ C ′d · Cd
4. Calculate the correlation score Scu as:
Scu = Ru mod K2 = K 2

1 ∗ (B1 ∗ B
′

1 + B2 ∗ B
′

2 + . . . +

Bd ∗ B′d ) = K 2
1 ∗ Sc

′
u, Scu

′ is the actual correlation score
between Qi and the index Ĩu;
5. Add Scu in a queue que with length k;
6. If there are already k scores in que, stop traversal and
define Scm as the minimum score in que;
7. Else continue to traverse;
8. Continue to traverse τ ∗i with the deep-first search strat-
egy beginning from the node next to the kth leaf node until
traversal is complete:
9. When traversing to a non-leaf node u:
10. Calculate the correlation score Scu as the steps 3 and 4;
11. If Scu <= Scm, return to the previous node and con-
tinue to traverse;
12. Else continue to traverse the child nodes of u;
13. When traversing to a leaf node u:
14. Calculate the correlation score Scu as the steps 3 and 4;
15. If Scu ≤ Scm, continue to traverse the next node;
16. Else replace the minimum score with Scu in que,
redefine Scmas the minimum score in que and continue to
traverse;
17. When traversal is complete, return k scores in que and
the ciphertext files corresponding to the leaf nodes with
these scores.

As a result, PuCS does not need to decrypt Ti, Ĩ ∗u and then
calculate Scu′, it only needs to obtain Scu, sort the scores and
finally return the ciphertext files corresponding to the leaf
nodes with top k scores.
As the example shown in Figure. 2, we assume the query

vector Qi is {1, 0, 0, 0, 1}, the parameter A in Function 4 and
Function 5 is 10, the parameter k in Function 6 is 3. The
retrieval starts from the root node, and reaches the first leaf
node u1 through v4 and v1, the correlation score of fi,1 is
460K 2

1 . Next the retrieval reaches leaf nodes u2 and then u3
through v2, the correlation scores of fi,2 and fi,3 are 490K 2

1
and 620K 2

1 respectively. At this time, the score queue que =
{460K 2

1 , 490K
2
1 , 620K

2
1 } and the length of que is limited to 3.

After that, the nodes u4, v3, u7 are reached in order and que is
changed while reaching u4 and u7. Finally, que = {620K 2

1 ,
1010K 2

1 , 1160 K
2
1 }, and the corresponding ciphertext files

fi,3, fi,5 and fi,7 are returned.

5) Dynamic update. When DO does not need to update
files, the weights of the keywords in the partition dictionary
still change dynamically with the popularity information of
files on PuCS. Therefore, PrCS needs to update the average
popularity information and normalized weights of all key-
words in the dictionary of each partition at regular intervals.
In this case, PrCS does not need to recalculate the correlation
matrixes and just recalculates the weighted indexes of files
of all DOs, then generates new EBBI trees and sends them to
PuCS.

When DO needs to update files, the partition dictionary
changes and the weights of keywords in the dictionary also
change. In this case, PrCS regenerates the dictionary and
plaintext indexes of the partition where the file is located,
and sends the new ciphertext file to PuCS. After that, PrCS
regenerates the correlation matrix and weighted indexes in
this partition, then generates a new EBBI tree and sends it to
PuCS. When DO needs to update files, the partition dictio-
nary changes and the weights of keywords in the dictionary
also change. In this case, PrCS regenerates the dictionary and
plaintext indexes of the partition where the file is located,
and sends the new ciphertext file to PuCS. After that, PrCS
regenerates the correlation matrix and weighted indexes in
this partition, then generates a new EBBI tree and sends it to
PuCS.

FIGURE 2. An example of balanced binary index tree Ti .

IV. SECURITY ANALYSIS AND PERFORMANCE
EVALUATION
A. SECURITY ANALYSIS
We analyze and prove the security of CRHMunder the known
ciphertext model and the known background model respec-
tively. And the notions used are listed as follows.
History:H= (1s, Ts,Qk ), in which1s is a partition of the

file set, Ts is an EBBI tree of 1s and Qk = {q1, . . . , qk} is a
series of queries from users.
View: V (H ) = (EncSK (1s),EncSK (Ts), EncSK(Qk )), which

is encrypted from H . The original history H is invisible for
PuCS, while the view is visible.
Trace of a history: A trace of H is the set of the trace

of queries Tr(H ) = {Tr(q1), . . . , Tr(qk )} which is get by
PuCS from access pattern and retrieval results. And Tr(qi) =
{(δj, ζj)qi ⊂ δj, 1≤ j ≤ |1s|}, where ζj is the similarity score
between the query qi and the file δj.
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Theorem 1: CRHM is secure under the known ciphertext
model.

Proof: If PuCS cannot distinguish two histories with the
same trace generated by simulator, and then PuCS cannot
explore more information about the index and the dataset
except the access pattern and the retrieval results. Here,
we introduce a simulator S to generate a V ′ that is distin-
guishable from PuCS’s view V (H ). The generation process
of a view V ′ as follows:
• S selects a random δi′ ∈ (0, 1) |δi|, δi ∈ 1s, 1≤ i ≤ |1s|,

then outputs 1s
′
= {δi′, 1 ≤ i ≤ |1s

′
|}.

• S randomly generates a SK′ = (K1
′, K2

′), where K1
′ is a

64-bit integer and K2
′ is a 512-bit integer.

• S generates a query Qk ′ to simulate Qk and constructs
trapdoor Td′(Qk ′) = EncSK ′(Qk ′), as follows: 1) for each
qi ∈ Qk , 1≤ i ≤ k , is generated. Each position is a randomly
selected as 1 or 0, but the number of 1s is the same as Qk ;
2) Encrypt Qk ′ with SK′: EncSK ′ (Qk ′) = {EncSK ′ (q1′), . . . ,
EncSK ′ (qk ′)}.
• S generates an index trees τi′ for Fi to simulate τi and

encrypt τi′, as follows: 1) for each δi′ ∈ 1s
′, 1 ≤ i ≤ |1s

′
|,

a d-bit null vector Iδi′ is generated as the index; 2) for each
qj ∈ Qk , if qj ∈ δi, 1 ≤ j ≤ k , then the d positions of
Iδi′ are set as that of qj′; 3) an index tree τi′ is constructed
based on these index vectors, τi′ is encrypted with SK′ as
EncSK ′(τi′).
• S outputs the V ′ = (1s

′, EncSK ′(τi′), EncSK ′(Qk ′)).
From the above process, according to the same trace as

those of PuCS, the EBBI tree EncSK ′(τi′) and the trap-
door EncSK ′(Qk ′) are generated. No PPT (probabilistic
polynomial-time) adversary can distinguish view V ′ and V ,
or the encrypted file sets EncSK (1s) and file sets 1s

′ with
more than 1/2 probability since the semantic security of sym-
metric encryption. Some related schemes have demonstrated
the indistinguishable of index tree and trapdoor which are
generated by homomorphic encryption. So, theorem 1 has
been proven.
Theorem 2: CRHM is secure under the known background

model.
Proof: we still use a simulator S to generate a view V ′

that is indistinguishable fromPuCS’s viewV (H ). The process
of generating V ′ as follows:
• S selects a random δi

′
∈ (0, 1)|δi|, δi ∈ 1s, 1 ≤ i ≤ |1s

|, then outputs 1s
′
= {δi′, 1 ≤ i ≤ |1s

′
|}.

• S randomly generates a SK′ = (K1
′, K2

′) as above, and a
large prime number qt is selected randomly, qt ′ � K1.
• S generates a query Qk ′ to simulate Qk and constructs

trapdoor Td ′(Qk ′) = EncSK ′(Qk ′), as follows: 1) for each qi ∈
Qk , 1 ≤ i ≤ k , is generated. Each position is a randomly
selected as 1 or 0, but the number of 1s is the same as Qk ;
2) Encrypt Qk ′ with SK ′: EncSK ′(Qk ′) = {EncSK ′(q1′), . . . ,
EncSK ′(qk ′)}.
• S generates an index trees τi′ for Fi to simulate τi and

encrypt τi′, as follows: 1) for each δi′ ∈ 1s
′, 1 ≤ i ≤ |1s

′
|,

a d-bit null vector Iδi′ is generated as the index; 2) for each
qj ∈ Qk , if qj ∈ δi, 1 ≤ j ≤ k , then the d positions of Iδi′ are

set as that of qj′; 3) an index tree τi′ is constructed based on
these index vectors, τi′ is encrypted with SK′ as EncSK ′(τi′).
• S outputs the V ′ = (1s

′, EncSK ′(τi′), EncSK ′(Qk ′)).
In this process, the conclusion proved in Theorem 1 applies

equally to Theorem 2. Although PuSC has a series of
keyword-trapdoor pairs, it cannot distinguish the output of
the linear analysis form a random string because of the
indistinguishability of the randomness of file partitioning and
randomness of large prime number selection. So, theorem 2
has been proven.

B. PERFORMANCE EVALUATION
The function comparison among CRHM and related schemes
in terms of ‘‘multiple owners’’ mode, trusted organiza-
tion, tree-based index, simple update, and high-quality file
retrieval is described in TABLE 1.

Then we evaluate the performance of CRHM from five
aspects: weighted index generation, security index genera-
tion, trapdoor generation, retrieval efficiency and retrieval
precision. CRHM is compared with EMRS [18], MRSE [11]
and PRSE [13] in the above aspects. These schemes are
implemented on Intel Core i5-3230M 2.60 GHz processor
and Windows 10 operating system platform using Java lan-
guage. The data set used in the experiment is crawled from
Google Scholar, which contains 10000 papers related to
different fields. And the average of each file is 2MB, and
the number of keywords in each file is set to 20. So, the
parameters d = 100, A = 10, k = 3, and K1, K2, qt , qt ′

are selected randomly, where K1 is a 64-bit integer, K2 is a
512-bit integer and qt , qt ′ are 8-bit prime numbers.

1) WEIGHTED INDEX GENERATION
We compare and analyze the efficiency of weighted index
generation of these schemes under different file sets.
Figure. 3 shows the variation of the generation time of
weighted indexes with the total number of files. In CRHM,
the whole process of weighted index generation mainly
includes file partition, partition dictionaries generation, plain-
text indexes generation and weighted indexes generation; In
EMRS, there are no partitions, a public dictionary is prepared
instead of partition dictionaries, and plaintext indexes and
weighted indexes are generated according to the public dictio-
nary. As forMRSE and PRSE, plaintext indexes are generated
with a public dictionary like EMRS, but plaintext indexes do
not need to be further processed. Thus, we treat the plaintext
indexes here as weighted indexes. In CRHM, the sizes of key-
word dictionaries are reduced by partitioning files, so that the
time overheads are also decreased while generating plaintext
indexes and weighted indexes. Therefore, for any number of
files, the generation time of weighted indexes in CRHM is
significantly less than that of EMRS, MRSE and PRSE.

2) SECURITY INDEX GENERATION
After the generation of weighted indexes, they need to be
encrypted with specific methods to generate the security
indexes. In CRHM, we divide files into multiple partitions,
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TABLE 1. Function comparsion of related schemes.

FIGURE 3. The variation of the generation time of weighted indexes with
the total number of files.

FIGURE 4. The variation of the generation time of security indexes with
the total number of files.

and an EBBI tree is generated for each partition with the
homomorphic encryption method. In EMRS, the secure kNN
method is used to encrypt weighted indexes and generate

FIGURE 5. The variation of the generation time of trapdoors with the
number of query keywords.

a large grouped balanced binary tree to store security indexes.
In MRSE and PRSE, the plaintext indexes are also encrypted
with the secure kNN method, but the security indexes are
stored directly instead of using tree-based structure. The
variation of the generation time of security indexes with the
total number of files is as shown in Figure. 4. It can be
seen that, MRSE and PRSE are more efficient than EMRS
because of their simple processing of indexes. Moreover,
because of the superiority of the homomorphic encryption
and EBBI tree, the efficiency of security index generation in
CRHM is the highest among all the schemes for any number
of files.

3) TRAPDOOR GENERATION
According to query data, trapdoors are generated with the
keyword dictionaries and encryption method. In EMRS and
MRSE, query vectors are generated according to the query
data and public dictionary, and trapdoors will be generated
with the secure kNN method based on the query vectors.
In PRSE, query vectors are generated as the same, and further
processed as the weighted query vectors, based on which
trapdoors are generated with the secure kNN method. As for
CRHM, each trapdoor is generated by the partition dictionar-
ies and homomorphic encryption method. Figure. 5 shows
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the variation of the generation time of trapdoors with the
number of query keywords. The capacity of the partition
dictionaries in CRHM is much smaller than that of the public
dictionary in EMRS, MRSE and PRSE, and the homomor-
phic encryption method in CRHM is very efficient, so that
the efficiency of trapdoor generation in CRHM is higher
than that in other three schemes for any number of query
keywords.

4) RETRIEVAL EFFICIENCY
In order to illustrate the retrieval efficiency of these schemes,
we use the same query data to retrieve files and then compare
the retrieval time. In CRHM, EBBI trees are traversed in
parallel and the files are sorted by the inner products of
trapdoors and security indexes which are calculated with the
feature of homomorphic encryption based on large integer
operations. In EMRS, MRSE and PRSE, the inner product
is calculated with the feature of complex matrix operations.
In addition, In EMRS, the large grouped balanced binary
tree is traversed while all indexes without any tree-based
structure are linearly traversed in MRSE and PRSE. Figure. 6
shows the variation of retrieval time with the total number
of files, where the number of files to be retrieved out is set
to 10, and Figure. 7 shows the variation of retrieval time
with the number of files to be retrieved out, where the total
number of files is set to 1000. We can get similar results with
other settings. It can be seen that CRHM has better retrieval
efficiency compared with other three schemes in various
situations.

5) RETRIEVAL PRECISION
We compare the retrieval precision of these schemes. The
retrieval precision here refers to the ability of the scheme
to distinguish the files with different qualities but involv-
ing similar topics. In MRSE, coordinate matching method
is used to calculate the correlation score, in which all key-
words in security index are regarded as equivalent. In PRSE,
TF-IDF model is used and each keyword in security index is
given weight that considers the importance of the keyword to
files. In EMRS and CRHM, dynamic weight model is used
and each keyword is given weight that considers both the
importance of the keyword to files and the file popularity
information of multiple DOs.

In the experiment, we choose two file sets, in which the
corresponding files contain the same keywords, and the files
in file set A are far more popular than the corresponding files
in file set B. For these four schemes, we calculate the inner
product results of the query vectors and weighted indexes
of files in the two file sets respectively, to rank files for
simplicity. The results are shown in Table 2. We number the
files in the two file sets in order respectively, FID represents
the file number, and the value in Table 2 (e.g., 10/10) contains
two parts, in which the first part represents the inner product
of the file in A, and the second part represents the inner
product of the file in B. Since the qualities of files in A are

FIGURE 6. The variation of retrieval time with the total number of files.

FIGURE 7. The variation of retrieval time with the number of files to be
retrieved out.

TABLE 2. The inner product results of the query vectors and weighted
indexes of files in two file sets.

higher than those in B, the larger the quotient value of the
two parts is, the higher the retrieval precision is. As we can
see, in MRSE and PRSE, the inner products of files in A are
the same as those in B, so high quality files in A cannot be
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selected preferentially. When using dynamic weight model,
the inner products of files in A are obviously larger than
those in B, therefore CRHM and EMRS achieve more pre-
cise retrieval, which can find out higher quality files in A.
In addition, the quotient value of the two parts in CRHM is
a bit smaller than the corresponding value in EMRS, because
affected by the file partition, the retrieval precision is slightly
reduced in CRHM. In a word, CRHM can ensure relatively
high retrieval precision and improve the retrieval efficiency
significantly.

V. CONCLUSION
In this paper, we propose an efficient ciphertext retrieval
scheme based on homomorphic encryption for multiple data
owners in hybrid cloud, namely CRHM, where the pub-
lic cloud server and the private cloud server cooperate to
implement the ciphertext retrieval securely and efficiently.
In CRHM, multiple EBBI trees are set up to generate
and store security indexes, and a homomorphic encryption
method based on large integer operations is designed to per-
form ciphertext retrieval process. CRHM can support multi-
keyword ranked retrieval, and provide the results which are
not only relevant to query data, but also of high quality
from multiple owners. Compared with the existing related
schemes, CRHM achieves both high retrieval efficiency and
accuracy. In addition, it can effectively guarantee the privacy
and security of user file and retrieval.

For future work, we will investigate on how to solve the
validation problems of retrieval results to increase the relia-
bility of system when the cloud server may not perform the
operations correctly.
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